Classes | |
class | PLearn::Array< T > |
class | PLearn::TypeTraits< Array< T > > |
class | PLearn::Array2ArrayMap< T > |
class | PLearn::Option< T, Enclosing > |
Template class for option definitions. More... | |
class | PLearn::ArrayAllocatorOptions |
class | PLearn::ArrayAllocator< T, SizeBits > |
class | PLearn::ArrayAllocatorIndex< IndexBase, SizeBits > |
This type represents an index into the allocated memory, as a bit-field parameterized by the template argument SizeBits. More... | |
class | PLearn::ArrayAllocatorTrivial< T, SizeBits > |
This allocator solely performs allocation. More... | |
class | PLearn::PLearnInit |
class | PLearn::Object |
The Object class. More... | |
class | PLearn::OptionBase |
Base class for option definitions. More... | |
class | PLearn::PDate |
class | PLearn::PDateTime |
class | PLearn::PLearnError |
class | PLearn::PPointable |
class | PLearn::PP< T > |
class | PLearn::TypeTraits< PP< T > > |
class | PLearn::MultiMap< A, B > |
class | PLearn::ProgressBarPlugin |
Base class for pb plugins. More... | |
class | PLearn::TextProgressBarPlugin |
Simple plugin for displaying text progress bar. More... | |
struct | PLearn::NullProgressBarPlugin |
Simpler plugin that doesn't display a progress bar at all. More... | |
class | PLearn::ProgressBar |
This class will help you display progress of a calculation. More... | |
class | PLearn::Range |
class | PLearn::RealRange |
represents a real range: i.e. one of ]low,high[ ; [low,high[; [low,high]; ]low,high] More... | |
class | PLearn::RealMapping |
class | PLearn::TypeTraits< RealMapping > |
class | PLearn::SetOption |
class | PLearn::TypeTraits< SetOption > |
class | PLearn::SmallVector< T, SizeBits, Allocator > |
class | PLearn::StaticInitializer |
A StaticInitializer is typically declared as a static member of a class, and given a parameter that is a static initialization function for said class. More... | |
class | PLearn::Storage< T > |
class | PLearn::StringTable |
class | PLearn::TinyVector< T, N, TTrait > |
class | PLearn::TinyVectorTrait< T > |
class | PLearn::TinyVectorTrait< unsigned char > |
class | PLearn::TinyVectorTrait< char > |
class | PLearn::TinyVectorTrait< unsigned int > |
class | PLearn::TinyVectorTrait< int > |
class | PLearn::TypeMapEntry |
class | PLearn::TypeFactory |
class | PLearn::TypeTraits< T > |
class | PLearn::TypeTraits< T * > |
class | PLearn::TypeTraits< string > |
class | PLearn::TypeTraits< vector< T > > |
class | PLearn::TypeTraits< list< T > > |
class | PLearn::TypeTraits< pair< T, U > > |
class | PLearn::TypeTraits< map< T, U > > |
class | PLearn::StringFieldMapping |
class | PLearn::NumToStringMapping |
class | PLearn::AutoSDBVMatrix |
A VMatrix view of a SimpleDB: columns whose type is string are removed from the view, all others are converted to real (characters to their ascii code, and dates to the float date format: 990324). More... | |
class | PLearn::NistDB |
class | PLearn::SDBVMOutputCoder |
class | PLearn::SDBVMField |
class | PLearn::SDBVMSource |
A SDBVMSource represents a source for a value that can be either directly a field from a SDB or an already processed SDBVMField. More... | |
class | PLearn::SDBVMatrix |
class | PLearn::SDBVMFieldSource1 |
A field that maps exactly 1 SDB field to a VMatrix segment (abstract). More... | |
class | PLearn::SDBVMFieldSource2 |
A field that maps exactly 2 SDB fields to a VMatrix segment (abstract). More... | |
class | PLearn::SDBVMFieldAsIs |
Pass through the value within the SDB (after conversion to real of the underlying SDB type). More... | |
class | PLearn::SDBVMFieldNormalize |
Normalize the field (subtract the mean then divide by standard dev). More... | |
class | PLearn::SDBVMFieldDivSigma |
Just divide by standard deviation. More... | |
class | PLearn::SDBVMFieldAffine |
Apply an affine transformation to the field: y = a*x+b. More... | |
class | PLearn::SDBVMFieldPosAffine |
Take the positive part of the field, followed by affine transformation: y = a*max(x,0)+b. More... | |
class | PLearn::SDBVMFieldSignedPower |
Do the following : y = x^a. More... | |
class | PLearn::SDBVMFieldFunc1 |
class | PLearn::SDBVMFieldFunc2 |
class | PLearn::SDBVMFieldDate |
Convert a date to fill 3 columns in the VMat: YYYY, MM, DD. More... | |
class | PLearn::SDBVMFieldDay |
class | PLearn::SDBVMFieldMonths |
Computed year*12+(month-1). More... | |
class | PLearn::SDBVMFieldDateDiff |
difference between two dates ("source1-source2" expressed as an integer number of days, months, or years) More... | |
class | PLearn::SDBVMFieldDiscrete |
A field that recodes its source field according to an OutputCoder object. More... | |
class | PLearn::SDBVMFieldDateGreater |
verifies if the date within the row is greater than a threshold date More... | |
class | PLearn::SDBVMFieldCodeAsIs |
class | PLearn::SDBVMFieldRemapReals |
class | PLearn::SDBVMFieldRemapStrings |
class | PLearn::SDBVMFieldRemapIntervals |
class | PLearn::SDBVMFieldMultiDiscrete |
class | PLearn::SDBVMFieldICBCTargets |
class | PLearn::SDBVMFieldHasClaim |
class | PLearn::SDBVMFieldSumClaims |
class | PLearn::SDBVMFieldICBCClassification |
class | PLearn::FieldStat |
class | PLearn::SDBWithStats |
struct | PLearn::Field |
class | PLearn::FieldPtr |
class | PLearn::FieldValue |
struct | PLearn::FieldValue::DateVal_t |
class | PLearn::Schema |
class | PLearn::SimpleDBIndexKey< KeyType > |
class | PLearn::SimpleDB< KeyType, QueryResult > |
class | PLearn::RowIterator |
class | PLearn::FieldRowRef |
class | PLearn::Row |
class | PLearn::UCISpecification |
class | PLearn::GhostScript |
class | PLearn::Gnuplot |
class | PLearn::MatlabInterface |
class | PLearn::RGB |
class | PLearn::HSV |
class | PLearn::RGBImage |
uses top left coordinate system Pixel (i,j) is at row i, column j More... | |
class | PLearn::RGBImageDB |
class | PLearn::RGBImageVMatrix |
class | PLearn::RGBImagesVMatrix |
class | PLearn::FilePStreamBuf |
class | PLearn::IntStream |
class | PLearn::IntStreamVMatrix |
class | PLearn::FilesIntStream |
class | PLearn::InMemoryIntStream |
class | PLearn::IntVecFile |
class | PLearn::MRUFileList |
class | PLearn::pl_fdstreambuf |
pl_fdstreambuf: stream buffer that acts on a POSIX file descriptor More... | |
class | PLearn::pl_fdstream |
class | PLearn::pl_nullstreambuf |
class | PLearn::pl_streambuf |
class | PLearn::pl_streammarker |
class | PLearn::PStream |
class | PLearn::PIFStream |
class | PLearn::POFStream |
class | PLearn::PIStringStream |
class | PLearn::pl_stream_raw |
class | PLearn::pl_stream_clear_flags |
class | PLearn::pl_stream_initiate |
class | PLearn::PStreamBuf |
class | PLearn::StdPStreamBuf |
class | PLearn::TmpFilenames |
struct | PLearn::tRule |
class | PLearn::AdditiveNormalizationKernel |
class | PLearn::ClassDistanceProportionCostFunction |
class | PLearn::ClassErrorCostFunction |
class | PLearn::ClassMarginCostFunction |
class | PLearn::CompactVMatrixGaussianKernel |
class | PLearn::CompactVMatrixPolynomialKernel |
class | PLearn::ConvexBasisKernel |
returns prod_i log(1+exp(c*(x1[i]-x2[i]))) NOTE: IT IS NOT SYMMETRIC! More... | |
class | PLearn::DifferenceKernel |
returns sum_i[x1_i-x2_i] More... | |
class | PLearn::DirectNegativeCostFunction |
class | PLearn::DistanceKernel |
This class implements an Ln distance (defaults to L2 i.e. euclidean distance). More... | |
class | PLearn::DivisiveNormalizationKernel |
class | PLearn::DotProductKernel |
returns <x1,x2> More... | |
class | PLearn::GaussianDensityKernel |
class | PLearn::GaussianKernel |
returns exp(-norm_2(x1-x2)^2/sigma^2) More... | |
class | PLearn::GeneralizedDistanceRBFKernel |
returns exp(-phi*(sum_i[abs(x1_i^a - x2_i^a)^b])^c) More... | |
class | PLearn::GeodesicDistanceKernel |
class | PLearn::Kernel |
class | PLearn::Ker |
class | PLearn::KernelVMatrix |
class | PLearn::LaplacianKernel |
returns exp(-phi*(sum_i[abs(x1_i - x2_i)])) More... | |
class | PLearn::LiftBinaryCostFunction |
class | PLearn::LLEKernel |
class | PLearn::LogOfGaussianDensityKernel |
class | PLearn::MulticlassErrorCostFunction |
class | PLearn::NegKernel |
class | PLearn::NegLogProbCostFunction |
class | PLearn::NegOutputCostFunction |
This simply returns -output[0] (target should usually have a length of 0) This is used for density estimators whose use(x) method typically computes log(p(x)). More... | |
class | PLearn::NormalizedDotProductKernel |
class | PLearn::PolynomialKernel |
returns (beta*dot(x1,x2)+1)^n More... | |
class | PLearn::PowDistanceKernel |
class | PLearn::PrecomputedKernel |
A kernel that precomputes the kernel matrix as soon as setDataForKernelMatrix is called. More... | |
class | PLearn::PricingTransactionPairProfitFunction |
class | PLearn::QuadraticUtilityCostFunction |
class | PLearn::ReconstructionWeightsKernel |
class | PLearn::ScaledGaussianKernel |
returns exp(-sum_i[(phi_i*(x1_i - x2_i))^2]/sigma^2) More... | |
class | PLearn::ScaledGeneralizedDistanceRBFKernel |
returns exp(-(sum_i phi_i*[abs(x1_i^a - x2_i^a)^b])^c) More... | |
class | PLearn::ScaledLaplacianKernel |
returns exp(-(sum_i[abs(x1_i - x2_i)*phi_i])) More... | |
class | PLearn::SelectedOutputCostFunction |
This allows to apply a costfunction on a single output element (and correponding target element) of a larger output vector, rather than on the whole vector. More... | |
class | PLearn::SigmoidalKernel |
returns sigmoid(c*x1.x2) More... | |
class | PLearn::SigmoidPrimitiveKernel |
returns log(1+exp(c*x1.x2)) = primitive of sigmoidal kernel More... | |
class | PLearn::SourceKernel |
class | PLearn::SquaredErrorCostFunction |
********************************************************* The following 'kernels' are rather used as cost functions More... | |
class | PLearn::WeightedCostFunction |
A costfunction that allows to reweight another costfunction (weight being last element of target) Returns target.lastElement() * costfunc(output,target.subVec(0,target.length()-1));. More... | |
class | PLearn::Binner |
class | PLearn::BottomNI< T > |
class | PLearn::ConditionalCDFSmoother |
class | PLearn::ConditionalStatsCollector |
class | PLearn::DoubleAccessSparseMatrix< T > |
class | PLearn::SMat< T > |
class | PLearn::HashKeyDataPair< KeyType, DataType > |
class | PLearn::Hash< KeyType, DataType > |
struct | PLearn::Symbol |
class | PLearn::IntPair |
Example of class that can be used as key. More... | |
class | PLearn::LiftStatsCollector |
class | PLearn::LimitedGaussianSmoother |
class | PLearn::ManualBinner |
union | PLearn::_plearn_nan_type |
class | PLearn::PLMathInitializer |
class | PLearn::ProbSparseMatrix |
class | PLearn::PSMat |
class | PLearn::RowMapSparseMatrix< T > |
class | PLearn::RowMapSparseValueMatrix< T > |
class | PLearn::ScaledConditionalCDFSmoother |
class | PLearn::Smoother |
class | PLearn::SparseMatrix |
class | PLearn::StatsCollectorCounts |
class | PLearn::StatsCollector |
class | PLearn::StatsIterator |
class | PLearn::MeanStatsIterator |
class | PLearn::ExpMeanStatsIterator |
class | PLearn::StddevStatsIterator |
class | PLearn::StderrStatsIterator |
class | PLearn::SharpeRatioStatsIterator |
class | PLearn::MinStatsIterator |
class | PLearn::MaxStatsIterator |
class | PLearn::LiftStatsIterator |
class | PLearn::QuantilesStatsIterator |
class | PLearn::StatsItArray |
class | PLearn::TTensorElementIterator< T > |
class | PLearn::TTensorSubTensorIterator< T > |
class | PLearn::TTensor< T > |
class | PLearn::TMat< T > |
class | PLearn::TypeTraits< TMat< T > > |
class | PLearn::SelectedIndicesCmp< T > |
class | PLearn::TMatColRowsIterator< T > |
Model of the Random Access Iterator concept for iterating through a single column of a TMat, one row at a time. More... | |
class | PLearn::TMatElementIterator< T > |
class | PLearn::TMatRowsAsArraysIterator< T > |
Model of the Random Access Iterator concept for iterating through the ROWS of a TMat. More... | |
class | PLearn::TMatRowsIterator< T > |
Model of the Random Access Iterator concept for iterating through the ROWS of a TMat. More... | |
class | PLearn::TopNI< T > |
class | PLearn::TVec< T > |
class | PLearn::TypeTraits< TVec< T > > |
class | PLearn::VecCompressor |
class | PLearn::VecStatsCollector |
class | PLearn::Measurer |
class | PLearn::CallbackMeasurer |
class | PLearn::NearestNeighborPredictionCost |
class | PLearn::ObjectGenerator |
class | PLearn::RunObject |
class | PLearn::ShellScript |
class | PLearn::AdaptGradientOptimizer |
class | PLearn::ConjGradientOptimizer |
class | PLearn::GradientOptimizer |
class | PLearn::ScaledGradientOptimizer |
class | PLearn::HyperOptimizer |
class | PLearn::HSetVal |
class | PLearn::HTryAll |
class | PLearn::HCoordinateDescent |
class | PLearn::HTryCombinations |
class | PLearn::Optimizer |
class | PLearn::RandomVar |
we follow the same pattern as Var & Variable More... | |
class | PLearn::RVArray |
An RVArray stores a table of RandomVar's. More... | |
class | PLearn::RVInstance |
RVInstance represents a RandomVariable V along with a "value" v. More... | |
class | PLearn::RVInstanceArray |
class | PLearn::ConditionalExpression |
class | PLearn::RandomVariable |
class | PLearn::StochasticRandomVariable |
class | PLearn::FunctionalRandomVariable |
class | PLearn::NonRandomVariable |
class | PLearn::JointRandomVariable |
class | PLearn::RandomElementOfRandomVariable |
RandomVariable that is the element of the first parent RandomVariable indexed by the second parent RandomVariable. More... | |
class | PLearn::RVArrayRandomElementRandomVariable |
class | PLearn::NegRandomVariable |
class | PLearn::ExpRandomVariable |
class | PLearn::LogRandomVariable |
class | PLearn::DiagonalNormalRandomVariable |
class | PLearn::MixtureRandomVariable |
class | PLearn::PlusRandomVariable |
class | PLearn::MinusRandomVariable |
class | PLearn::ElementWiseDivisionRandomVariable |
class | PLearn::ProductRandomVariable |
class | PLearn::SubVecRandomVariable |
Y = sub-vector of X starting at position "start", of length "value->length()". More... | |
class | PLearn::MultinomialRandomVariable |
class | PLearn::ExtendedRandomVariable |
class | PLearn::ConcatColumnsRandomVariable |
concatenate the columns of the matrix arguments, just like the hconcat function (PLearn.h) on Vars. More... | |
class | PLearn::RandomVarVMatrix |
This is a convenient wrapping around the required data structures for efficient repeated sampling from a RandomVar. More... | |
class | PLearn::SourceSampleVariable |
class | PLearn::UnarySampleVariable |
class | PLearn::BinarySampleVariable |
class | PLearn::UniformSampleVariable |
class | PLearn::MultinomialSampleVariable |
class | PLearn::DiagonalNormalSampleVariable |
class | PLearn::IPServer |
class | PLearn::IPopen |
class | PLearn::PLMPI |
** PLMPI is just a "namespace holder" (because we're not actually using namespaces) for a few MPI related variables. All members are static ** More... | |
class | PLearn::Popen |
class | PLearn::Profiler |
class | PLearn::Profiler::Stats |
union | PLearn::semun |
class | PLearn::SemId |
This class is defined in order to distinguish semaphore and shared memory id's from plain integers when constructing a Semaphore or a SharedMemory object. More... | |
class | PLearn::ResourceSemaphore |
class | PLearn::CountEventsSemaphore |
class | PLearn::SharedMemory< T > |
class | PLearn::AbsVariable |
class | PLearn::AffineTransformVariable |
Affine transformation of a vector variable. More... | |
class | PLearn::AffineTransformWeightPenalty |
Weight decay terms for affine transforms. More... | |
class | PLearn::ArgmaxVariable |
class | PLearn::ArgminOfVariable |
class | PLearn::ArgminVariable |
class | PLearn::BinaryClassificationLossVariable |
For one-dimensional output: class is 0 if output < 0.5, and 1 if >= 0.5. More... | |
class | PLearn::BinaryVariable |
class | PLearn::ClassificationLossVariable |
Indicator(classnum==argmax(netout)). More... | |
class | PLearn::ColumnIndexVariable |
class | PLearn::ColumnSumVariable |
result is a single row that contains the sum of each column of the input More... | |
class | PLearn::ConcatColumnsVariable |
concatenation of the columns of several variables More... | |
class | PLearn::ConcatOfVariable |
class | PLearn::ConcatRowsVariable |
concatenation of the rows of several variables More... | |
class | PLearn::ConvolveVariable |
A convolve var; equals convolve(input, mask). More... | |
class | PLearn::CrossEntropyVariable |
cost = - sum_i {target_i * log(output_i) + (1-target_i) * log(1-output_i)} More... | |
class | PLearn::CutAboveThresholdVariable |
class | PLearn::CutBelowThresholdVariable |
class | PLearn::DeterminantVariable |
The argument must be a square matrix Var and the result is its determinant. More... | |
class | PLearn::DiagonalizedFactorsProductVariable |
class | PLearn::DilogarithmVariable |
This is the primitive of a sigmoid: log(1+exp(x)). More... | |
class | PLearn::DivVariable |
divides 2 matrix vars of same size elementwise More... | |
class | PLearn::DotProductVariable |
Dot product between 2 vectors (or possibly 2 matrices, which are then simply seen as vectors). More... | |
class | PLearn::DuplicateColumnVariable |
class | PLearn::DuplicateRowVariable |
class | PLearn::DuplicateScalarVariable |
class | PLearn::ElementAtPositionVariable |
class | PLearn::EqualConstantVariable |
A scalar var; equal 1 if input1==input2, 0 otherwise. More... | |
class | PLearn::EqualScalarVariable |
A scalar var; equal 1 if input1==input2, 0 otherwise. More... | |
class | PLearn::EqualVariable |
A scalar var; equal 1 if input1==input2, 0 otherwise. More... | |
class | PLearn::ErfVariable |
class | PLearn::ExpVariable |
class | PLearn::ExtendedVariable |
class | PLearn::Func |
class | PLearn::Function |
class | PLearn::HardSlopeVariable |
class | PLearn::IfThenElseVariable |
class | PLearn::IndexAtPositionVariable |
class | PLearn::InterValuesVariable |
if values = [x1,x2,...,x10], the resulting variable is [(x1+x2)/2,(x2+x3)/2, ... More... | |
class | PLearn::InvertElementsVariable |
class | PLearn::IsAboveThresholdVariable |
Does elementwise newx_i = (x_i>=threshold ?truevalue :falsevalue);. More... | |
class | PLearn::IsLargerVariable |
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ More... | |
class | PLearn::IsMissingVariable |
A scalar var; equal 1 if input1!=c, 0 otherwise. More... | |
class | PLearn::IsSmallerVariable |
class | PLearn::LeftPseudoInverseVariable |
class | PLearn::LiftOutputVariable |
class | PLearn::LogAddVariable |
output = log(exp(input1)+exp(input2)) but it is computed in such a way as to preserve precision More... | |
class | PLearn::LogSoftmaxVariable |
class | PLearn::LogSumVariable |
class | PLearn::LogVariable |
class | PLearn::MarginPerceptronCostVariable |
class | PLearn::MatrixAffineTransformFeedbackVariable |
Affine transformation of a MATRIX variable. More... | |
class | PLearn::MatrixAffineTransformVariable |
Affine transformation of a MATRIX variable. More... | |
class | PLearn::MatrixElementsVariable |
class | PLearn::MatrixInverseVariable |
class | PLearn::MatrixOneHotSquaredLoss |
class | PLearn::MatrixSoftmaxLossVariable |
class | PLearn::MatrixSoftmaxVariable |
class | PLearn::MatrixSumOfVariable |
class | PLearn::MatRowVariable |
Variable that is the row of matrix mat indexed by variable input. More... | |
class | PLearn::Max2Variable |
class | PLearn::MaxVariable |
class | PLearn::MiniBatchClassificationLossVariable |
class | PLearn::MinusColumnVariable |
class | PLearn::MinusRowVariable |
class | PLearn::MinusScalarVariable |
class | PLearn::MinusTransposedColumnVariable |
class | PLearn::MinusVariable |
class | PLearn::MinVariable |
class | PLearn::MulticlassLossVariable |
cost = sum_i {cost_i}, with cost_i = 1 if (target_i == 1 && output_i < 1/2) cost_i = 1 if (target_i == 0 && output_i > 1/2) cost_i = 0 otherwise More... | |
class | PLearn::NaryVariable |
class | PLearn::NegateElementsVariable |
class | PLearn::NegCrossEntropySigmoidVariable |
class | PLearn::NllSemisphericalGaussianVariable |
This class implements the negative log-likelihood cost of a Markov chain that uses semispherical gaussian transition probabilities. More... | |
class | PLearn::OneHotSquaredLoss |
Computes sum(square_i(netout[i]-(i==classnum ?hotval :coldval)) This is used typically in a classification setting where netout is a Var of network outputs, and classnum is the target class number. More... | |
class | PLearn::OneHotVariable |
Represents a vector of a given lenth, that has value 1 at the index given by another variable and 0 everywhere else. More... | |
class | PLearn::PDistributionVariable |
class | PLearn::PLogPVariable |
returns the elementwise x*log(x) in a (hopefully!) numerically stable way This can be used to compute the Entropy for instance More... | |
class | PLearn::PlusColumnVariable |
adds a single-column var to each column of a matrix var More... | |
class | PLearn::PlusConstantVariable |
adds a scalar constant to a matrix var More... | |
class | PLearn::PlusRowVariable |
adds a single-row var to each row of a matrix var More... | |
class | PLearn::PlusScalarVariable |
adds a scalar var to a matrix var More... | |
class | PLearn::PlusVariable |
adds 2 matrix vars of same size More... | |
class | PLearn::PowVariable |
elementwise pow (returns 0 wherever input is negative) More... | |
class | PLearn::PowVariableVariable |
class | PLearn::ProductTransposeVariable |
Matrix product between matrix1 and transpose of matrix2. More... | |
class | PLearn::ProductVariable |
Matrix product. More... | |
class | PLearn::ProjectionErrorVariable |
The first input is a set of n_dim vectors (possibly seen as a single vector of their concatenation) f_i, each in R^n The second input is a set of T vectors (possibly seen as a single vector of their concatenation) t_j, each in R^n The output is the following: sum_j min_{w_j} || t_j - sum_i w_{ji} f_i ||^2 where row w_j of w is optmized analytically and separately for each j. More... | |
class | PLearn::ReshapeVariable |
Variable that views another variable, but with a different length() and width() (the only restriction being that length()*width() remain the same). More... | |
class | PLearn::RightPseudoInverseVariable |
class | PLearn::RowAtPositionVariable |
class | PLearn::RowSumVariable |
result is a single column that contains the sum of each row of the input More... | |
class | PLearn::SemiSupervisedProbClassCostVariable |
class | PLearn::SigmoidVariable |
class | PLearn::SignVariable |
sign(x) = 1 if x>0, -1 if x<0, 0 if x=0, all done element by element. More... | |
class | PLearn::SoftmaxLossVariable |
class | PLearn::SoftmaxVariable |
class | PLearn::SoftplusVariable |
This is the primitive of a sigmoid: log(1+exp(x)). More... | |
class | PLearn::SoftSlopeIntegralVariable |
class | PLearn::SoftSlopeVariable |
class | PLearn::SourceVariable |
class | PLearn::SquareRootVariable |
class | PLearn::SquareVariable |
class | PLearn::SubMatTransposeVariable |
class | PLearn::SubMatVariable |
class | PLearn::SubsampleVariable |
A subsample var; equals subrample(input, the_subsamplefactor). More... | |
class | PLearn::SumAbsVariable |
class | PLearn::SumOfVariable |
class | PLearn::SumOverBagsVariable |
class | PLearn::SumSquareVariable |
class | PLearn::SumVariable |
class | PLearn::TanhVariable |
class | PLearn::TimesColumnVariable |
multiplies each column of a matrix var elementwise with a single column variable More... | |
class | PLearn::TimesConstantVariable |
multiplies a matrix var by a scalar constant More... | |
class | PLearn::TimesRowVariable |
multiplies each row of a matrix var elementwise with a single row variable More... | |
class | PLearn::TimesScalarVariable |
multiplies a matrix var by a scalar var More... | |
class | PLearn::TimesVariable |
multiplies 2 matrix vars of same size elementwise More... | |
class | PLearn::TransposeProductVariable |
Matrix product between transpose of matrix1 and matrix2. More... | |
class | PLearn::UnaryHardSlopeVariable |
class | PLearn::UnaryVariable |
class | PLearn::UnequalConstantVariable |
A scalar var; equal 1 if input1!=c, 0 otherwise. More... | |
class | PLearn::UnfoldedFuncVariable |
class | PLearn::UnfoldedSumOfVariable |
class | PLearn::VarArray |
class | PLearn::VarArrayElementVariable |
Variable that is the element of the input1 VarArray indexed by the input2 variable. More... | |
class | PLearn::VarColumnsVariable |
class | PLearn::VarElementVariable |
class | PLearn::Var |
class | PLearn::Variable |
class | PLearn::VarMeasurer |
class | PLearn::VarRowsVariable |
class | PLearn::VarRowVariable |
Variable that is the row of the input1 variable indexed by the input2 variable. More... | |
class | PLearn::VecElementVariable |
Variable that is the element of vector vec indexed by variable input. More... | |
class | PLearn::WeightedSumSquareVariable |
class | PLearn::AsciiVMatrix |
class | PLearn::AutoVMatrix |
This class is a simple wrapper to an underlying VMatrix of another type All it does is forward the method calls. More... | |
class | PLearn::BatchVMatrix |
VMat class that replicates small parts of a matrix (mini-batches), so that each mini-batch appears twice (consecutively). More... | |
class | PLearn::BootstrapSplitter |
class | PLearn::BootstrapVMatrix |
class | PLearn::ByteMemoryVMatrix |
class | PLearn::CenteredVMatrix |
union | PLearn::short_and_twobytes |
class | PLearn::CompactVMatrix |
class | PLearn::CompressedVMatrix |
class | PLearn::ConcatColumnsVMatrix |
class | PLearn::ConcatRowsSubVMatrix |
class | PLearn::ConcatRowsVMatrix |
class | PLearn::CrossReferenceVMatrix |
class | PLearn::CumVMatrix |
class | PLearn::DatedJoinVMatrix |
class | PLearn::DatedVMatrix |
class | PLearn::DBSplitter |
class | PLearn::DiskVMatrix |
A VMatrix whose (compressed) data resides in a directory and can span several files. More... | |
class | PLearn::ExplicitSplitter |
class | PLearn::ExtendedVMatrix |
class | PLearn::FileVMatrix |
A VMatrix that exists in a .pmat file (native plearn matrix format, same as for Mat). More... | |
class | PLearn::FilteredVMatrix |
class | PLearn::FilterSplitter |
class | PLearn::FinancePreprocVMatrix |
class | PLearn::ForwardVMatrix |
This class is a simple wrapper to an underlying VMatrix of another type All it does is forward the method calls. More... | |
class | PLearn::FractionSplitter |
class | PLearn::GeneralizedOneHotVMatrix |
This VMat is a generalization of OneHotVMatrix where all columns (given by the Vec index) are mapped, instead of just the last one. More... | |
class | PLearn::GetInputVMatrix |
class | PLearn::GramVMatrix |
class | PLearn::IndexedVMatrix |
VMat class that sees a matrix as a collection of triplets (row, column, value) Thus it is a N x 3 matrix, with N = the number of elements in the original matrix. More... | |
class | PLearn::InterleaveVMatrix |
struct | PLearn::JoinFieldStat |
class | PLearn::JoinVMatrix |
class | PLearn::JulianizeVMatrix |
class | PLearn::KFoldSplitter |
class | PLearn::KNNVMatrix |
class | PLearn::LearnerProcessedVMatrix |
class | PLearn::LocalNeighborsDifferencesVMatrix |
class | PLearn::MemoryVMatrix |
class | PLearn::MovingAverageVMatrix |
class | PLearn::MultiInstanceVMatrix |
class | PLearn::OneHotVMatrix |
class | PLearn::PairsVMatrix |
class | PLearn::PLearnerOutputVMatrix |
class | PLearn::PrecomputedVMatrix |
class | PLearn::ProcessingVMatrix |
class | PLearn::RangeVMatrix |
Outputs scalar samples (length 1) starting at start, up to end (inclusive) with step. When end is reached it starts over again. More... | |
class | PLearn::RegularGridVMatrix |
class | PLearn::RemapLastColumnVMatrix |
class | PLearn::RemoveDuplicateVMatrix |
class | PLearn::RemoveRowsVMatrix |
sees an underlying VMat with the specified rows excluded More... | |
class | PLearn::RepeatSplitter |
class | PLearn::RowBufferedVMatrix |
class | PLearn::RowsSubVMatrix |
class | PLearn::SelectColumnsVMatrix |
selects variables (columns) from a source matrix according to given vector of indices. More... | |
class | PLearn::SelectRowsFileIndexVMatrix |
class | PLearn::SelectRowsVMatrix |
selects samples from a source matrix according to given vector of indices More... | |
class | PLearn::SentencesBlocks |
class | PLearn::SequentialSplitter |
class | PLearn::ShiftAndRescaleVMatrix |
class | PLearn::SortRowsVMatrix |
Sort the samples of a VMatrix according to one (or more) given columns. More... | |
class | PLearn::SourceVMatrix |
class | PLearn::SourceVMatrixSplitter |
class | PLearn::SparseVMatrixRow |
class | PLearn::SparseVMatrix |
class | PLearn::Splitter |
class | PLearn::StrTableVMatrix |
class | PLearn::SubInputVMatrix |
class | PLearn::SubVMatrix |
class | PLearn::TemporalHorizonVMatrix |
This VMat delay the last targetsize entries of an underlying VMat by a certain horizon. More... | |
class | PLearn::TestInTrainSplitter |
class | PLearn::ThresholdVMatrix |
class | PLearn::ToBagSplitter |
class | PLearn::TrainTestBagsSplitter |
class | PLearn::TrainTestSplitter |
class | PLearn::TrainValidTestSplitter |
class | PLearn::TransposeVMatrix |
class | PLearn::UniformizeVMatrix |
class | PLearn::UniformVMatrix |
class | PLearn::UpsideDownVMatrix |
class | PLearn::VecExtendedVMatrix |
class | PLearn::VMat |
class | PLearn::VMatLanguage |
class | PLearn::PreprocessingVMatrix |
class | PLearn::VMatrix |
class | PLearn::VMatrixFromDistribution |
class | PLearn::VMField |
a VMField contains a fieldname and a fieldtype More... | |
class | PLearn::VMFieldStat |
this class holds simple statistics about a field More... | |
class | PLearn::VVec |
A VVec is a reference to a row or part of a row (a subrow) of a VMatrix. More... | |
class | PLearn::VVMatrix |
this class is a wrapper for a .vmat VMatrix. More... | |
class | PLearn::YMDDatedVMatrix |
class | PLearn::AdaBoost |
class | PLearn::ClassifierFromDensity |
class | PLearn::MultiInstanceNNet |
class | PLearn::ConditionalDensityNet |
class | PLearn::ConditionalDistribution |
class | PLearn::ConditionalGaussianDistribution |
class | PLearn::Distribution |
class | PLearn::EmpiricalDistribution |
class | PLearn::GaussianDistribution |
class | PLearn::GaussianProcessRegressor |
class | PLearn::GaussMix |
class | PLearn::HistogramDistribution |
class | PLearn::LocallyWeightedDistribution |
class | PLearn::ManifoldParzen2 |
class | PLearn::PConditionalDistribution |
class | PLearn::PDistribution |
class | PLearn::SpiralDistribution |
class | PLearn::UnconditionalDistribution |
class | PLearn::UniformDistribution |
class | PLearn::AddCostToLearner |
class | PLearn::EmbeddedLearner |
class | PLearn::Learner |
class | PLearn::NeighborhoodSmoothnessNNet |
class | PLearn::NeuralNet |
class | PLearn::NNet |
class | PLearn::PLearner |
class | PLearn::SelectInputSubsetLearner |
class | PLearn::StackedLearner |
class | PLearn::StatefulLearner |
class | PLearn::TestingLearner |
class | PLearn::GraphicalBiText |
class | PLearn::ShellProgressBar |
class | PLearn::Dictionary |
class | PLearn::ProbVector |
class | PLearn::SmoothedProbSparseMatrix |
class | PLearn::ComplementedProbSparseMatrix |
class | PLearn::TextSenseSequenceVMatrix |
This class handles a sequence of words/sense tag/POS triplets to present it as target words and their context. More... | |
class | PLearn::ProbabilitySparseMatrix |
class | PLearn::PPointableSet |
class | PLearn::Set |
struct | PLearn::Node |
class | PLearn::WordNetOntology |
class | PLearn::Experiment |
class | PLearn::GenerateDecisionPlot |
class | PLearn::Grapher |
class | PLearn::StatSpec |
The specification of a statistic to compute (as can be specified as a string in PTester). More... | |
class | PLearn::PTester |
This code is deprecated, use PTester.h and PTester.cc instead. More... | |
class | PLearn::ConstantRegressor |
class | PLearn::LinearRegressor |
class | PLearn::PLS |
class | PLearn::EmbeddedSequentialLearner |
class | PLearn::MovingAverage |
This SequentialLearner only takes the n previous target to predict the next one. More... | |
class | PLearn::SequentialLearner |
class | PLearn::SequentialModelSelector |
class | PLearn::SequentialValidation |
class | PLearn::TestMethod |
class | PLearn::Train |
class | PLearn::EntropyContrast |
class | PLearn::GaussianContinuum |
class | PLearn::Isomap |
class | PLearn::IsomapTangentLearner |
class | PLearn::KernelPCA |
class | PLearn::KernelProjection |
class | PLearn::KPCATangentLearner |
class | PLearn::LLE |
class | PLearn::PCA |
class | PLearn::SpectralClustering |
class | PLearn::TangentLearner |
class | PLearn::AutoRunCommand |
class | PLearn::FieldConvertCommand |
class | PLearn::HelpCommand |
class | PLearn::JulianDateCommand |
class | PLearn::KolmogorovSmirnovCommand |
class | PLearn::LearnerCommand |
class | PLearn::PLearnCommand |
This is the base class for all PLearn commands (those that can be issued in the plearn program). More... | |
class | PLearn::PLearnCommandRegistry |
class | PLearn::ReadAndWriteCommand |
class | PLearn::RunCommand |
class | PLearn::TestDependenciesCommand |
class | PLearn::TestDependencyCommand |
class | PLearn::VMatCommand |
Typedefs | |
typedef map< const void *, void * > | CopiesMap |
Global typedef to make the map of copied objects (needed by the deep copy mechanism in Object) more palatable. | |
typedef map< string, float > | map_string_float |
Some typedefs to use the NODEEPCOPY macro with. | |
typedef map< string, double > | map_string_double |
typedef map< double, string > | map_double_string |
typedef map< float, string > | map_float_string |
typedef int(* | compare_function )(const void *, const void *) |
typedef vector< PP< OptionBase > > | OptionList |
typedef void(* | VOIDFUNC )() |
typedef Object *(* | NEW_OBJECT )() |
Typedef for the "new instance" function type, which returns a default-initialized Object. | |
typedef OptionList &(* | GETOPTIONLIST_METHOD )() |
typedef bool(* | ISA_METHOD )(Object *o) |
typedef map< string, TypeMapEntry > | TypeMap |
typedef PP< SDBVMOutputCoder > | PSDBVMOutputCoder |
typedef PP< SDBVMField > | PSDBVMField |
typedef PP< SDBVMFieldDiscrete > | PSDBVMFieldDiscrete |
typedef Array< PSDBVMFieldDiscrete > | FieldArray |
In general, if there are N fields, x_1...x_N, and each can take y_i values, then the discrete value is:. | |
typedef SimpleDB | SDB |
A utility typedef for the common case. | |
typedef Ker | CostFunc |
a cost function maps (output,target) to a loss | |
typedef CostFunc | ProfitFunc |
a profit function maps (output,target) to a profit | |
typedef real(* | tRealFunc )(real) |
typedef real(* | tRealReadFunc )(real, real) |
typedef pair< real, StatsCollectorCounts * > | PairRealSCCType |
typedef PP< StatsIterator > | StatsIt |
typedef TinyVector< int, 7 > | IVec |
typedef TTensor< real > | Tensor |
typedef TMat< real > | Mat |
typedef TVec< real > | Vec |
typedef bool(* | MeasurerCallbackFunction )(int t, const Vec &costs) |
typedef Array< PP< HyperOptimizer > > | HStrategy |
typedef map< string, string > | HAliases |
typedef RandomVar | MatRandomVar |
typedef int | tFileHandle |
typedef ofstream | pofstream |
The stream classes. | |
typedef PP< Learner > | PPLearner |
typedef map< int, real > | SparseVec |
typedef const map< int, real > | ConstSparseVec |
typedef PPointableSet::iterator | SetIterator |
Enumerations | |
enum | SDBVMOutputCoding { SDBVMUnknownCoding = 0, SDBVMNumeric, SDBVMOneHot, SDBVMOneHotMinus1 } |
enum | FieldType { Unknown = 0, StringType, CharacterType, SignedCharType, ShortType, IntType, FloatType, DoubleType, DateType } |
enum | eNumericType { NT_NOT_NUMERIC = 0x0000, NT_ORDINAL = 0x0001, NT_CARDINAL = 0x0002, NT_CURRENCY = 0x0004, NT_PREFIXED = 0x0008, NT_SUFFIXED = 0x0010, NT_RANGE = 0x0020, NT_TIME = 0x0040, NT_CODE = 0x0080, NT_PERCENT = 0x0100, NT_UNKNOWN_NUMERIC_TYPE = 0x8000 } |
Functions | |
template<class T> void | swap (Array< T > &a1, Array< T > &a2) |
template<class T> PStream & | operator>> (PStream &in, Array< T > &a) |
template<class T> PStream & | operator<< (PStream &out, const Array< T > &a) |
template<class T> ostream & | operator<< (ostream &out, const Array< T > &a) |
template<class T> void | deepCopyField (Array< T > &field, CopiesMap &copies) |
template<class T> Array< T > | operator & (const T &elem, const Array< T > &a) |
template<class T> Array< T > & | operator &= (Array< T > &a, const T &elem) |
template<class T> Array< T > & | operator &= (Array< T > &a, const Array< T > &ar) |
template<class T> Array< T > & | operator &= (Array< T > &a, const vector< T > &ar) |
template<class T> Array< T > | operator & (const Array< T > &a, const T &elem) |
template<class T> Array< T > | operator & (const Array< T > &a, const Array< T > &ar) |
template<class T> Array< T > | operator & (const Array< T > &a, const vector< T > &ar) |
string | join (const Array< string > &s, const string &separator) |
template<class T> Array< TVec< T > > | operator & (const TVec< T > &m1, const TVec< T > &m2) |
This will allow a convenient way of building arrays of Matrices by writing ex: m1&m2&m3. | |
template<class T> TVec< T > | concat (const Array< TVec< T > > &varray) |
template<class T> TMat< T > | vconcat (const Array< TMat< T > > &ar) |
template<class T> TMat< T > | hconcat (const Array< TMat< T > > &ar) |
template<class T> TMat< T > | vconcat (const TMat< T > &m1, const TMat< T > &m2) |
template<class T> TMat< T > | hconcat (const TMat< T > &m1, const TMat< T > &m2) |
template<class T> Array< TMat< T > > | operator & (const TMat< T > &m1, const TMat< T > &m2) |
This will allow a convenient way of building arrays of Matrices by writing ex: m1&m2&m3. | |
void | endianswap2 (void *ptr, int n) |
swaps endians for n 2-byte elements (such as short) | |
void | endianswap4 (void *ptr, int n) |
swaps endians for n 4-byte elements (such as int or float) | |
void | endianswap8 (void *ptr, int n) |
swaps endians for n 8-byte elements (such as double) | |
char | byte_order () |
void | endianswap (char *ptr, int n=1) |
void | endianswap (signed char *ptr, int n=1) |
void | endianswap (unsigned char *ptr, int n=1) |
void | endianswap (short *ptr, int n=1) |
void | endianswap (unsigned short *ptr, int n=1) |
void | endianswap (int *ptr, int n=1) |
void | endianswap (unsigned int *ptr, int n=1) |
void | endianswap (long *ptr, int n=1) |
void | endianswap (unsigned long *ptr, int n=1) |
void | endianswap (float *ptr, int n=1) |
void | endianswap (double *ptr, int n=1) |
template<class T> void | deepCopyField (T &, CopiesMap &) |
Types that do not require deep copy. Any type not handled below: do nothing. | |
template<class T> void | deepCopyField (T *&field, CopiesMap &copies) |
template<class T> T * | deepCopy (const T *source, CopiesMap &copies) |
A simple template function that calls the method. | |
template<class T> T * | deepCopy (const T *source) |
This function simply calls the previous one with an initially empty map. | |
int | file_size (const string &filename) |
Simple file info. | |
char * | strcopy (char *s) |
make a copy of a C string and return it | |
void | pretty_print_number (char *buffer, real number) |
print a number without unnecessary trailing zero's, into buffer | |
bool | file_exists (const string &filename) |
bool | isMapKeysAreInt (map< real, int > &m) |
check that all keys of the map are int values | |
string | hostname () |
string | prgname (const string &setname) |
template<class In, class Out> Out | copy_cast (In first, In last, Out res) |
Like std::copy, but with an explicit cast to the destination type. | |
template<class T> void | clear_1 (T &x) |
clearing an element (that's called by clear_n...) Default implementation for clearing any type | |
void | clear_1 (char &x) |
void | clear_1 (unsigned char &x) |
void | clear_1 (signed char &x) |
void | clear_1 (short &x) |
void | clear_1 (unsigned short &x) |
void | clear_1 (int &x) |
void | clear_1 (unsigned int &x) |
void | clear_1 (long &x) |
void | clear_1 (unsigned long &x) |
void | clear_1 (float &x) |
void | clear_1 (double &x) |
void | clear_1 (bool &x) |
template<class For> void | clear_n (For begin, int n) |
clears n elements starting at iterator position begin | |
void | clear_n (float *begin, int n) |
efficient specialisation for built-in types | |
void | clear_n (double *begin, int n) |
void | clear_n (bool *begin, int n) |
void | clear_n (char *begin, int n) |
void | clear_n (unsigned char *begin, int n) |
void | clear_n (short *begin, int n) |
void | clear_n (unsigned short *begin, int n) |
void | clear_n (int *begin, int n) |
void | clear_n (unsigned int *begin, int n) |
void | clear_n (long *begin, int n) |
void | clear_n (unsigned long *begin, int n) |
template<class T> void | swap (T &a, T &b) |
Object * | loadObject (const string &filename) |
Loads an object from the given file (no macro-preprocessing is performed). | |
Object * | macroLoadObject (const string &filename, map< string, string > &vars) |
Same as loadObject but first performs macro-processing on the file vars may be initialised with the values of some variables and upon return it will also contain newly $DEFINED variables. | |
Object * | macroLoadObject (const string &filename) |
same as previous, but no need to pass a variables map | |
Object * | readObject (PStream &in, unsigned int id) |
PStream & | operator>> (PStream &in, Object *&x) |
template<class T> Object * | toObjectPtr (const T *x) |
The toObjectPtr functions attempt to return a pointer to Object (or 0 if the passed argument cannot be considered an Object subclass). | |
template<class T> Object * | toObjectPtr (const T &x) |
template<> Object * | toObjectPtr (const Object &x) |
template<> Object * | toObjectPtr (const Object *x) |
template<class T> Object * | toObjectPtr (const PP< T > &x) |
template<class T> Object * | toIndexedObjectPtr (const Array< T > &x, int i) |
template<class T> Object * | toIndexedObjectPtr (const TVec< T > &x, int i) |
template<class T> Object * | toIndexedObjectPtr (const T &, int) |
Object * | readObject (istream &in_) |
Object * | newObject (const string &representation) |
Creates a new object according to the given representation. | |
ostream & | operator<< (ostream &out, const Object &obj) |
PStream & | operator>> (PStream &in, Object &o) |
PStream & | operator<< (PStream &out, const Object &o) |
template<class ObjectType, class OptionType> void | declareOption (OptionList &ol, const string &optionname, OptionType ObjectType::*member_ptr, OptionBase::flag_t flags, const string &description, const string &defaultval="") |
For flags, you should specify one of OptionBase::buildoption, OptionBase::learntoption or OptionBase::tuningoption If the option is not to be serialized, you can additionally specify OptionBase::nosave. | |
template<class ObjectType, class OptionType> void | declareOption (OptionList &ol, const string &optionname, OptionType *ObjectType::*member_ptr, OptionBase::flag_t flags, const string &description, const string &defaultval="") |
template<class ObjectType, class OptionType> void | redeclareOption (OptionList &ol, const string &optionname, OptionType ObjectType::*member_ptr, OptionBase::flag_t flags, const string &description, const string &defaultval="") |
Allows one to redeclare an option differently (e.g. | |
float | date_to_float (const PDate &t) |
converts date to float: ex: September 29 1972: 720929; December 25 2002: 1021225 Also converts missing date to missing flat value and vice-versa. | |
PDate | float_to_date (float f) |
int | operator- (const PDate &to_date, const PDate &from_date) |
substract two dates, the result being counted in days. | |
PDate | operator+ (const PDate &pdate, int ndays) |
add a number of days | |
PDate | operator- (const PDate &pdate, int ndays) |
subtract a number of days add a number of days | |
ostream & | operator<< (ostream &os, const PDate &date) |
PDate | float_to_date (double d) |
double | datetime_to_double (const PDateTime &t) |
converts date/time to double: for example: September 29 1972: 720929; December 25 2002: 1021225. | |
PDateTime | double_to_datetime (double f) |
double | hhmmss_to_double (int hh, int mm, int ss) |
converts an hours/minutes/seconds to a day fraction | |
void | double_to_hhmmss (double fraction, int &hh, int &mm, int &ss) |
convert a day fraction (< 1) to hours/minutes/seconds | |
double | operator- (const PDateTime &to_date, const PDateTime &from_date) |
subtract two dates, the result being counted in days (+ fractions) | |
ostream & | operator<< (ostream &os, const PDateTime &date) |
size_t | hashbytes (const char *byte_start, size_t byte_length) |
**************** Hash tables support ************************* | |
size_t | hashval (const char *strng) |
template<class T> size_t | hashval (const T &x) |
default which will work in many cases but not all | |
void | errormsg (const char *msg,...) |
void | warningmsg (const char *msg,...) |
void | exitmsg (const char *msg,...) |
template<class T> void | deepCopyField (PP< T > &field, CopiesMap &copies) |
Any pointer or smart pointer: call deepCopy(). | |
template<class T> T * | deepCopy (PP< T > source, CopiesMap &copies) |
A simple template function. | |
template<class T> T * | deepCopy (PP< T > source) |
This function simply calls the previous one with an initially empty map. | |
ostream & | operator<< (ostream &out, Range r) |
PStream & | operator<< (PStream &out, const RealRange &x) |
PStream & | operator>> (PStream &in, RealRange &x) |
bool | operator< (RealMapping::single_mapping_t a, RealMapping::single_mapping_t b) |
void | write (ostream &out, const RealRange &range) |
ostream & | operator<< (ostream &out, const RealRange &range) |
void | read (istream &in, RealRange &range) |
Object * | toObjectPtr (const RealMapping &o) |
PStream & | operator>> (PStream &in, RealMapping &o) |
PStream & | operator>> (PStream &in, RealMapping *&o) |
PStream & | operator<< (PStream &out, const RealMapping &o) |
PStream & | operator>> (PStream &in, PP< RealMapping > &o) |
Object * | toObjectPtr (const SetOption &o) |
PStream & | operator>> (PStream &in, SetOption &o) |
PStream & | operator>> (PStream &in, SetOption *&o) |
PStream & | operator<< (PStream &out, const SetOption &o) |
PStream & | operator>> (PStream &in, PP< SetOption > &o) |
template<class T, unsigned SizeBits, class Allocator> unsigned int | hashval (const SmallVector< T, SizeBits, Allocator > &v) |
hash function for hash tables | |
template<class T, unsigned SizeBits, class Allocator> bool | operator== (const SmallVector< T, SizeBits, Allocator > &a, const SmallVector< T, SizeBits, Allocator > &b) |
Equality operator. | |
template<class T, unsigned SizeBits, class Allocator> bool | operator!= (const SmallVector< T, SizeBits, Allocator > &x, const SmallVector< T, SizeBits, Allocator > &y) |
const SmallVector<T,SizeBits,Allocator>& y) { return !(x==y); } | |
template<class T, unsigned SizeBits> bool | operator< (const SmallVector< T, SizeBits > &, const SmallVector< T, SizeBits > &) |
const SmallVector<T,SizeBits,Allocator>&); | |
template<class T, unsigned SizeBits, class Allocator> bool | operator< (const SmallVector< T, SizeBits, Allocator > &x, const SmallVector< T, SizeBits, Allocator > &y) |
template<class T> PStream & | operator<< (PStream &out, const Storage< T > &seq) |
template<class T> PStream & | operator>> (PStream &in, Storage< T > &seq) |
ostream & | operator<< (ostream &out, const StringTable &st) |
string | left (const string &s, size_t width, char padding) |
aligns the given string in a cell having the given width | |
string | right (const string &s, size_t width, char padding) |
string | center (const string &s, size_t width, char padding) |
bool | pl_isnumber (const string &str, double *dbl) |
bool | pl_isnumber (const string &str, float *dbl) |
long | tolong (const string &s, int base) |
conversions from string to numerical types | |
bool | tobool (const string &s) |
double | todouble (const string &s) |
string | extract_filename (const string &filepath) |
** File path manipulation functions ** Returns everything after the last '/' (if there's no '/' returns filepath) | |
string | extract_directory (const string &filepath) |
Returns everything before the last '/' including the '/' (if there's no '/' it returns "./"). | |
string | extract_extension (const string &filepath) |
Returns everything after the last '.' of the filename (i.e. | |
string | extract_filename_without_extension (const string &filepath) |
Returns everything before the last '.' of the filename, excluding the '.' (if there's no '.' in the filename it returns the whole filename). | |
string | remove_extension (const string &filename) |
Return the filename withoug the extension (i.e. removing the last. | |
string * | data_filename_2_filenames (const string &filename, int &nb_files) |
take a filename containing the name of a file per line, and return theses names as a string* of length nb_files | |
string | removeblanks (const string &s) |
removes starting and ending blanks ' ','',' ','' | |
string | removeallblanks (const string &s) |
removes all blanks ' ','',' ','' | |
string | removenewline (const string &s) |
removes any trailing ' ' and/or '' | |
string | remove_trailing_slash (const string &s) |
removes any trailing '/' from the path | |
string | append_slash (const string &path) |
appends a trailing slash to path if there isn't already one | |
string | lowerstring (const string &ss) |
convert a string to all lowercase | |
string | upperstring (const string &ss) |
convert a string to all uppercase | |
string | pgetline (istream &in) |
returns the next line read from the stream, after removing any trailing '' and/or ' ' | |
bool | isBlank (const string &s) |
returns true if s is a blank line (containing only space, tab, until end of line or a # comment-character is reached | |
bool | isParagraphBlank (const string &s) |
returns true if s is a blank paragraph (containing only space, tab, until end of **string**) | |
string | space_to_underscore (string str) |
replaces all characters <= ' ' (i.e. newline, tab, space, etc...) by '_' | |
string | underscore_to_space (string str) |
replaces all underscores by a single space character | |
string | backslash_to_slash (string str) |
replaces all backslashes with slash | |
int | search_replace (string &text, const string &searchstr, const string &replacestr) |
replaces all occurences of searchstr in the text by replacestr returns the number of matches that got replaced | |
vector< string > | split (const string &s, char delimiter) |
splits a string along occurences of the delimiters. | |
vector< string > | split (const string &s, const string &delimiters, bool keep_delimiters) |
void | split_on_first (const string &s, const string &delimiters, string &left, string &right) |
pair< string, string > | split_on_first (const string &s, const string &delimiters) |
void | remove_comments (string &text, const string &commentstart) |
In a multiline text, removes everything starting at commentstart pattern until the end of line. | |
string | join (const vector< string > &s, const string &separator) |
makes a single string from a vector of strings | |
vector< string > | remove (const vector< string > &v, string element) |
return vector with all instances of element removed | |
int | findit (const vector< string > &v, string element) |
vector< string > | addprepostfix (const string &prefix, const vector< string > &names, const string &postfix) |
returns the list of names, but with a prepended prefix and an appended postfix | |
string | addprepostfix (const string &prefix, const string &text, const string &postfix) |
Returns a string with the prefix prepended and the postfix appended to each *line* of the text string. | |
vector< string > | stringvector (int argc, char **argv) |
makes a C++ style vector of strings from a C style vectr of strings Note: this may be useful in conjunction with get_option. | |
string | get_option (const vector< string > &command_line, const string &option, const string &default_value) |
bool | find (const vector< string > &command_line, const string &option) |
vector< string > | getNonBlankLines (const string &in) |
Returns a vector of string containing only non-empty lines, as you guessed it. | |
ostream & | operator<< (ostream &out, const vector< string > &vs) |
formatted printing of vector<string> prints strings separated by a ", " | |
string | tostring (const double &x) |
string | tostring (const float &x) |
template<class T> string | tostring (const T &x) |
------------------------------------------------------------------ | |
string | tostring (const char *s) |
specialised version for char* | |
int | toint (const string &s, int base=10) |
float | tofloat (const string &s) |
FLOAT. | |
vector< string > | addprefix (const string &prefix, const vector< string > &names) |
returns the list of names, but with a prepended prefix | |
vector< string > | addpostfix (const vector< string > &names, const string &postfix) |
returns the list of names, but with an appended postfix | |
string | addprefix (const string &prefix, const string &text) |
Returns a string with the prefix prepended to each *line* of the text string. | |
string | addpostfix (const string &text, const string &postfix) |
Returns a string with the postfix appended to each *line* of the text string. | |
int | findpos (const vector< string > &v, string element) |
return index of element in v, or -1 if not found | |
template<class U, class V> ostream & | operator<< (ostream &out, const pair< U, V > &p) |
Formatted printing of a pair<U,V> as U:V. | |
template<class T, unsigned N, class TTrait> bool | operator== (const TinyVector< T, N, TTrait > &, const TinyVector< T, N, TTrait > &) |
Equality operator. | |
template<class T, unsigned N, class TTrait> bool | operator< (const TinyVector< T, N, TTrait > &, const TinyVector< T, N, TTrait > &) |
Lexicographical Ordering. | |
template<class T, unsigned N, class TTrait> bool | operator!= (const TinyVector< T, N, TTrait > &x, const TinyVector< T, N, TTrait > &y) |
Other operators (should be defined in std::rel_ops, but does not work properly with gcc yet). | |
template<class T, unsigned N, class TTrait> bool | operator> (const TinyVector< T, N, TTrait > &x, const TinyVector< T, N, TTrait > &y) |
template<class T, unsigned N, class TTrait> bool | operator<= (const TinyVector< T, N, TTrait > &x, const TinyVector< T, N, TTrait > &y) |
template<class T, unsigned N, class TTrait> bool | operator>= (const TinyVector< T, N, TTrait > &x, const TinyVector< T, N, TTrait > &y) |
void | displayObjectHelp (ostream &out, const string &classname) |
Will display the help message for an object of the given classname. | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (char, 0x01, 0x01) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (signed char, 0x01, 0x01) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (unsigned char, 0x02, 0x02) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (short, 0x03, 0x04) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (unsigned short, 0x05, 0x06) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (int, 0x07, 0x08) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (unsigned int, 0x0B, 0x0C) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (long, 0x07, 0x08) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (float, 0x0E, 0x0F) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (double, 0x10, 0x11) | |
DECLARE_TYPE_TRAITS_FOR_BASETYPE (bool, 0x12, 0x12) | |
Mat | input2dSet (const string &filename) |
This will input a 2d binary classification problem (launches a java applet). | |
void | normalizeDataSets (Mat &training_set, Mat &validation_set, Mat &test_set) |
void | normalizeDataSets (VMat &training_set, VMat &validation_set, VMat &test_set) |
void | normalizeDataSets (Mat &training_set, Mat &test_set) |
normalize both training_set and test_set according to mean and stddev computed on training_set | |
void | normalizeDataSet (Mat &m) |
void | splitTrainValidTest (VMat &data_set, VMat &train_set, VMat &valid_set, real valid_fraction, VMat &test_set, real test_fraction, bool normalize) |
VMat | reduceInputSize (real fraction, VMat data) |
VMat | reduceDataSetSize (real fraction, VMat data) |
void | remapClassnums (VMat &data, real remap_minval_to, real remap_maxval_to) |
remaps classnums to {0,1} or to {-1,+1} | |
VMat | loadBreastCancerWisconsin (bool normalize, bool uniq) |
int | loadBreastCancer (VMat &training_set, VMat &validation_set, VMat &test_set, int ntrain, int nvalid, bool uniq) |
These calls return the number of classes... | |
VMat | loadPimaIndians (bool normalize) |
VMat | loadHousing (bool normalize) |
VMat | loadSonar () |
VMat | loadIonosphere () |
VMat | loadDiabetes (bool normalize) |
int | loadDiabetes (VMat &training_set, VMat &validation_set, VMat &test_set, int ntrain, int nvalid) |
int | loadATT800 (VMat &training_set, VMat &test_set) |
VMat | loadLetters (bool normalize) |
VMat | loadLetters (const char *class0, const char *class1, bool normalize) |
int | loadLetters (VMat &training_set, VMat &validation_set, VMat &test_set, char *which_letters, real validation_fraction, real test_fraction, bool do_shuffle) |
VMat | loadLetters (int n_letters, bool do_shuffle) |
int | loadLetters (VMat &training_set, VMat &validation_set, VMat &test_set, int n_letters, real validation_fraction, real test_fraction, bool do_shuffle) |
void | loadCorelDatamat (int classnum, Mat &train, Mat &valid, Mat &test) |
Mat | smoothCorelHisto (Mat &data) |
void | loadCorel (Mat &training_set, Mat &validation_set, Mat &test_set, int negative_class, int positive_class) |
void | loadCallxx (int year, VMat &d) |
void | loadUSPS (VMat &trainset, VMat &testset, bool use_smooth) |
VMat | loadUSPS (bool use_smooth) |
void | loadLetters (int &inputsize, int &nclasses, VMat &trainset, VMat &testset) |
void | loadClassificationDataset (const string &datasetname, int &inputsize, int &nclasses, VMat &trainset, VMat &testset, bool normalizeinputs, VMat &allset) |
void | loadUCI (VMat &trainset, VMat &testset, VMat &allset, string db_spec, string id, bool &normalize, const string &type) |
Load the train, test and all datasets for a UCI database. | |
void | loadUCIAMat (VMat &data, string file, PP< UCISpecification > uci_spec) |
Load a AMAT format UCI dataset in the given VMatrix. | |
void | loadUCISet (VMat &data, string file, PP< UCISpecification > uci_spec) |
Load a specific UCI dataset in the given VMatrix. | |
string | loadClassificationDatasetHelp () |
string | getDataSetHelp () |
returns a help describing the datasetstring parameter of getDataSet | |
time_t | getDataSetDate (const string &datasetstring, const string &alias) |
VMat | getDataSet (const string &datasetstring, const string &alias) |
string | locateDatasetAliasesDir (const string &dir_or_file_path) |
Looks for 'dataset.aliases' file in specified directory and its parent directories; Returns the directory containing dataset.aliases (returned string will be terminated by a slash) or an empty string if not found. | |
map< string, string > | getDatasetAliases (const string &dir_or_file_path) |
Looks for 'dataset.aliases' file in specified directory and its parent directories; loads it and returns the corresponding map. | |
void | loadMNIST (VMat &training_set, VMat &test_set) |
int | ICBCpartition (const Vec &claims, real threshold) |
ostream & | operator<< (ostream &os, const FieldValue &ft) |
double | todouble (const RowIterator &it) |
string | tostring (const RowIterator &it) |
void | printFieldName (ostream &o, const Row::iterator &field) |
outputs the given field name in a cell of apropriate size | |
void | printFieldNames (ostream &o, const Row &rowc) |
outputs all field names, separated by " | " | |
ostream & | operator<< (ostream &o, const Row::iterator &field) |
outputs a single field flushed right in a cell of apropriate width (as given by field.char_width()) | |
ostream & | operator<< (ostream &o, const Row &rowc) |
outputs all fields in a row, separated by " | " | |
void | halfShuffleRows (SDB &sdb) |
not quite a random shuffle (see implementation) but more efficient use of disk cache | |
void | randomShuffleRows (SDB &sdb) |
Performs a random permutation of all the rows of the SDB (same algorithm as Mat::shuffle). | |
double | todouble (const Row::iterator &it) |
Generic conversions from an iterator. | |
string | tostring (const Row::iterator &it) |
PLEARN_IMPLEMENT_OBJECT (UCISpecification,"Describes the specifications of a UCI database.","This object specifies characteristics of a database from the UCI machine\n""learning repository, such as the input size, target size, etc...\n""It is intended to be used in a script put in the same directory as the\n""database, in order to be loaded by the getDataSet() method.\n") | |
DECLARE_OBJECT_PTR (UCISpecification) | |
void | displayHistogram (Gnuplot &gp, Mat dataColumn, int n_bins, Vec *pbins, bool regular_bins, bool normalized, string extra_args) |
void | displayVarGraph (const VarArray &outputs, bool display_values, real boxwidth, const char *the_filename, bool must_wait, VarArray display_only_these) |
VarGraph *. | |
void | OldDisplayVarGraph (const VarArray &outputs, bool display_values, real boxwidth, const char *the_filename, bool must_wait, VarArray display_only_these) |
void | displayFunction (Func f, bool display_values, bool display_differentiation, real boxwidth, const char *the_filename, bool must_wait) |
Mat | compute2dGridOutputs (Learner &learner, real min_x, real max_x, real min_y, real max_y, int length, int width, real singleoutput_threshold) |
void | displayPoints (GhostScript &gs, Mat data, real radius, bool color) |
this draws x and + with the given radius for all the points in data (supposed to have width 3: [x, y, classnum] | |
void | displayDecisionSurface (GhostScript &gs, real destx, real desty, real destwidth, real destheight, Learner &learner, Mat trainset, Vec svindexes, Vec outlierindexes, int nextsvindex, real min_x, real max_x, real min_y, real max_y, real radius, int nx, int ny) |
real | rgb2real (real r, real g, real b) |
void | real2rgb (real colorval, real &r, real &g, real &b) |
void | matlabR11eigs (RowMapSparseMatrix< real > &A, Mat eigen_vectors, Vec eigen_values, string which_eigenvalues) |
void | matlabR11eigs (RowMapSparseMatrix< double > &A, Mat eigen_vectors, Vec eigen_values, string which_eigenvalues="LM") |
PLEARN_IMPLEMENT_OBJECT (FilePStreamBuf,"ONE LINE DESCRIPTION","MULTI LINE\nHELP") | |
DECLARE_OBJECT_PTR (FilePStreamBuf) | |
string | getcwd () |
returns the absolute path to the current working directory as a string | |
int | chdir (const string &path) |
change current directory | |
string | abspath (const string &path) |
returns the absolute path of the (possibly relative) specified path. | |
bool | pathexists (const string &path) |
returns true if the given path points to an existing regular file or directory | |
bool | isdir (const string &path) |
returns true if the given path is an existing directory (or a symbolic link pointing to a directory) | |
bool | isfile (const string &path) |
returns true if the given path is an existing regular file (or a symbolic link pointing to a file) | |
time_t | mtime (const string &path) |
returns the time of last modification of file (or 0 if file does not exist). | |
vector< string > | lsdir (const string &dirpath) |
vector< string > | lsdir_fullpath (const string &dirpath) |
Same as lsdir, except dirpath is prepended to the entries' names. | |
bool | force_mkdir (const string &dirname) |
void | force_mkdir_for_file (const string &filepath) |
Extracts the directory part of the filepath and calls force_mkdir Calls PLERROR in case of failure. | |
bool | force_rmdir (const string &dirname) |
long | filesize (const string &filename) |
Returns the length of a file, measured in bytes. | |
string | loadFileAsString (const string &filepath) |
Returns the whole content of the file as a string. | |
void | saveStringInFile (const string &filepath, const string &text) |
Writes the raw string into the given file Intermediate directories in filepath are created if necessary. | |
void | cp (const string &srcpath, const string &destpath) |
calls system with cp -R to recursively copy source to destination | |
void | rm (const string &file) |
calls system rm command with string file as parameters | |
void | mv (const string &file) |
calls system mv command with string file as parameters | |
void | mvforce (const string &file) |
calls system mv command with string file as parameters will not prompt before overwriting | |
void | readWhileMatches (istream &in, const string &s) |
Reads while the characters read exactly match those in s Will throw a PLERROR exception as soon as it doesn't match. | |
void | skipRestOfLine (istream &in) |
skips everything until ' ' (also consumes the ' ') | |
void | skipBlanksAndComments (istream &in) |
will skip all blanks (white space, newline and #-style comments) Next character read will be first "non-blank" | |
void | getNextNonBlankLine (istream &in, string &line) |
returns the next non blank line (#-style comments are considered blank) | |
int | countNonBlankLinesOfFile (const string &filename) |
Will return the number of non-blank lines of file #-style comments are considered blank. | |
int | smartReadUntilNext (istream &in, string stoppingsymbols, string &characters_read, bool ignore_brackets) |
same as PStream's method smartReadUntilNext, but for istream | |
string | newFilename (const string directory, const string prefix, bool is_directory) |
Returns a temporary file (or directory) name suitable for a unique (one time) use. | |
string | makeFileNameValid (const string &path) |
void | touch (const string &file) |
trivial unix touch | |
string | makeExplicitPath (const string &filename) |
returns "./"+filename if filename is relative to current dir | |
string | readFileAndMacroProcess (const string &filepath, map< string, string > &variables) |
Same as readAndMacroProcess, but takes a filename instead of an istream The following variables are automatically set from the filepath: FILEPATH DIRPATH FILENAME FILEBASE FILEEXT. | |
string | readAndMacroProcess (istream &in, map< string, string > &variables) |
Will return the text, macro processed, with each instance of ${varname} in the text that corresponds to a key in the given map replaced by its associated value. | |
char | peekAfterSkipBlanks (istream &in) |
peeks the first char after removal of blanks | |
char | peekAfterSkipBlanksAndComments (istream &in) |
peeks the first char after removal of blanks and comments | |
char | getAfterSkipBlanks (istream &in) |
gets the first char after removal of blanks | |
char | getAfterSkipBlanksAndComments (istream &in) |
gets the first char after removal of blanks and comments | |
string | readFileAndMacroProcess (const string &filepath) |
FilesIntStream * | word_sequences2files_int_stream (const char *word_sequences_file) |
void | loadMat (const string &file_name, TMat< float > &mat) |
Tries to guess the format... | |
void | loadMat (const string &file_name, TMat< double > &mat) |
void | loadVec (const string &file_name, TVec< float > &vec) |
void | loadVec (const string &file_name, TVec< double > &vec) |
void | savePVec (const string &filename, const TVec< float > &vec) |
Old native PLearn binary format (.pmat). | |
void | savePVec (const string &filename, const TVec< double > &vec) |
void | loadPVec (const string &filename, TVec< float > &vec) |
void | loadPVec (const string &filename, TVec< double > &vec) |
void | savePMat (const string &filename, const TMat< float > &mat) |
void | savePMat (const string &filename, const TMat< double > &mat) |
void | loadPMat (const string &filename, TMat< float > &mat) |
void | loadPMat (const string &filename, TMat< double > &mat) |
void | saveGnuplot (const string &filename, const Vec &vec) |
void | saveGnuplot (const string &filename, const Mat &mat) |
void | loadGnuplot (const string &filename, Mat &mat) |
Format readable by gnuplot. | |
void | matlabSave (const string &dir, const string &plot_title, const Vec &data, const Vec &add_col, const Vec &bounds, string legend, bool save_plot) |
void | matlabSave (const string &dir, const string &plot_title, const Vec &xValues, const Vec &yValues, const Vec &add_col, const Vec &bounds, string legend, bool save_plot) |
void | matlabSave (const string &dir, const string &plot_title, const Mat &data, const Vec &add_col, const Vec &bounds, TVec< string > legend, bool save_plot) |
Simply calls the coming matlabSave function with an empty xValues Vec. See below. | |
void | matlabSave (const string &dir, const string &plot_title, const Vec &xValues, const Mat &yValues, const Vec &add_col, const Vec &bounds, TVec< string > legend, bool save_plot) |
void | saveAsciiWithoutSize (const string &filename, const Vec &vec) |
void | loadAsciiWithoutSize (const string &filename, const Vec &vec) |
Reads and writes an ascii file without the size header (assuming that the size(length() and width()) is set). | |
void | saveAsciiWithoutSize (const string &filename, const Mat &mat) |
void | loadAsciiWithoutSize (const string &filename, const Mat &mat) |
void | saveSNMat (const string &filename, const Mat &mat) |
Mat | loadSNMat (const string &filename) |
SN Format. | |
void | saveSNVec (const string &filename, const Vec &vec) |
Vec | loadSNVec (const string &filename) |
Mat | loadADMat (const string &filename) |
Native AD format. | |
Vec | loadADVec (const string &filename) |
int | compare_string_pointers (const void *ts1, const void *ts2) |
Mat | loadUCIMLDB (const string &filename, char ****to_symbols, int **to_n_symbols, TVec< int > *the_max_in_col, TVec< string > *header_columns) |
Mat | loadSTATLOG (const string &filename, char ****to_symbols, int **to_n_symbols) |
void | loadJPEGrgb (const string &jpeg_filename, Mat &rgbmat, int &row_size, int scale) |
void | parseSizeFromRemainingLines (const string &filename, ifstream &in, bool &could_be_old_amat, int &length, int &width) |
Mat | makeMat (int length, int width, const string &values) |
convenience construction from string allows to write things such as Mat m = newMat(2,2, "1 2 3 4") | |
Vec | makeVec (int length, const string &values) |
template<class T> void | loadAscii (const string &filename, TMat< T > &mat, TVec< string > &fieldnames, TVec< map< string, real > > *map_sr=0) |
WARNING: use only for float, double, and int types. Other type are not guaranteed to work intelligent functions that will load a file in almost all ascii formats that ever existed in this lab. | |
template<class T> void | loadAscii (const string &filename, TMat< T > &mat) |
template<class T> void | saveAscii (const string &filename, const TMat< T > &mat, const TVec< string > &fieldnames) |
template<class T> void | saveAscii (const string &filename, const TMat< T > &mat) |
template<class T> void | saveAscii (const string &filename, const TVec< T > &vec) |
first number in file is length | |
template<class T> void | loadAscii (const string &filename, TVec< T > &vec) |
template<class T> void | loadAsciiSingleBinaryDescriptor (const string &filename, TMat< T > &mat) |
Load an ASCII matrix whose format is: (entry_name, long_binary_dscriptor) with 'long_binary_dscriptor' being of the form '001100101011', each character being an entry of the matrix. | |
void | write_compr_mode_and_size (ostream &out, unsigned char mode, int size) |
void | read_compr_mode_and_size (istream &in, unsigned char &mode, int &size) |
void | binread_compressed (istream &in, double *data, int l) |
void | binwrite_compressed (ostream &out, const double *data, int l) |
version for compressed array (efficient for sparse data, and small integer values) (format is detailed in .cc, see write_compr_mode_and_size function in general.cc) | |
void | binread_compressed (istream &in, float *data, int l) |
void | binwrite_compressed (ostream &out, const float *data, int l) |
void | read_compr_mode_and_size (FILE *in, unsigned char &mode, int &size) |
void | binread_compressed (FILE *in, double *data, int l) |
void | binwrite_compressed (FILE *out, const double *data, int l) |
void | binread_compressed (FILE *in, float *data, int l) |
void | binwrite_compressed (FILE *out, const float *data, int l) |
void | write_compr_mode_and_size_ptr (char *&out, unsigned char mode, int size) |
void | read_compr_mode_and_size_ptr (char *&in, unsigned char &mode, int &size) |
DEPRECATED DO NOT USE! compressed vec to and from memory. | |
void | uncompress_vec (char *comprbuf, double *data, int l, bool double_stored_as_float) |
void | compress_vec (char *comprbuf, const double *data, int l, bool double_stored_as_float) |
size_t | new_read_compressed (FILE *in, real *vec, int l, bool swap_endians) |
Reads the l doubles in the new compressed formtat from in Returns the number of bytes read. | |
unsigned char | new_get_compr_data_type (double x, double tolerance) |
unsigned char | new_get_compr_data_type (float x) |
size_t | new_write_mode_and_size (FILE *out, bool insert_zeroes, unsigned int N, unsigned char data_type) |
returns number of bytes written | |
size_t | new_write_raw_data_as (FILE *out, real *vec, int l, unsigned char data_type) |
size_t | new_write_compressed (FILE *out, real *vec, int l, double tolerance, bool swap_endians) |
Writes the l doubles in new compressed format to out. | |
template<class T> void | binwrite (ostream &out, const T *x, int n) |
general purpose (but less efficient) version for pointers to things that have a binwrite/binread function | |
template<class T> void | binread (istream &in, T *x, int n) |
template<class A, class B> void | binwrite (ostream &out, const pair< A, B > x) |
template<class A, class B> void | binread (istream &in, pair< A, B > &x) |
void | binwrite (ostream &out, char x) |
binwrite and binread for a few basic types | |
void | binread (istream &in, char &x) |
void | binwrite (ostream &out, unsigned char x) |
void | binread (istream &in, unsigned char &x) |
void | binwrite (ostream &out, int x) |
void | binread (istream &in, int &x) |
void | binwrite (ostream &out, unsigned int x) |
void | binread (istream &in, unsigned int &x) |
void | binwrite (ostream &out, short x) |
void | binread (istream &in, short &x) |
void | binwrite (ostream &out, unsigned short x) |
void | binread (istream &in, unsigned short &x) |
void | binwrite (ostream &out, bool x) |
note that bool are saved as unsigned short | |
void | binread (istream &in, bool &x) |
void | binwrite (ostream &out, float x) |
void | binread (istream &in, float &x) |
void | binwrite (ostream &out, double x) |
void | binread (istream &in, double &x) |
void | binwrite_double (ostream &out, double x) |
void | binread_double (istream &in, double &x) |
void | binwrite_double (ostream &out, float x) |
void | binread_double (istream &in, float &x) |
void | binwrite (ostream &out, const int *x, int n) |
multi-element versions, giving address and number of elements | |
void | binread (istream &in, int *x, int n) |
void | binwrite (ostream &out, const unsigned int *x, int n) |
void | binread (istream &in, unsigned int *x, int n) |
void | binwrite (ostream &out, const short *x, int n) |
void | binread (istream &in, short *x, int n) |
void | binwrite (ostream &out, const unsigned short *x, int n) |
void | binread (istream &in, unsigned short *x, int n) |
void | binwrite (ostream &out, const float *x, int n) |
void | binread (istream &in, float *x, int n) |
void | binwrite (ostream &out, const double *x, int n) |
void | binread (istream &in, double *x, int n) |
void | binwrite_double (ostream &out, const double *x, int n) |
void | binread_double (istream &in, double *x, int n) |
void | binwrite_double (ostream &out, const float *x, int n) |
void | binread_double (istream &in, float *x, int n) |
template<class T> void | binwrite (FILE *out, const T *x, int n) |
general purpose (but less efficient) version for pointers to things that have a binwrite/binread function | |
template<class T> void | binread (FILE *in, T *x, int n) |
template<class A, class B> void | binwrite (FILE *out, const pair< A, B > x) |
template<class A, class B> void | binread (FILE *in, pair< A, B > &x) |
void | binwrite (FILE *out, char x) |
binwrite and binread for a few basic types | |
void | binread (FILE *in, char &x) |
void | binwrite (FILE *out, unsigned char x) |
void | binread (FILE *in, unsigned char &x) |
void | binwrite (FILE *out, int x) |
void | binread (FILE *in, int &x) |
void | binwrite (FILE *out, unsigned int x) |
void | binread (FILE *in, unsigned int &x) |
void | binwrite (FILE *out, short x) |
void | binread (FILE *in, short &x) |
void | binwrite (FILE *out, unsigned short x) |
void | binread (FILE *in, unsigned short &x) |
void | binwrite (FILE *out, bool x) |
note that bool are saved as unsigned short | |
void | binread (FILE *in, bool &x) |
void | binwrite (FILE *out, float x) |
void | binread (FILE *in, float &x) |
void | binwrite (FILE *out, double x) |
void | binread (FILE *in, double &x) |
void | binwrite_double (FILE *out, double x) |
void | binread_double (FILE *in, double &x) |
void | binwrite_double (FILE *out, float x) |
void | binread_double (FILE *in, float &x) |
void | binwrite (FILE *out, const int *x, int n) |
multi-element versions, giving address and number of elements | |
void | binread (FILE *in, int *x, int n) |
void | binwrite (FILE *out, const unsigned int *x, int n) |
void | binread (FILE *in, unsigned int *x, int n) |
void | binwrite (FILE *out, const short *x, int n) |
void | binread (FILE *in, short *x, int n) |
void | binwrite (FILE *out, const unsigned short *x, int n) |
void | binread (FILE *in, unsigned short *x, int n) |
void | binwrite (FILE *out, const float *x, int n) |
void | binread (FILE *in, float *x, int n) |
void | binwrite (FILE *out, const double *x, int n) |
void | binread (FILE *in, double *x, int n) |
void | binwrite_double (FILE *out, const double *x, int n) |
void | binread_double (FILE *in, double *x, int n) |
void | binwrite_double (FILE *out, const float *x, int n) |
void | binread_double (FILE *in, float *x, int n) |
void | writeHeader (ostream &out, const string &classname, int version) |
writes "<ClassName:version>\n" | |
void | writeFooter (ostream &out, const string &classname) |
writes "</ClassName>\n" | |
int | readHeader (istream &in, const string &classname) |
consumes "<ClassName:version>\n and returns version" | |
void | readFooter (istream &in, const string &classname) |
consumes "</ClassName>\n" | |
void | writeFieldName (ostream &out, const string &fieldname) |
writes "fieldname: " | |
bool | readFieldName (istream &in, const string &fieldname, bool force) |
consumes "fieldname: " if possible, and return true if it does however if force=true and fieldname is not found then call error. | |
void | fwrite_int (FILE *f, const int *ptr, int n, bool is_file_bigendian) |
Writes binary data to the file in the specified representation (little or big endian) regardeless of the endianness used on the current architecture. | |
void | fwrite_float (FILE *f, const float *ptr, int n, bool is_file_bigendian) |
void | fwrite_float (FILE *f, const double *ptr, int n, bool is_file_bigendian) |
writes double array to float file | |
void | fwrite_double (FILE *f, const double *ptr, int n, bool is_file_bigendian) |
void | fwrite_double (FILE *f, const float *ptr, int n, bool is_file_bigendian) |
writes float array to double file | |
void | fread_int (FILE *f, int *ptr, int n, bool is_file_bigendian) |
Reads binary data from a file assuming it is in the specified representation (either little or big endian) If necessary the representation is translated to the endianness on the current architecture. | |
void | fread_float (FILE *f, float *ptr, int n, bool is_file_bigendian) |
void | fread_float (FILE *f, double *ptr, int n, bool is_file_bigendian) |
reads disk floats into double array | |
void | fread_double (FILE *f, double *ptr, int n, bool is_file_bigendian) |
void | fread_double (FILE *f, float *ptr, int n, bool is_file_bigendian) |
reads disk doubles into float array | |
void | fread_short (FILE *f, unsigned short *ptr, int n, bool is_file_bigendian) |
void | write_int (ostream &out, const int *ptr, int n, bool is_file_bigendian) |
Writes binary data to the file in the specified representation (little or big endian) regardeless of the endianness used on the current architecture. | |
void | write_short (ostream &out, const short *ptr, int n, bool is_file_bigendian) |
void | write_double (ostream &out, const double *ptr, int n, bool is_file_bigendian) |
void | write_float (ostream &out, const float *ptr, int n, bool is_file_bigendian) |
void | read_int (istream &in, int *ptr, int n, bool is_file_bigendian) |
Reads binary data from a file assuming it is in the specified representation (either little or big endian) If necessary the representation is translated to the endianness on the current architecture. | |
void | read_short (istream &in, short *ptr, int n, bool is_file_bigendian) |
void | read_float (istream &in, float *ptr, int n, bool is_file_bigendian) |
void | read_double (istream &in, double *ptr, int n, bool is_file_bigendian) |
void | reverse_uint (const unsigned int *ptr, int n) |
NOTE: these calls are deprecated, use directly endianswap from base/byte_order.h. | |
void | reverse_int (const int *ptr, int n) |
void | reverse_float (const float *ptr, int n) |
void | reverse_double (const double *ptr, int n) |
void | reverse_ushort (const unsigned short *ptr, int n) |
void | reverse_short (const short *ptr, int n) |
int | fread_int (FILE *f, bool is_file_bigendian=true) |
float | fread_float (FILE *f, bool is_file_bigendian=true) |
double | fread_double (FILE *f, bool is_file_bigendian=true) |
void | fwrite_int (FILE *f, int value, bool is_file_bigendian=true) |
The following calls write a single value to the file in the specified representation, regardeless of the endianness on the current architecture. | |
void | fwrite_float (FILE *f, float value, bool is_file_bigendian=true) |
void | fwrite_double (FILE *f, double value, bool is_file_bigendian=true) |
void | write_uint (ostream &out, const unsigned int *ptr, int n, bool is_file_bigendian) |
void | write_ushort (ostream &out, const unsigned short *ptr, int n, bool is_file_bigendian) |
void | write_bool (ostream &out, const bool *ptr, int n, bool is_file_bigendian) |
void | write_int (ostream &out, int value, bool is_file_bigendian=true) |
The following calls write a single value to the file in the specified representation, regardeless of the endianness on the current architecture. | |
void | write_short (ostream &out, short value, bool is_file_bigendian=true) |
void | write_float (ostream &out, float value, bool is_file_bigendian=true) |
void | write_double (ostream &out, double value, bool is_file_bigendian=true) |
void | write_uint (ostream &out, unsigned int value, bool is_file_bigendian=true) |
void | write_ushort (ostream &out, unsigned short value, bool is_file_bigendian=true) |
void | write_sbyte (ostream &out, signed char x) |
void | write_ubyte (ostream &out, unsigned char x) |
void | read_uint (istream &in, unsigned int *ptr, int n, bool is_file_bigendian) |
void | read_ushort (istream &in, unsigned short *ptr, int n, bool is_file_bigendian) |
void | read_bool (istream &in, bool *ptr, int n, bool is_file_bigendian) |
int | read_int (istream &in, bool is_file_bigendian=true) |
short | read_short (istream &in, bool is_file_bigendian=true) |
float | read_float (istream &in, bool is_file_bigendian=true) |
double | read_double (istream &in, bool is_file_bigendian=true) |
unsigned int | read_uint (istream &in, bool is_file_bigendian=true) |
unsigned short | read_ushort (istream &in, bool is_file_bigendian=true) |
signed char | read_sbyte (istream &in) |
unsigned char | read_ubyte (istream &in) |
void | writeNewline (ostream &out) |
Writes a single newline character. | |
void | readNewline (istream &in) |
Reads next character and issues an error if it's not a newline. | |
template<class T> void | writeField (ostream &out, const string &fieldname, const T &x) |
generic field writing and reading | |
template<class T> void | readField (istream &in, const string &fieldname, T &x) |
template<class T> void | binwriteField (ostream &out, const string &fieldname, const T &x) |
generic field BINARY writing and reading | |
template<class T> void | binreadField (istream &in, const string &fieldname, T &x) |
template<class T> void | binwriteField_double (ostream &out, const string &fieldname, const T &x) |
template<class T> void | binreadField_double (istream &in, const string &fieldname, T &x) |
template<class T> void | readField (istream &in, const string &fieldname, T &x, T default_value) |
readField with a default value when the field is not found | |
PStream & | flush (PStream &out) |
PStream & | endl (PStream &out) |
PStream & | ws (PStream &in) |
void | binread_ (PStream &in, bool *x, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, double *x, unsigned int n, unsigned char typecode) |
The binread_ for float and double are special. | |
void | binread_ (PStream &in, float *x, unsigned int n, unsigned char typecode) |
template<class T> PStream & | operator>> (PStream &in, T *&x) |
template<class T> PStream & | operator<< (PStream &out, const T *&x) |
template<class T> PStream & | operator>> (PStream &in, PP< T > &o) |
template<class T> PStream & | operator<< (PStream &out, const PP< T > &o) |
template<class T> PStream & | operator<< (PStream &out, T *&ptr) |
PStream & | operator<< (PStream &out, bool x) |
template<class A, class B> PStream & | operator<< (PStream &out, const pair< A, B > &x) |
template<typename S, typename T> PStream & | operator>> (PStream &in, pair< S, T > &x) |
template<class MapT> void | writeMap (PStream &out, const MapT &m) |
template<class MapT> void | readMap (PStream &in, MapT &m) |
template<class Key, class Value> PStream & | operator<< (PStream &out, const map< Key, Value > &m) |
template<class Key, class Value> PStream & | operator>> (PStream &in, map< Key, Value > &m) |
template<class Key, class Value> PStream & | operator<< (PStream &out, const multimap< Key, Value > &m) |
template<class Key, class Value> PStream & | operator>> (PStream &in, multimap< Key, Value > &m) |
template<class Key, class Value> PStream & | operator<< (PStream &out, const hash_map< Key, Value > &m) |
template<class Key, class Value> PStream & | operator>> (PStream &in, hash_map< Key, Value > &m) |
template<class Key, class Value> PStream & | operator<< (PStream &out, const hash_multimap< Key, Value > &m) |
template<class Key, class Value> PStream & | operator>> (PStream &in, hash_multimap< Key, Value > &m) |
template<class Iterator> void | binwrite_ (PStream &out, Iterator &it, unsigned int n) |
Serialization of sequences *. | |
void | binwrite_ (PStream &out, const bool *x, unsigned int n) |
void | binwrite_ (PStream &out, const char *x, unsigned int n) |
void | binwrite_ (PStream &out, char *x, unsigned int n) |
void | binwrite_ (PStream &out, const signed char *x, unsigned int n) |
void | binwrite_ (PStream &out, signed char *x, unsigned int n) |
void | binwrite_ (PStream &out, const unsigned char *x, unsigned int n) |
void | binwrite_ (PStream &out, unsigned char *x, unsigned int n) |
void | binwrite_ (PStream &out, const short *x, unsigned int n) |
void | binwrite_ (PStream &out, short *x, unsigned int n) |
void | binwrite_ (PStream &out, const unsigned short *x, unsigned int n) |
void | binwrite_ (PStream &out, unsigned short *x, unsigned int n) |
void | binwrite_ (PStream &out, const int *x, unsigned int n) |
void | binwrite_ (PStream &out, int *x, unsigned int n) |
void | binwrite_ (PStream &out, const unsigned int *x, unsigned int n) |
void | binwrite_ (PStream &out, unsigned int *x, unsigned int n) |
void | binwrite_ (PStream &out, const long *x, unsigned int n) |
void | binwrite_ (PStream &out, long *x, unsigned int n) |
void | binwrite_ (PStream &out, const unsigned long *x, unsigned int n) |
void | binwrite_ (PStream &out, unsigned long *x, unsigned int n) |
void | binwrite_ (PStream &out, const float *x, unsigned int n) |
void | binwrite_ (PStream &out, float *x, unsigned int n) |
void | binwrite_ (PStream &out, const double *x, unsigned int n) |
void | binwrite_ (PStream &out, double *x, unsigned int n) |
template<class Iterator> void | binread_ (PStream &in, Iterator it, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, char *x, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, signed char *x, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, unsigned char *x, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, short *x, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, unsigned short *x, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, int *x, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, unsigned int *x, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, long *x, unsigned int n, unsigned char typecode) |
void | binread_ (PStream &in, unsigned long *x, unsigned int n, unsigned char typecode) |
template<class SequenceType> void | writeSequence (PStream &out, const SequenceType &seq) |
template<class SequenceType> void | readSequence (PStream &in, SequenceType &seq) |
This reads into a sequence. | |
template<class T> void | write (ostream &out_, const T &o) |
template<class T> void | read (istream &in_, T &o) |
template<class T> void | read (const string &stringval, T &x) |
template<class T> PStream & | operator>> (PStream &in, vector< T > &v) |
template<class T> PStream & | operator<< (PStream &out, const vector< T > &v) |
template<class SetT> void | writeSet (PStream &out, const SetT &s) |
template<class SetT> void | readSet (PStream &in, SetT &s) |
template<class T> PStream & | operator>> (PStream &in, set< T > &v) |
template<class T> PStream & | operator<< (PStream &out, const set< T > &v) |
template<class T> void | load (const string &filepath, T &x) |
template<class T> void | save (const string &filepath, const T &x) |
If necessary, missing directories along the filepath will be created. | |
istream | nullin (&null_streambuf) |
ostream | nullout (&null_streambuf) |
iostream | nullinout (&null_streambuf) |
const string | wordseparators (" \t\n\r)]};,:|#") |
List of characters considered to mark a separation between "words"; This is a fairly restricted list, meaning that many things can be part of a "word" in this sense (for ex: "this-is_a+single@wor'd"), this is to insure a smooth transition for the new setOption, which calls readOptionVal ... | |
const char * | eNumericTypeNames (int a) |
converts a code in corresponding string | |
bool | containsChar (const char *s, const char *symbols) |
true if string s contains any one of the characters in symbols. | |
char * | stringPos (const char *s, const char *strings[]) |
bool | looksNumeric (const char *s) |
tells wether this string looks like a numeric entity | |
bool | elementOf (const char *s, const char t) |
void | compactRepresentationTranslate (char *t) |
void | compactRepresentationShrinkNum (char *t) |
void | compactRepresentationRangesAndOrdinals (char *t) |
void | compactRepresentation (char *t) |
gives a (intermediate) code for a numeric string (starting with #) | |
int | numericType (const char *mot) |
assigns a code to a "word" | |
PLEARN_IMPLEMENT_OBJECT (AdditiveNormalizationKernel,"Normalizes additively an underlying kernel with respect to a training set.","From a kernel K, defines a new kernel K' such that:\n"" K'(x,y) = K(x,y) - E[K(x,x_i)] - E[K(x_i,y)] + E[K(x_i,x_j)]\n""where the expectation is performed on the data set.\n""If the 'remove_bias' option is set, then the expectation will not\n""take into account terms of the form K(x_i,x_i).\n""If the 'double_centering' option is set, this kernel K' will be\n""multiplied by -1/2 (this turns a squared distance kernel into a\n""centered dot product kernel).\n") | |
DECLARE_OBJECT_PTR (AdditiveNormalizationKernel) | |
PLEARN_IMPLEMENT_OBJECT (ClassDistanceProportionCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (ClassDistanceProportionCostFunction) | |
CostFunc | class_distance_proportion () |
if outputs are neg distances to each class: dist_to_correct_class/(dist_to_correct_class+dist_to_closest_other_class) | |
PLEARN_IMPLEMENT_OBJECT (ClassErrorCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (ClassErrorCostFunction) | |
CostFunc | class_error (bool output_is_classnum=false) |
PLEARN_IMPLEMENT_OBJECT (ClassMarginCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (ClassMarginCostFunction) | |
CostFunc | class_margin (bool binary_target_is_01=false, bool output_is_positive=false) |
difference between correct class score and max of other class' scores | |
PLEARN_IMPLEMENT_OBJECT (CompactVMatrixGaussianKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (CompactVMatrixGaussianKernel) | |
PLEARN_IMPLEMENT_OBJECT (CompactVMatrixPolynomialKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (CompactVMatrixPolynomialKernel) | |
PLEARN_IMPLEMENT_OBJECT (ConvexBasisKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (ConvexBasisKernel) | |
PLEARN_IMPLEMENT_OBJECT (DifferenceKernel,"ONE LINE DESCR","NO HELP") | |
CostFunc | output_minus_target (int singleoutputindex) |
DECLARE_OBJECT_PTR (DifferenceKernel) | |
PLEARN_IMPLEMENT_OBJECT (DirectNegativeCostFunction,"ONE LINE DESCR","NO HELP") | |
CostFunc | directnegative_costfunc () |
PLEARN_IMPLEMENT_OBJECT (DistanceKernel,"ONE LINE DESCR","NO HELP") | |
CostFunc | absolute_deviation (int singleoutputindex) |
DECLARE_OBJECT_PTR (DistanceKernel) | |
PLEARN_IMPLEMENT_OBJECT (DivisiveNormalizationKernel,"Divisive normalization of an underlying kernel.","From a positive kernel K, defines a new kernel K' such that:\n"" K'(x,y) = K(x,y) / sqrt(E[K(x,x_i)] . E[K(x_i,y)])\n""where the expectation is performed on the data set.\n""If the 'remove_bias' option is set, then the expectation will not\n""take into account terms of the form K(x_i,x_i).\n") | |
DECLARE_OBJECT_PTR (DivisiveNormalizationKernel) | |
PLEARN_IMPLEMENT_OBJECT (DotProductKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (DotProductKernel) | |
PLEARN_IMPLEMENT_OBJECT (GaussianDensityKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (GaussianDensityKernel) | |
PLEARN_IMPLEMENT_OBJECT (GaussianKernel,"The good old Gaussian kernel.","") | |
DECLARE_OBJECT_PTR (GaussianKernel) | |
PLEARN_IMPLEMENT_OBJECT (GeneralizedDistanceRBFKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (GeneralizedDistanceRBFKernel) | |
PLEARN_IMPLEMENT_OBJECT (GeodesicDistanceKernel,"Computes the geodesic distance based on k nearest neighbors.","") | |
DECLARE_OBJECT_PTR (GeodesicDistanceKernel) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (Kernel,"ONE LINE DESCR","NO HELP") | |
Mat | findClosestPairsOfDifferentClass (int k, VMat data, Ker dist) |
DECLARE_OBJECT_PTR (Kernel) | |
DECLARE_OBJECT_PP (Ker, Kernel) | |
template<> void | deepCopyField (Ker &field, CopiesMap &copies) |
Array< Ker > | operator & (const Ker &k1, const Ker &k2) |
******************** inline Ker operators | |
PLEARN_IMPLEMENT_OBJECT (LaplacianKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (LaplacianKernel) | |
PLEARN_IMPLEMENT_OBJECT (LiftBinaryCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (LiftBinaryCostFunction) | |
CostFunc | class_lift (bool make_positive=false) |
PLEARN_IMPLEMENT_OBJECT (LLEKernel,"The kernel used in Locally Linear Embedding.","This kernel is the (weighted) sum of two kernels K' and K'', such that:\n"" - K'(x_i, x_j) = \\delta_{ij}\n"" - K'(x_i, x) = K'(x, x_i) = w(x, x_i), where w(x, x_i) is the weight of\n"" x_i in the reconstruction of x by its knn nearest neighbors in the\n"" training set\n"" - K'(x, y) = 0\n"" - K''(x_i, x_j) = W_{ij} + W_{ji} - \\sum_k W_{ki} W{kj}, where W is the\n"" matrix of weights w(x_i, x_j)\n"" - K''(x, x_i) = K''(x_i, x) = 0\n""The weight of K' is given by the 'reconstruct_coeff' option: when this\n""weight tends to infinity, the mapping obtained is the same as the\n""out-of-sample extension proposed in (Saul and Roweis, 2002). To obtain\n""such a behavior, one should set 'reconstruct_coeff' to -1. This is the\n""default behavior, and it is suggested to keep it.\n") | |
DECLARE_OBJECT_PTR (LLEKernel) | |
PLEARN_IMPLEMENT_OBJECT (LogOfGaussianDensityKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (LogOfGaussianDensityKernel) | |
PLEARN_IMPLEMENT_OBJECT (MulticlassErrorCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (MulticlassErrorCostFunction) | |
PLEARN_IMPLEMENT_OBJECT (NegKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (NegKernel) | |
Ker | operator- (const Ker &k) |
PLEARN_IMPLEMENT_OBJECT (NegLogProbCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (NegLogProbCostFunction) | |
CostFunc | condprob_cost (bool normalize=false, bool smooth_map_outputs=false) |
negative log conditional probability | |
PLEARN_IMPLEMENT_OBJECT (NegOutputCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (NegOutputCostFunction) | |
CostFunc | neg_output_costfunc () |
returns -output[0]. This is for density estimators whose use(x) method typically computes log(p(x)) | |
PLEARN_IMPLEMENT_OBJECT (NormalizedDotProductKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (NormalizedDotProductKernel) | |
PLEARN_IMPLEMENT_OBJECT (PolynomialKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (PolynomialKernel) | |
PLEARN_IMPLEMENT_OBJECT (PowDistanceKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (PowDistanceKernel) | |
PLEARN_IMPLEMENT_OBJECT (PrecomputedKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (PrecomputedKernel) | |
PLEARN_IMPLEMENT_OBJECT (PricingTransactionPairProfitFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (PricingTransactionPairProfitFunction) | |
PLEARN_IMPLEMENT_OBJECT (QuadraticUtilityCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (QuadraticUtilityCostFunction) | |
CostFunc | quadratic_risk (real risk_aversion, CostFunc profit_function) |
PLEARN_IMPLEMENT_OBJECT (ReconstructionWeightsKernel,"Computes the reconstruction weights of a point given its neighbors.","K(x, x_i) = the weight of x_i in the reconstruction of x by its knn\n""nearest neighbors. More precisely, we compute weights W_i such that\n""|| x - \\sum_j W_i x_i ||^2 is minimized, and K(x,x_i) = W_i.\n""If the second argument is not in the training set, K(x,y) will be 0.\n""In order not to compute K(x_i, x_j) = delta_{ij} when applied on\n""training points, one can set the 'ignore_nearest' option to 1 (or more),\n""which will ensure we do not use x_i itself in its reconstruction by its\n""nearest neighbors (however, the total number of neighbors computed,\n""including x_i itself, will always stay equal to knn).\n""Note that this is NOT a symmetric kernel!\n") | |
DECLARE_OBJECT_PTR (ReconstructionWeightsKernel) | |
PLEARN_IMPLEMENT_OBJECT (ScaledGaussianKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (ScaledGaussianKernel) | |
PLEARN_IMPLEMENT_OBJECT (ScaledGeneralizedDistanceRBFKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (ScaledGeneralizedDistanceRBFKernel) | |
PLEARN_IMPLEMENT_OBJECT (ScaledLaplacianKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (ScaledLaplacianKernel) | |
PLEARN_IMPLEMENT_OBJECT (SelectedOutputCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (SelectedOutputCostFunction) | |
PLEARN_IMPLEMENT_OBJECT (SigmoidalKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (SigmoidalKernel) | |
PLEARN_IMPLEMENT_OBJECT (SigmoidPrimitiveKernel,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (SigmoidPrimitiveKernel) | |
PLEARN_IMPLEMENT_OBJECT (SourceKernel,"A kernel built upon an underlying source kernel","The default behavior of a SourceKernel is to forward all calls to the underlying\n""kernel. However, subclasses will probably want to override the methods to perform\n""more complex operations.") | |
DECLARE_OBJECT_PTR (SourceKernel) | |
PLEARN_IMPLEMENT_OBJECT (SquaredErrorCostFunction,"ONE LINE DESCR","NO HELP") | |
CostFunc | squared_error (int singleoutputindex) |
DECLARE_OBJECT_PTR (SquaredErrorCostFunction) | |
CostFunc | squared_classification_error (real hot_value=0.8, real cold_value=0.2) |
PLEARN_IMPLEMENT_OBJECT (WeightedCostFunction,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (WeightedCostFunction) | |
CostFunc | weighted_costfunc (CostFunc costfunc) |
reweighting | |
int | dnaupd_ (long int *, const char *, long int *, const char *, long int *, double *, double *, long int *, double *, long int *, long int *, long int *, double *, double *, long int *, long int *, short, short) |
int | dneupd_ (long int *, const char *, long int *, double *, double *, double *, long int *, double *, double *, double *, const char *, long int *, const char *, long int *, double *, double *, long int *, double *, long int *, long int *, long int *, double *, double *, long int *, long int *, short, short, short) |
int | snaupd_ (long int *, const char *, long int *, const char *, long int *, float *, float *, long int *, float *, long int *, long int *, long int *, float *, float *, long int *, long int *, short, short) |
int | sneupd_ (long int *, const char *, long int *, float *, float *, float *, long int *, float *, float *, float *, const char *, long int *, const char *, long int *, float *, float *, long int *, float *, long int *, long int *, long int *, float *, float *, long int *, long int *, short, short, short) |
int | dsaupd_ (long int *, const char *, long int *, const char *, long int *, double *, double *, long int *, double *, long int *, long int *, long int *, double *, double *, long int *, long int *, short, short) |
int | dseupd_ (long int *, const char *, long int *, double *, double *, long int *, double *, const char *, long int *, const char *, long int *, double *, double *, long int *, double *, long int *, long int *, long int *, double *, double *, long int *, long int *, short, short, short) |
int | ssaupd_ (long int *, const char *, long int *, const char *, long int *, float *, float *, long int *, float *, long int *, long int *, long int *, float *, float *, long int *, long int *, short, short) |
int | sseupd_ (long int *, const char *, long int *, float *, float *, long int *, float *, const char *, long int *, const char *, long int *, float *, float *, long int *, float *, long int *, long int *, long int *, float *, float *, long int *, long int *, short, short, short) |
PLEARN_IMPLEMENT_OBJECT (Binner,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (Binner) | |
PLEARN_IMPLEMENT_OBJECT (ConditionalCDFSmoother,"Smoother that combines a detailed prior curve with a rough input curve.\n","This smoother is meant to smooth conditional distribution functions, using\n""a high-resolution prior cdf provided as a HistogramDistribution. Its 'smooth'\n""function takes a lower-resolution curve and smooths it using the prior\n""to fill the gaps.") | |
DECLARE_OBJECT_PTR (ConditionalCDFSmoother) | |
PLEARN_IMPLEMENT_OBJECT (ConditionalStatsCollector,"ONE LINE DESCRIPTION","MULTI LINE\nHELP") | |
DECLARE_OBJECT_PTR (ConditionalStatsCollector) | |
real | logOfCompactGaussian (const Vec &x, const Vec &mu, const Vec &eigenvalues, const Mat &eigenvectors, real gamma, bool add_gamma_to_eigenval) |
returns log P(x|gaussian) with a gaussian represented compactly by the first few eigenvalues and eigenvectors of its covariance matrix. | |
real | logOfNormal (const Vec &x, const Vec &mu, const Mat &C) |
real | logPFittedGaussian (const Vec &x, const Mat &X, real lambda) |
Fits a gaussian to the points in X (computing its mean and covariance matrix, and adding lambda to the diagonal of that covariance matrix) Then calls logOfNormal to return log(p(x | the_gaussian)). | |
template<class T> PStream & | operator<< (PStream &out, const DoubleAccessSparseMatrix< T > &m) |
template<class T> PStream & | operator>> (PStream &in, DoubleAccessSparseMatrix< T > &m) |
void | ssyevx_ (char *JOBZ, char *RANGE, char *UPLO, int *N, float *A, int *LDA, float *VL, float *VU, int *IL, int *IU, float *ABSTOL, int *M, float *W, float *Z, int *LDZ, float *WORK, int *LWORK, int *IWORK, int *IFAIL, int *INFO) |
void | dsyevx_ (char *JOBZ, char *RANGE, char *UPLO, int *N, double *A, int *LDA, double *VL, double *VU, int *IL, int *IU, double *ABSTOL, int *M, double *W, double *Z, int *LDZ, double *WORK, int *LWORK, int *IWORK, int *IFAIL, int *INFO) |
void | ssyev_ (char *JOBZ, char *UPLO, int *N, float *A, int *LDA, float *W, float *WORK, int *LWORK, int *INFO) |
void | dsyev_ (char *JOBZ, char *UPLO, int *N, double *A, int *LDA, double *W, double *WORK, int *LWORK, int *INFO) |
void | sgetri_ (int *N, float *A, int *LDA, int *IPIV, float *WORK, int *LWORK, int *INFO) |
void | dgetri_ (int *N, double *A, int *LDA, int *IPIV, double *WORK, int *LWORK, int *INFO) |
void | sgetrf_ (int *M, int *N, float *A, int *LDA, int *IPIV, int *INFO) |
void | dgetrf_ (int *M, int *N, double *A, int *LDA, int *IPIV, int *INFO) |
void | sgesv_ (int *N, int *NRHS, float *A, int *LDA, int *IPIV, float *B, int *LDB, int *INFO) |
void | dgesv_ (int *N, int *NRHS, double *A, int *LDA, int *IPIV, double *B, int *LDB, int *INFO) |
void | sgesdd_ (char *JOBZ, int *M, int *N, float *A, int *LDA, float *S, float *U, int *LDU, float *VT, int *LDVT, float *WORK, int *LWORK, int *IWORK, int *INFO) |
void | dgesdd_ (char *JOBZ, int *M, int *N, double *A, int *LDA, double *S, double *U, int *LDU, double *VT, int *LDVT, double *WORK, int *LWORK, int *IWORK, int *INFO) |
void | ssyevr_ (char *JOBZ, char *RANGE, char *UPLO, int *N, float *A, int *LDA, float *VL, float *VU, int *IL, int *IU, float *ABSTOL, int *M, float *W, float *Z, int *LDZ, int *ISUPPZ, float *WORK, int *LWORK, int *IWORK, int *LIWORK, int *INFO) |
void | dsyevr_ (char *JOBZ, char *RANGE, char *UPLO, int *N, double *A, int *LDA, double *VL, double *VU, int *IL, int *IU, double *ABSTOL, int *M, double *W, double *Z, int *LDZ, int *ISUPPZ, double *WORK, int *LWORK, int *IWORK, int *LIWORK, int *INFO) |
void | ssygvx_ (int *ITYPE, char *JOBZ, char *RANGE, char *UPLO, int *N, float *A, int *LDA, float *B, int *LDB, float *VL, float *VU, int *IL, int *IU, float *ABSTOL, int *M, float *W, float *Z, int *LDZ, float *WORK, int *LWORK, int *IWORK, int *IFAIL, int *INFO) |
void | dsygvx_ (int *ITYPE, char *JOBZ, char *RANGE, char *UPLO, int *N, double *A, int *LDA, double *B, int *LDB, double *VL, double *VU, int *IL, int *IU, double *ABSTOL, int *M, double *W, double *Z, int *LDZ, double *WORK, int *LWORK, int *IWORK, int *IFAIL, int *INFO) |
PLEARN_IMPLEMENT_OBJECT (LiftStatsCollector,"Computes the performance of a binary classifier","The following statistics can be requested out of getStat():\n""- LIFT = % of positive examples in the first n samples, divided by the % of positive examples in the whole database\n""- LIFT_MAX = best performance that could be achieved, if all positive examples were selected in the first n samples\n""(where n = lift_fraction * nsamples).\n""IMPORTANT: if you add more samples after you call finalize() (or get any of the statistics above), some samples may\n""be wrongly discarded and further statistics may be wrong\n\n""Here are the typical steps to follow to optimize the lift with a neural network:\n""- add a lift_output cost to cost_funcs (e.g. cost_funcs = [ \"stable_cross_entropy\" \"lift_output\"];)\n""- change the template_stats_collector of your PTester:\n"" template_stats_collector =\n"" LiftStatsCollector (\n"" output_column = \"lift_output\" ;\n"" opposite_lift = 1 ; # if you want to optimize the lift\n"" sign_trick = 1 ;\n"" )\n""- add the lift to its statnames:\n"" statnames = [ \"E[train.E[stable_cross_entropy]]\",\"E[test.E[stable_cross_entropy]]\",\n"" \"E[train.LIFT]\", \"E[test.LIFT]\" ]\n""- maybe also change which_cost in your HyperOptimize strategy.\n") | |
DECLARE_OBJECT_PTR (LiftStatsCollector) | |
PLEARN_IMPLEMENT_OBJECT (LimitedGaussianSmoother,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (LimitedGaussianSmoother) | |
PLEARN_IMPLEMENT_OBJECT (ManualBinner,"Binner with predefined cut-points.","ManualBinner implements a Binner for which cutpoints are predefined. ""It's getBinning function doesn't have to look at the data; it simply ""builds a RealMapping from the supplied bin_positions.") | |
DECLARE_OBJECT_PTR (ManualBinner) | |
Vec * | newVecArray (int n) |
Vec * | newVecArray (int n, int the_length) |
Mat * | newMatArray (int n) |
Mat * | newMatArray (int n, int the_length, int the_width) |
Mat * | newIndexedMatArray (int n, Mat &m, int indexcolumn) |
Mat | operator^ (const Mat &m1, const Mat &m2) |
Mat | unitmatrix (int n) |
ostream & | operator<< (ostream &out, const Vec &v) |
template<> void | deepCopyField (Vec &field, CopiesMap &copies) |
template<> void | deepCopyField (Mat &field, CopiesMap &copies) |
template<class MatT> int | eigenSparseSymmMat (MatT &A, Vec e_values, Mat e_vectors, long int &n_evalues, int max_n_iter=300, bool compute_vectors=true, bool largest_evalues=true, bool according_to_magnitude=true, bool both_ends=false) |
template<class MatT> int | eigenSparseNonSymmMat (MatT &A, Vec e_values, Mat e_vectors, long int &n_evalues, int max_n_iter=300, bool compute_vectors=true, bool largest_evalues=true, bool according_to_magnitude=true, bool both_ends=false) |
real | pl_gammln (real z) |
function gamma returns log(Gamma(z)), where Gamma(z) = ^infty t^{z-1}*e^{-t} dt | |
real | pl_dgammlndz (real z) |
d(pl_gammln(z))/dz derivate of pl_gammln(z) | |
real | pl_gser (real a, real x) |
returns the series value of the incomplete gamma function | |
real | pl_gcf (real a, real x) |
returns the continued fraction representation of the incomplete gamma function | |
real | pl_gammq (real a, real x) |
returns the incomplete gamma function Q(a,x) = 1 - P(a,x) it either uses the series or the continued fraction formula | |
real | pl_erf (real x) |
The error function. | |
real | gauss_01_cum (real x) |
For X ~ Normal(0,1), cumulative probability function P(X<x). | |
real | gauss_01_quantile (real q) |
real | gauss_01_density (real x) |
for X ~ Normal(0,1), return density of X at x | |
real | gauss_01_log_density (real x) |
real | gauss_log_density_var (real x, real mu, real var) |
real | gauss_density_var (real x, real mu, real var) |
real | gauss_log_density_stddev (real x, real mu, real sigma) |
real | p_value (real mu, real vn) |
real | normal_cdf (real x) |
real | gauss_cum (real x, real mu, real sigma) |
real | gauss_density_stddev (real x, real mu, real sigma) |
real | safeflog (real a) |
real | safeexp (real a) |
real | log (real base, real a) |
real | logtwo (real a) |
real | safeflog (real base, real a) |
real | safeflog2 (real a) |
real | logadd (real log_a, real log_b) |
compute log(exp(log_a)+exp(log_b)) without losing too much precision | |
real | square_f (real x) |
real | logsub (real log_a, real log_b) |
compute log(exp(log_a)-exp(log_b)) without losing too much precision | |
real | small_dilogarithm (real x) |
real | positive_dilogarithm (real x) |
real | dilogarithm (real x) |
return the dilogarithm function dilogarithm(x) = sum_{i=1}^{} x^i/i^2 = int_{z=x}^0 log(1-z)/z dz It is also useful because -dilogarithm(-exp(x)) is the primitive of the softplus function log(1+exp(x)). | |
real | hard_slope_integral (real l, real r, real a, real b) |
real | soft_slope_integral (real smoothness, real left, real right, real a, real b) |
real | tabulated_soft_slope_integral (real smoothness, real left, real right, real a, real b) |
real | sign (real a) |
real | positive (real a) |
real | negative (real a) |
template<class T> T | square (const T &x) |
template<class T> T | two (const T &x) |
real | fasttanh (const real &x) |
real | fastsigmoid (const real &x) |
real | ultrafasttanh (const real &x) |
real | ultrafastsigmoid (const real &x) |
template<class T> bool | is_missing (const T &x) |
Tells if the passed value means "missing" for its data-type. | |
bool | is_missing (double x) |
Missing value for double and float are represented by NaN. | |
bool | is_missing (float x) |
Missing value for double and float are represented by NaN. | |
bool | is_integer (real x) |
real | FABS (real x) |
real | mypow (real x, real p) |
real | ipow (real x, int p) |
real | sigmoid (real x) |
numerically stable version of sigmoid(x) = 1.0/(1.0+exp(-x)) | |
real | is_positive (real x) |
"hard" version of the sigmoid, i.e. | |
real | inverse_sigmoid (real x) |
numerically stable version of inverse_sigmoid(x) = log(x/(1-x)) | |
real | softplus (real x) |
numerically stable computation of log(1+exp(x)) | |
real | tabulated_softplus (real x) |
real | inverse_softplus (real y) |
inverse of softplus function | |
real | hard_slope (real x, real left=0, real right=1) |
real | soft_slope (real x, real smoothness=1, real left=0, real right=1) |
real | tabulated_soft_slope (real x, real smoothness=1, real left=0, real right=1) |
real | d_soft_slope (real x, real smoothness=1, real left=0, real right=1) |
int | n_choose (int M, int N) |
Return M choose N, i.e., M! / ( N! (M-N)! ). | |
real | softplus_primitive (real x) |
real | tabulated_softplus_primitive (real x) |
int | eigen_SymmMat (Mat &in, Vec &e_value, Mat &e_vector, int &n_evalues_found, bool compute_all, int nb_eigen, bool compute_vectors, bool largest_evalues) |
int | eigen_SymmMat_decreasing (Mat &in, Vec &e_value, Mat &e_vector, int &n_evalues_found, bool compute_all, int nb_eigen, bool compute_vectors, bool largest_evalues) |
same as the previous call, but eigenvalues/vectors are sorted by largest firat (in decreasing order) | |
int | matInvert (Mat &in, Mat &inverse) |
This function compute the inverse of a matrix. | |
int | lapackSolveLinearSystem (Mat &At, Mat &Bt, TVec< int > &pivots) |
void | solveLinearSystem (const Mat &A, const Mat &Y, Mat &X) |
for matrices A such that A.length() <= A.width(), find X s.t. | |
void | solveTransposeLinearSystem (const Mat &A, const Mat &Y, Mat &X) |
for matrices A such that A.length() >= A.width(), find X s.t. | |
Mat | solveLinearSystem (const Mat &A, const Mat &B) |
Vec | solveLinearSystem (const Mat &A, const Vec &b) |
Returns solution x of Ax = b (same as above, except b and x are vectors). | |
Vec | constrainedLinearRegression (const Mat &Xt, const Vec &Y, real lambda) |
Mat | multivariate_normal (const Vec &mu, const Mat &A, int N) |
generate N vectors sampled from the normal with mean vector mu and covariance matrix A | |
Vec | multivariate_normal (const Vec &mu, const Mat &A) |
generate a vector sampled from the normal with mean vector mu and covariance matrix A | |
Vec | multivariate_normal (const Vec &mu, const Vec &e_values, const Mat &e_vectors) |
generate 1 vector sampled from the normal with mean mu and covariance matrix A = evectors * diagonal(e_values) * evectors' | |
void | multivariate_normal (Vec &x, const Vec &mu, const Vec &e_values, const Mat &e_vectors, Vec &z) |
generate a vector x sampled from the normal with mean mu and covariance matrix A = evectors * diagonal(e_values) * evectors' (the normal(0,I) originally sampled to obtain x is stored in z). | |
void | affineNormalization (Mat data, Mat W, Vec bias, real regularizer) |
void | lapack_Xsyevx_ (char *JOBZ, char *RANGE, char *UPLO, int *N, double *A, int *LDA, double *VL, double *VU, int *IL, int *IU, double *ABSTOL, int *M, double *W, double *Z, int *LDZ, double *WORK, int *LWORK, int *IWORK, int *IFAIL, int *INFO) |
void | lapack_Xsyevx_ (char *JOBZ, char *RANGE, char *UPLO, int *N, float *A, int *LDA, float *VL, float *VU, int *IL, int *IU, float *ABSTOL, int *M, float *W, float *Z, int *LDZ, float *WORK, int *LWORK, int *IWORK, int *IFAIL, int *INFO) |
void | lapack_Xgesdd_ (char *JOBZ, int *M, int *N, double *A, int *LDA, double *S, double *U, int *LDU, double *VT, int *LDVT, double *WORK, int *LWORK, int *IWORK, int *INFO) |
void | lapack_Xgesdd_ (char *JOBZ, int *M, int *N, float *A, int *LDA, float *S, float *U, int *LDU, float *VT, int *LDVT, float *WORK, int *LWORK, int *IWORK, int *INFO) |
void | lapack_Xsyevr_ (char *JOBZ, char *RANGE, char *UPLO, int *N, float *A, int *LDA, float *VL, float *VU, int *IL, int *IU, float *ABSTOL, int *M, float *W, float *Z, int *LDZ, int *ISUPPZ, float *WORK, int *LWORK, int *IWORK, int *LIWORK, int *INFO) |
void | lapack_Xsyevr_ (char *JOBZ, char *RANGE, char *UPLO, int *N, double *A, int *LDA, double *VL, double *VU, int *IL, int *IU, double *ABSTOL, int *M, double *W, double *Z, int *LDZ, int *ISUPPZ, double *WORK, int *LWORK, int *IWORK, int *LIWORK, int *INFO) |
void | lapack_Xsygvx_ (int *ITYPE, char *JOBZ, char *RANGE, char *UPLO, int *N, double *A, int *LDA, double *B, int *LDB, double *VL, double *VU, int *IL, int *IU, double *ABSTOL, int *M, double *W, double *Z, int *LDZ, double *WORK, int *LWORK, int *IWORK, int *IFAIL, int *INFO) |
void | lapack_Xsygvx_ (int *ITYPE, char *JOBZ, char *RANGE, char *UPLO, int *N, float *A, int *LDA, float *B, int *LDB, float *VL, float *VU, int *IL, int *IU, float *ABSTOL, int *M, float *W, float *Z, int *LDZ, float *WORK, int *LWORK, int *IWORK, int *IFAIL, int *INFO) |
template<class num_t> void | lapackEIGEN (const TMat< num_t > &A, TVec< num_t > &eigenvals, TMat< num_t > &eigenvecs, char RANGE='A', num_t low=0, num_t high=0, num_t ABSTOL=0) |
Computes the eigenvalues and eigenvectors of a symmetric (NxN) matrix A. | |
template<class num_t> void | lapackGeneralizedEIGEN (const TMat< num_t > &A, const TMat< num_t > &B, int ITYPE, TVec< num_t > &eigenvals, TMat< num_t > &eigenvecs, char RANGE='A', num_t low=0, num_t high=0, num_t ABSTOL=0) |
Computes the eigenvalues and eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x A and B are assumed to be symmetric and B is also positive definite. | |
template<class num_t> void | eigenVecOfSymmMat (TMat< num_t > &m, int k, TVec< num_t > &eigen_values, TMat< num_t > &eigen_vectors) |
Computes up to k largest eigen_values and corresponding eigen_vectors of symmetric matrix m. | |
template<class num_t> void | generalizedEigenVecOfSymmMat (TMat< num_t > &m1, TMat< num_t > &m2, int itype, int k, TVec< num_t > &eigen_values, TMat< num_t > &eigen_vectors) |
Computes up to k largest eigen_values and corresponding eigen_vectors of a real generalized symmetric-definite eigenproblem, of the form m1*x=(lambda)*m2*x (itype = 1), m1*m2*x=(lambda)*x (itype = 2) or m2*m1*x=(lambda)*x (itype = 3) m1 and m2 are assumed to be symmetric and m2 is also positive definite. | |
template<class num_t> void | lapackSVD (const TMat< num_t > &At, TMat< num_t > &Ut, TVec< num_t > &S, TMat< num_t > &V, char JOBZ='A', real safeguard=1) |
template<class num_t> void | SVD (const TMat< num_t > &A, TMat< num_t > &U, TVec< num_t > &S, TMat< num_t > &Vt, char JOBZ='A', real safeguard=1) |
Performs the SVD decomposition A = U.S.Vt Where U and Vt are orthonormal matrices. | |
Vec | closestPointOnHyperplane (const Vec &x, const Mat &points, real weight_decay=0.) |
closest point to x on hyperplane that passes through all points (with weight decay) | |
real | hyperplaneDistance (const Vec &x, const Mat &points, real weight_decay=0.) |
Distance between point x and closest point on hyperplane that passes through all points. | |
template<class MatT> void | diagonalizeSubspace (MatT &A, Mat &X, Vec &Ax, Mat &solutions, Vec &evalues, Mat &evectors) |
template<class T> PStream & | operator<< (PStream &out, const ProbSparseMatrix &p) |
template<class T> PStream & | operator>> (PStream &in, ProbSparseMatrix &p) |
real | log_gamma (real xx) |
real | log_beta (real x, real y) |
real | incomplete_beta_continued_fraction (real z, real x, real y) |
real | incomplete_beta (real z, real x, real y) |
real | student_t_cdf (real t, int nb_degrees_of_freedom) |
void | manual_seed (long x) |
void | seed () |
long | get_seed () |
real | uniform_sample () |
real | bounded_uniform (real a, real b) |
real | expdev () |
real | gaussian_01 () |
real | gaussian_mu_sigma (real mu, real sigma) |
real | gaussian_mixture_mu_sigma (Vec &w, const Vec &mu, const Vec &sigma) |
real | gamdev (int ia) |
real | poidev (real xm) |
real | bnldev (real pp, int n) |
int | multinomial_sample (const Vec &distribution) |
int | uniform_multinomial_sample (int N) |
return an integer between 0 and N-1 with equal probabilities | |
void | fill_random_uniform (const Vec &dest, real minval, real maxval) |
sample each element from uniform distribution U[minval,maxval] | |
void | fill_random_discrete (const Vec &dest, const Vec &set) |
sample each element from the given set | |
void | fill_random_normal (const Vec &dest, real mean, real stdev) |
sample each element from Normal(mean,sdev^2) distribution | |
void | fill_random_normal (const Vec &dest, const Vec &mean, const Vec &stdev) |
sample each element from multivariate Normal(mean,diag(sdev^2)) distribution | |
void | fill_random_uniform (const Mat &dest, real minval, real maxval) |
void | fill_random_normal (const Mat &dest, real mean, real sdev) |
double | incbcf (double a, double b, double x) |
double | incbd (double a, double b, double x) |
real | normal_sample () |
real | binomial_sample (real prob1) |
alias | |
template<class T> void | bootstrap_rows (const TMat< T > &source, TMat< T > destination) |
sample with replacement the rows of source and put them in destination. | |
template<class T> void | shuffleElements (const TVec< T > &vec) |
randomly shuffle the entries of the TVector | |
template<class T> void | shuffleRows (const TMat< T > &mat) |
template<class T> void | computeRanks (const TMat< T > &mat, TMat< T > &ranks) |
For each column of mat, sort the elements and put in the 'ranks' matrix (of the same dimensions) the rank of original elements. | |
template<class T> void | product (RowMapSparseMatrix< T > &M, const Vec &x, Vec &y) |
PLEARN_IMPLEMENT_OBJECT (ScaledConditionalCDFSmoother,"This smoothes a low-resolution histogram using as prior a high-resolution one.","This class takes as 'prior_cdf' a detailed histogram (usually derived from\n""an unconditional distribution) and uses it to smooth a given survival\n""function and provide extra detail (high resolution).\n""Two smoothing formula are provided, both of which guarantee that the smoothed\n""survival function takes the same value as the raw one at or near original bin\n""positions. In between the original bin positions, the smoothed survival\n""is obtained by applying one of two possible formula, according to the\n""preserve_relative_density option.\n") | |
DECLARE_OBJECT_PTR (ScaledConditionalCDFSmoother) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (Smoother,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (Smoother) | |
SparseMatrix | operator+ (const SparseMatrix &A, const SparseMatrix &B) |
add two sparse matrices (of same dimensions but with values in possibly different places) | |
SparseMatrix | add (Array< SparseMatrix > &matrices) |
add a bunch of sparse matrices and return result | |
void | SpearmanRankCorrelation (const VMat &x, const VMat &y, Mat &r) |
Compute the Spearman Rank correlation statistic. | |
real | testNoCorrelationAsymptotically (real r, int n) |
Return P(|R|>|r|) two-sided p-value for the null-hypothesis that there is no monotonic dependency, with r the observed correlation between two paired samples of length n. | |
void | testSpearmanRankCorrelationPValues (const VMat &x, const VMat &y, Mat &pvalues) |
Compute P(|R|>|r|) two-sided p-value for the null-hypothesis that there is no monotonic dependency, with r the observed Spearman Rank correlation between two paired samples x and y of length n (column matrices). | |
void | testSpearmanRankCorrelation (const VMat &x, const VMat &y, Mat &r, Mat &pvalues) |
same as above but return also in r the rank correlations | |
real | max_cdf_diff (Vec &v1, Vec &v2) |
Returns the max of the difference between the empirical cdf of 2 series of values Side-effect: the call sorts v1 and v2. | |
real | KS_test (real D, real N, int conv) |
void | KS_test (Vec &v1, Vec &v2, int conv, real &D, real &p_value) |
Kolmogorov-Smirnov test. | |
real | KS_test (Vec &v1, Vec &v2, int conv) |
Returns result of Kolmogorov-Smirnov test between 2 samples The call sorts v1 and v2. | |
real | paired_t_test (Vec u, Vec v) |
Given two paired sets u and v of n measured values, the paired t-test determines whether they differ from each other in a significant way under the assumptions that the paired differences are independent and identically normally distributed. | |
PLEARN_IMPLEMENT_OBJECT (StatsCollector,"Collects basic statistics","A StatsCollector allows to compute basic global statistics for a series of numbers,\n""as well as statistics within automatically determined ranges.\n""The first maxnvalues encountered values will be used as reference points to define\n""the ranges, so to get reasonable results, your sequence should be iid, and NOT sorted!\n""\n""The following statistics are available:"" - E Sample mean\n"" - V Sample variance\n"" - STDDEV Sample standard deviation\n"" - STDERROR Standard error of the mean\n"" - MIN Minimum value\n"" - MAX Maximum value\n"" - SUM Sum of observations \n"" - SUMSQ Sum of squares\n"" - FIRST First observation\n"" - LAST Last observation\n"" - N Total number of observations\n"" - NMISSING Number of missing observations\n"" - NNONMISSING Number of non-missing observations\n"" - SHARPERATIO Mean divided by standard deviation\n") | |
int | sortIdComparator (const void *i1, const void *i2) |
TVec< RealMapping > | computeRanges (TVec< StatsCollector > stats, int discrete_mincount, int continuous_mincount) |
PStream & | operator>> (PStream &in, StatsCollectorCounts &c) |
this class holds simple statistics about a field | |
PStream & | operator<< (PStream &out, const StatsCollectorCounts &c) |
DECLARE_OBJECT_PTR (StatsCollector) | |
template<> void | deepCopyField (StatsCollector &field, CopiesMap &copies) |
Apparently needed to specialize this method, otherwise it was the generic deepCopyField from CopiesMap.h that was called when deep copying a TVec<StatsCollector>. | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (StatsIterator,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (MeanStatsIterator,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (ExpMeanStatsIterator,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (StddevStatsIterator,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (StderrStatsIterator,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (SharpeRatioStatsIterator,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (MinStatsIterator,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (MaxStatsIterator,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (LiftStatsIterator,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (QuantilesStatsIterator,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (StatsIterator) | |
DECLARE_OBJECT_PTR (MeanStatsIterator) | |
DECLARE_OBJECT_PTR (ExpMeanStatsIterator) | |
DECLARE_OBJECT_PTR (StddevStatsIterator) | |
DECLARE_OBJECT_PTR (StderrStatsIterator) | |
DECLARE_OBJECT_PTR (SharpeRatioStatsIterator) | |
DECLARE_OBJECT_PTR (MinStatsIterator) | |
DECLARE_OBJECT_PTR (MaxStatsIterator) | |
DECLARE_OBJECT_PTR (LiftStatsIterator) | |
DECLARE_OBJECT_PTR (QuantilesStatsIterator) | |
DECLARE_TYPE_TRAITS (StatsItArray) | |
PStream & | operator>> (PStream &in, StatsItArray &o) |
PStream & | operator<< (PStream &out, const StatsItArray &o) |
template<> void | deepCopyField (StatsItArray &field, CopiesMap &copies) |
StatsItArray | operator & (const StatsIt &statsit1, const StatsIt &statsit2) |
StatsIt | mean_stats () |
StatsIt | stddev_stats () |
StatsIt | stderr_stats () |
StatsIt | min_stats () |
StatsIt | max_stats () |
StatsIt | quantiles_stats (Vec quantiles, int n_data=1000) |
StatsIt | lift_stats (int the_index=0, real the_fraction=0.1) |
StatsIt | sharpe_ratio_stats () |
exponential of the mean | |
StatsIt | exp_mean_stats () |
template<class T, class I> void | selectElements (const TVec< T > &source, const TVec< I > &indices, TVec< T > &destination) |
template<class T> void | elementsEqualTo (const TVec< T > &source, const T &value, const TVec< T > &destination) |
put in destination 1's when (*this)[i]==value, 0 otherwise | |
template<class T> TVec< T > | concat (const TVec< T > &v1, const TVec< T > &v2) |
template<class T> TVec< T > | removeElement (const TVec< T > &v, int elemnum) |
if the element to remove is the first or the last one, then a submatrix (a view) of m will be returned (for efficiency) otherwise, it is a fresh copy with the element removed. | |
template<class T, class I> void | selectRows (const TMat< T > &source, const TVec< I > &row_indices, TMat< T > &destination) |
template<class T, class I> void | selectColumns (const TMat< T > &source, const TVec< I > &column_indices, TMat< T > &destination) |
template<class T, class I> void | select (const TMat< T > &source, const TVec< I > &row_indices, const TVec< I > &column_indices, TMat< T > &destination) |
template<class T> TMat< T > | removeRow (const TMat< T > &m, int rownum) |
returns a new mat which is m with the given row removed if the row to remove is the first or the last one, then a submatrix (a view) of m will be returned (for efficiency) otherwise, it is a fresh copy with the row removed. | |
template<class T> TMat< T > | removeColumn (const TMat< T > &m, int colnum) |
returns a new mat which is m with the given column removed if the column to remove is the first or the last one, then a submatrix (a view) of m will be returned (for efficiency) otherwise, it is a fresh copy with the column removed. | |
template<class T> TMat< T > | diagonalmatrix (const TVec< T > &v) |
template<class T> TMat< T > | deepCopy (const TMat< T > source) |
template<class T> TMat< T > | deepCopy (const TMat< T > source, CopiesMap copies) |
template<class T> void | deepCopyField (TMat< T > &field, CopiesMap &copies) |
template<class T> void | clear (const TMat< T > &x) |
template<class T> void | swap (TMat< T > &a, TMat< T > &b) |
template<class T> void | operator<< (const TMat< T > &m1, const TMat< T > &m2) |
copy TMat << TMat | |
template<class T, class U> void | operator<< (const TMat< T > &m1, const TMat< U > &m2) |
copy TMat << TMat (different types) | |
template<class T> void | operator<< (const TMat< T > &m1, const TVec< T > &m2) |
copy TMat << Tvec | |
template<class T, class U> void | operator<< (const TMat< T > &m1, const TVec< U > &m2) |
copy TMat << Tvec (different types) | |
template<class T> void | operator<< (const TVec< T > &m1, const TMat< T > &m2) |
copy TVec << TMat | |
template<class T, class U> void | operator<< (const TVec< T > &m1, const TMat< U > &m2) |
copy TVec << TMat (different types) | |
template<class T, class U> void | operator>> (const TMat< T > &m1, const TMat< U > &m2) |
copy TMat >> TMat | |
template<class T, class U> void | operator>> (const TVec< T > &m1, const TMat< U > &m2) |
copy TVec >> TMat | |
template<class T, class U> void | operator>> (const TMat< T > &m1, const TVec< U > &m2) |
copy TMat >> Tvec | |
template<class T> ostream & | operator<< (ostream &out, const TMat< T > &m) |
printing a TMat | |
template<class T> istream & | operator>> (istream &in, const TMat< T > &m) |
inputing a TMat | |
template<class T> TMat< T > | rowmatrix (const TVec< T > &v) |
returns a view of this vector as a single row matrix | |
template<class T> TMat< T > | columnmatrix (const TVec< T > &v) |
returns a view of this vector as a single column matrix | |
template<class T> void | select (const TMat< T > &source, const TVec< T > &row_indices, const TVec< T > &column_indices, TMat< T > &destination) |
template<class T> void | savePMat (const string &filename, const TMat< T > &mat) |
template<class T> PStream & | operator<< (PStream &out, const TMat< T > &m) |
Read and Write from C++ stream: write saves length and read resizes accordingly (the raw modes don't write any size information). | |
template<class T> PStream & | operator>> (PStream &in, TMat< T > &m) |
string | join (const TVec< string > &s, const string &separator) |
template<class T> T | max (const TVec< T > &vec) |
template<class T> void | softmax (const TVec< T > &x, const TVec< T > &y) |
y = softmax(x) | |
template<class T> void | log_softmax (const TVec< T > &x, TVec< T > &y) |
template<class T> void | exp (const TVec< T > &x, TVec< T > &y) |
computes y <- exp(x) | |
template<class T> T | sumsquare (const TVec< T > &x) |
returns the sum of squared elements | |
template<class T> T | sumabs (const TVec< T > &x) |
returns the sum of absolute values of elements | |
template<class T> void | squareElements (const TVec< T > &x) |
squares the elements of x in place | |
template<class T> void | squareElements (const TMat< T > &m) |
squares the elements of m in place | |
template<class T> T | sumsquare (const TMat< T > &m) |
returns the sum of squared elements | |
template<class T> T | sumabs (const TMat< T > &m) |
returns the sum of absolute value of the elements | |
template<class T> void | multiply (const TVec< T > &source1, T source2, TVec< T > &destination) |
destination = source1*source2 | |
template<class T> T | sum (const TVec< T > &vec, bool ignore_missing=false) |
template<class T> T | sum_of_log (const TVec< T > &vec) |
returns the sum of the log of the elements (this is also the log of the product of the elements but is more stable if you have very small elements). | |
template<class T> T | product (const TVec< T > &vec) |
template<class T> T | mean (const TVec< T > &vec, bool ignore_missing=false) |
if ignore_missing==true, then the mean is computed by ignoring the possible MISSING_VALUE in the Vec. | |
template<class T> T | harmonic_mean (const TVec< T > &vec, bool ignore_missing=false) |
template<class T> T | avgdev (const TVec< T > &vec, T meanval) |
template<class T> T | geometric_mean (const TVec< T > &vec) |
template<class T> T | weighted_mean (const TVec< T > &vec, const TVec< T > &weights, bool ignore_missing=false) |
template<class T> T | variance (const TVec< T > &vec, T meanval) |
template<class T> T | covariance (const TVec< T > &vec1, const TVec< T > &vec2, T mean1, T mean2) |
template<class T> T | weighted_variance (const TVec< T > &vec, const TVec< T > &weights, T no_weighted_mean, T weighted_mean) |
template<class T> TVec< T > | histogram (const TVec< T > &vec, T minval, T maxval, int nbins) |
template<class T> T | min (const TVec< T > &vec) |
template<class T> T | maxabs (const TVec< T > &vec) |
template<class T> T | minabs (const TVec< T > &vec, int index=int()) |
template<class T> int | argmax (const TVec< T > &vec) |
template<class T> int | argmax (const TVec< T > &vec, bool ignore_missing) |
template<class T> int | argmin (const TVec< T > &vec) |
template<class T> int | argmin (const TVec< T > &vec, bool ignore_missing) |
template<class T> T | pownorm (const TVec< T > &vec, double n) |
template<class T> T | pownorm (const TVec< T > &vec) |
template<class T> T | norm (const TVec< T > &vec, double n) |
template<class T> T | norm (const TVec< T > &vec) |
template<class T> void | normalize (const TVec< T > &vec, double n) |
template<class T> T | powdistance (const TVec< T > &vec1, const TVec< T > &vec2, double n) |
template<class T> T | powdistance (const TVec< T > &vec1, const TVec< T > &vec2) |
template<class T> T | dist (const TVec< T > &vec1, const TVec< T > &vec2, double n) |
template<class T> T | L2distance (const TVec< T > &vec1, const TVec< T > &vec2) |
template<class T> T | L1distance (const TVec< T > &vec1, const TVec< T > &vec2) |
template<class T> T | weighted_powdistance (const TVec< T > &vec1, const TVec< T > &vec2, double n, const TVec< T > &weights) |
template<class T> T | weighted_distance (const TVec< T > &vec1, const TVec< T > &vec2, double n, const TVec< T > &weights) |
template<class T> void | operator-= (const TVec< T > &vec1, const TVec< T > &vec2) |
template<class T> void | operator *= (const TVec< T > &vec1, const TVec< T > &vec2) |
template<class T> void | operator/= (const TVec< T > &vec, T scalar) |
template<class T> void | operator/= (const TVec< T > &vec, int scalar) |
template<class T> void | compute_log (const TVec< T > &src, const TVec< T > &dest) |
template<class T> TVec< T > | log (const TVec< T > &src) |
template<class T> void | compute_sqrt (const TVec< T > &src, const TVec< T > &dest) |
template<class T> TVec< T > | sqrt (const TVec< T > &src) |
template<class T> void | compute_safelog (const TVec< T > &src, const TVec< T > &dest) |
template<class T> TVec< T > | safelog (const TVec< T > &src) |
template<class T> void | operator/= (const TVec< T > &vec1, const TVec< T > &vec2) |
template<class T> void | compute_tanh (const TVec< T > &src, const TVec< T > &dest) |
template<class T> void | bprop_tanh (const TVec< T > &tanh_x, const TVec< T > &d_tanh_x, TVec< T > &d_x) |
template<class T> TVec< T > | tanh (const TVec< T > &src) |
template<class T> void | compute_fasttanh (const TVec< T > &src, const TVec< T > &dest) |
template<class T> TVec< T > | fasttanh (const TVec< T > &src) |
template<class T> void | compute_sigmoid (const TVec< T > &src, const TVec< T > &dest) |
template<class T> TVec< T > | sigmoid (const TVec< T > &src) |
template<class T> void | compute_fastsigmoid (const TVec< T > &src, const TVec< T > &dest) |
template<class T> TVec< T > | fastsigmoid (const TVec< T > &src) |
template<class T> void | compute_inverse_sigmoid (const TVec< T > &src, const TVec< T > &dest) |
template<class T> TVec< T > | inverse_sigmoid (const TVec< T > &src) |
template<class T> void | negateElements (const TVec< T > &vec) |
template<class T> void | invertElements (const TVec< T > &vec) |
template<class T> TVec< T > | inverted (const TVec< T > &vec) |
template<class T> void | operator+= (const TVec< T > &vec, T scalar) |
template<class T> void | operator-= (const TVec< T > &vec, T scalar) |
template<class T> TVec< T > | operator- (TVec< T > vec) |
template<class T> T | dot (const TVec< T > &vec1, const TVec< T > &vec2) |
template<class V, class T, class U> V | dot (const TVec< T > &vec1, const TVec< U > &vec2) |
Special dot product that allows TVec's of different types, as long as operator*(T,U) is defined. | |
template<class T> T | dot (const TMat< T > &m1, const TMat< T > &m2) |
template<class T> TVec< T > | operator- (const TVec< T > &v1, const TVec< T > &v2) |
template<class T> TVec< T > | operator- (T v1, const TVec< T > &v2) |
template<class T> TVec< T > | operator- (const TVec< T > &v1, T v2) |
template<class T> TVec< T > | operator+ (const TVec< T > &v1, const TVec< T > &v2) |
template<class T> TVec< T > | operator+ (T v1, const TVec< T > &v2) |
template<class T> TVec< T > | operator+ (const TVec< T > &v1, T v2) |
template<class T> TVec< T > | operator% (const TVec< T > &v1, const TVec< T > &v2) |
template<class T> TVec< T > | operator * (T scalar, const TVec< T > &v) |
template<class T> TVec< T > | operator * (const TVec< T > &v1, T v2) |
template<class T> TVec< T > | operator/ (const TVec< T > &v1, const TVec< T > &v2) |
template<class T> TVec< T > | operator/ (T v1, const TVec< T > &v2) |
template<class T1, class T2> TVec< T1 > | operator/ (const TVec< T1 > &v1, T2 scalar) |
template<class T> T | logadd (const TVec< T > &vec) |
template<class T> T | output_margin (const TVec< T > &class_scores, int correct_class) |
template<class T> void | fill_one_hot (const TVec< T > &vec, int hotpos, T coldvalue, T hotvalue) |
template<class T> TVec< T > | one_hot (int length, int hotpos, T coldvalue, T hotvalue) |
template<class T> TVec< T > | square (const TVec< T > &vec) |
template<class T> TVec< T > | squareroot (const TVec< T > &vec) |
template<class T> TVec< T > | remove_missing (const TVec< T > &vec) |
template<class T, class U, class V> TVec< U > | apply (const TVec< T > &vec, U(*func)(V)) |
Transform a vector of T into a vector of U through a unary function. | |
template<class T, class U> void | apply (const TVec< T > &source, TVec< U > &destination, U(*func)(T)) |
Transform a vector of T into a vector of U through a unary function. | |
template<class T, class U, class V> void | apply (const TVec< T > &src1, const TVec< U > &src2, TVec< V > &dest, V(*func)(T, U)) |
Transform a vector of T and a vector of U into a vector of V, through a binary function. | |
template<class T> void | multiply (const TVec< T > &source1, const TVec< T > &source2, TVec< T > &destination) |
template<class T> void | multiplyAdd (const TVec< T > &source1, const TVec< T > &source2, T source3, TVec< T > &destination) |
template<class T> void | multiplyScaledAdd (const TVec< T > &source, T a, T b, TVec< T > &destination) |
template<class T> void | add (const TVec< T > &source1, const TVec< T > &source2, TVec< T > &destination) |
template<class T> void | add (const TVec< T > &source1, T source2, TVec< T > &destination) |
template<class T> void | substract (const TVec< T > &source1, T source2, TVec< T > &destination) |
template<class T> void | substract (const TVec< T > &source1, const TVec< T > &source2, TVec< T > &destination) |
template<class T> void | divide (const TVec< T > &source1, T source2, TVec< T > &destination) |
template<class T> void | divide (const TVec< T > &source1, const TVec< T > &source2, TVec< T > &destination) |
template<class T> void | divide (T source1, const TVec< T > &source2, TVec< T > &destination) |
template<class T> void | max (const TVec< T > &source1, const TVec< T > &source2, TVec< T > &destination) |
template<class T> void | max (const TVec< T > &source1, T source2, TVec< T > &destination) |
template<class T> void | min (const TVec< T > &source1, const TVec< T > &source2, TVec< T > &destination) |
template<class T> void | min (const TVec< T > &source1, T source2, TVec< T > &destination) |
template<class T> TVec< T > | softmax (const TVec< T > &x) |
template<class T> void | tanh (const TVec< T > &x, TVec< T > &y) |
template<class T> TVec< T > | exp (TVec< T > vec) |
template<class T> TVec< T > | nonZeroIndices (TVec< T > v) |
template<class T> TVec< T > | nonZeroIndices (TVec< bool > v) |
template<class T> void | complement_indices (TVec< T > &indices, int n, TVec< T > &complement_indices, TVec< T > &buffer) |
template<class T> void | equals (const TVec< T > &src, T v, TVec< T > &dest) |
template<class T> void | isLargerThan (const TVec< T > &first, const TVec< T > &second, TVec< T > &dest) |
template<class T> void | isLargerThanOrEqualTo (const TVec< T > &first, const TVec< T > &second, TVec< T > &dest) |
template<class T> void | isSmallerThan (const TVec< T > &first, const TVec< T > &second, TVec< T > &dest) |
template<class T> void | isSmallerThanOrEqualTo (const TVec< T > &first, const TVec< T > &second, TVec< T > &dest) |
template<class T> void | ifThenElse (const TVec< T > &if_vec, const TVec< T > &then_vec, const TVec< T > &else_vec, TVec< T > &dest) |
template<class T> int | vec_counts (const TVec< T > &src, T value) |
template<class T> int | vec_find (const TVec< T > &src, T f) |
template<class T> T | estimatedCumProb (T x, TVec< T > bins) |
template<class T> int | positionOfkthOrderedElement (const TVec< T > &vec, int k) |
template<class T> T | kthOrderedElement (const TVec< T > &vec, int k) |
returns the value of the kth ordered element of v k can take values 0 to vec.length()-1 | |
template<class T> T | median (const TVec< T > &vec) |
returns the median value of vec | |
template<class T> T | selectAndOrder (const TVec< T > &vec, int pos) |
find the element at position pos that would result from a sort and put all elements (not in order!) lower than v[pos] in v[i<pos]. | |
template<class T> TVec< T > | getQuantiles (const TVec< T > &vec, int q) |
template<class T> TVec< T > | nonZero (const TVec< T > &vec) |
returns a vector composed of the values of v that are different from 0; | |
template<class T> TVec< T > | positiveValues (const TVec< T > &vec) |
returns a vector composed of the values of v that are greater than 0; | |
template<class T> int | positionOfClosestElement (const TVec< T > &vec, const T &value, bool is_sorted_vec=false) |
template<class T> void | projectOnOrthogonalSubspace (const TVec< T > &vec, const TMat< T > &orthonormal_subspace) |
template<class T> void | operator *= (const TVec< T > &vec, T factor) |
template<class T> void | operator+= (const TVec< T > &vec1, const TVec< T > &vec2) |
element-wise + | |
template<class T> void | multiplyAcc (const TVec< T > &vec, const TVec< T > &x, T scale) |
vec[i] += x[i]*scale; | |
template<class T> void | exponentialMovingAverageUpdate (const TVec< T > &vec, const TVec< T > &x, T alpha) |
TVec[i] = (1-alpha)*TVec[i]+x[i]*alpha;. | |
template<class T> void | exponentialMovingVarianceUpdate (const TVec< T > &vec, const TVec< T > &x, const TVec< T > &mu, T alpha) |
TVec[i] = (1-alpha)*TVec[i]+(x[i]-mu[i])^2*alpha;. | |
template<class T> void | exponentialMovingSquareUpdate (const TVec< T > &vec, const TVec< T > &x, T alpha) |
TVec[i] = (1-alpha)*TVec[i]+x[i]^2*alpha;. | |
template<class T> void | multiplyAcc (const TVec< T > &vec, const TVec< T > &x, const TVec< T > &y) |
vec[i] += x[i]*y[i]; | |
template<class T> void | squareMultiplyAcc (const TVec< T > &vec, const TVec< T > &x, T scale) |
TVec[i] += x[i]*x[i]*scale;. | |
template<class T> void | squareAcc (const TVec< T > &vec, const TVec< T > &x) |
TVec[i] += x[i]*x[i];. | |
template<class T> void | squareSubtract (const TVec< T > &vec, const TVec< T > &x) |
Tvec[i] -= x[i]*x[i];. | |
template<class T> void | diffSquareMultiplyAcc (const TVec< T > &vec, const TVec< T > &x, const TVec< T > &y, T scale) |
TVec[i] += (x[i]-y[i])^2*scale;. | |
template<class T> void | diffSquareMultiplyScaledAcc (const TVec< T > &vec, const TVec< T > &x, const TVec< T > &y, T fact1, T fact2) |
TVec[i] = TVec[i]*fact1 + (x[i]-y[i])^2*fact2;. | |
template<class T> void | product (const TVec< T > &result, const TMat< T > &m, const TVec< T > &v) |
result[i] = sum_j m[i,j] * v[j] | |
template<class T> void | productAcc (const TVec< T > &vec, const TMat< T > &m, const TVec< T > &v) |
result[i] += sum_j m[i,j] * v[j] | |
template<class T> void | transposeProduct (const TVec< T > &result, const TMat< T > &m, const TVec< T > &v) |
result[i] = sum_j m[j,i] * v[j] Equivalently: rowvec(result) = rowvec(v) . | |
template<class T> void | transposeProductAcc (const TVec< T > &result, const TMat< T > &m, const TVec< T > &v) |
result[i] += sum_j m[j,i] * v[j] | |
template<class T> void | transposeProductAcc (const TVec< T > &result, const TMat< T > &m, const TVec< T > &v, T alpha) |
result[i] += alpha * sum_j m[j,i] * v[j] | |
template<class T> void | compressedTransposeProductAcc (const TVec< T > &result, const TMat< T > &m, char *comprbufvec) |
template<class T> void | diagonalizedFactorsProduct (TMat< T > &result, const TMat< T > &U, const TVec< T > d, const TMat< T > V, bool accumulate=false) |
return the matrix with elements (i,j) = sum_k U_{ik} d_k V_{kj} | |
template<class T> void | diagonalizedFactorsProductBprop (const TMat< T > &dCdresult, const TMat< T > &U, const TVec< T > d, const TMat< T > V, TMat< T > &dCdU, TVec< T > &dCdd, TMat< T > &dCdV) |
GIVEN that res(i,j) = sum_k U_{ik} d_k V_{kj}, and given dC/dres, U,d and V, accumulate gradients on dC/dU, dC/dd and dC/dV: dC/dU[i,k] += sum_j dC/dres[i,j] d_k V[k,j] dC/dd[k] += sum_{ij} dC/dres[i,j] U[i,k] V[k,j] dC/dV[k,j] += d_k * sum_i U[i,k] dC/dres[i,j]. | |
template<class T> void | diagonalizedFactorsProductTranspose (TMat< T > &result, const TMat< T > &U, const TVec< T > d, const TMat< T > V, bool accumulate=false) |
return the matrix with elements (i,j) = sum_k U_{ik} d_k V_{jk} | |
template<class T> void | diagonalizedFactorsProductTransposeBprop (const TMat< T > &dCdresult, const TMat< T > &U, const TVec< T > d, const TMat< T > V, TMat< T > &dCdU, TVec< T > &dCdd, TMat< T > &dCdV) |
template<class T> void | diagonalizedFactorsTransposeProduct (TMat< T > &result, const TMat< T > &U, const TVec< T > d, const TMat< T > V, bool accumulate=false) |
return the matrix with elements (i,j) = sum_k U_{ki} d_k V_{kj} | |
template<class T> void | diagonalizedFactorsTransposeProductBprop (const TMat< T > &dCdresult, const TMat< T > &U, const TVec< T > d, const TMat< T > V, TMat< T > &dCdU, TVec< T > &dCdd, TMat< T > &dCdV) |
template<class T> void | diagonalizedFactorsTransposeProductTranspose (TMat< T > &result, const TMat< T > &U, const TVec< T > d, const TMat< T > V, bool accumulate=false) |
return the matrix with elements (i,j) = sum_k U_{ki} d_k V_{jk} | |
template<class T> void | diagonalizedFactorsTransposeProductTransposeBprop (const TMat< T > &dCdresult, const TMat< T > &U, const TVec< T > d, const TMat< T > V, TMat< T > &dCdU, TVec< T > &dCdd, TMat< T > &dCdV) |
template<class T> T | matRowDotVec (const TMat< T > &mat, int i, const TVec< T > v) |
return dot product of i-th row with vector v | |
template<class T> T | matColumnDotVec (const TMat< T > &mat, int j, const TVec< T > v) |
return dot product of j-th column with vector v | |
template<class T> void | matRowsDots (TVec< T > v, const TMat< T > &A, const TMat< T > &B) |
return dot products of i-th row of A with i-th row of B in vector v | |
template<class T> void | matRowsDotsAcc (TVec< T > v, const TMat< T > &A, const TMat< T > &B) |
return dot products of i-th row of A with i-th row of B in vector v | |
template<class T> void | fillItSymmetric (const TMat< T > &mat) |
Fill the bottom left part of a matrix with its top right part, so that it becomes symmetric. | |
template<class T> void | makeItSymmetric (const TMat< T > &mat, T max_dif) |
template<class T> void | product (const TMat< T > &mat, const TVec< T > &x, TVec< T > &y) |
template<class T> void | product (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | productAcc (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | product2Acc (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | squareProductAcc (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | externalProduct (const TMat< T > &mat, const TVec< T > &v1, const TVec< T > &v2) |
template<class T> void | externalProductAcc (const TMat< T > &mat, const TVec< T > &v1, const TVec< T > &v2) |
template<class T> void | externalProductScaleAcc (const TMat< T > &mat, const TVec< T > &v1, const TVec< T > &v2, T gamma) |
template<class T> void | externalProductScaleAcc (const TMat< T > &mat, const TVec< T > &v1, const TVec< T > &v2, T gamma, T alpha) |
template<class T> void | productTranspose (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | squareProductTranspose (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | product2Transpose (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | productTransposeAcc (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | product2TransposeAcc (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | squareProductTransposeAcc (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | transposeProduct (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | transposeProduct2 (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | transposeProductAcc (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | transposeProduct2Acc (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | transposeTransposeProduct (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | transposeTransposeProductAcc (const TMat< T > &mat, const TMat< T > &m1, const TMat< T > &m2) |
template<class T> T | trace (const TMat< T > &mat) |
template<class T> void | regularizeMatrix (const TMat< T > &mat, T tolerance) |
Applies a regularizer : diag(A) += (tolerance * trace(A)). | |
template<class T> void | makeRowsSumTo1 (const TMat< T > &mat) |
template<class T> void | multiply (const TMat< T > &result, const TMat< T > &x, T scale) |
template<class T> TMat< T > | operator * (const TMat< T > &m, const T &scalar) |
template<class T> TMat< T > | operator * (const T &scalar, const TMat< T > &m) |
template<class T> TMat< T > | operator/ (const TMat< T > &m, const T &scalar) |
template<class T> void | multiplyAcc (const TMat< T > &mat, const TMat< T > &x, T scale) |
template<class T> void | multiplyAcc (const TMat< T > &mat, const TMat< T > &x, const TMat< T > &y) |
template<class T> void | squareMultiplyAcc (const TMat< T > &mat, const TMat< T > &x, T scale) |
template<class T> void | diffSquareMultiplyAcc (const TMat< T > &mat, const TMat< T > &x, const TMat< T > &y, T scale) |
template<class T> TVec< T > | selectAndOrder (const TMat< T > &mat, int pos, int colnum=0) |
template<class T> void | addToDiagonal (const TMat< T > &mat, T lambda) |
template<class T> void | addToDiagonal (const TMat< T > &mat, const TVec< T > &lambda) |
template<class T> void | diag (const TMat< T > &mat, const TVec< T > &d) |
template<class T> TVec< T > | diag (const TMat< T > &mat) |
template<class T> void | diagonalOfSquare (const TMat< T > &mat, const TVec< T > &d) |
template<class T> void | projectOnOrthogonalSubspace (const TMat< T > &mat, TMat< T > orthonormal_subspace) |
template<class T> void | averageAcrossRowsAndColumns (const TMat< T > &mat, TVec< T > &avg_across_rows, TVec< T > &avg_across_columns, bool ignored) |
template<class T> void | addToRows (const TMat< T > &mat, const TVec< T > row, bool ignored) |
template<class T> void | addToColumns (const TMat< T > &mat, const TVec< T > col, bool ignored) |
template<class T> void | substractFromRows (const TMat< T > &mat, const TVec< T > row, bool ignored) |
template<class T> void | substractFromColumns (const TMat< T > &mat, const TVec< T > col, bool ignored) |
template<class T> void | addToMat (const TMat< T > &mat, T scalar, bool ignored) |
template<class T> T | sum (const TMat< T > &mat, bool ignore_missing=false) |
template<class T> T | product (const TMat< T > &mat) |
template<class T> T | sum_of_squares (const TMat< T > &mat) |
template<class T> T | mean (const TMat< T > &mat) |
template<class T> T | geometric_mean (const TMat< T > &mat) |
template<class T> T | variance (const TMat< T > &mat, T meanval) |
template<class T> T | correlation (const TMat< T > &mat) |
template<class T> T | correlation (const TVec< T > &x, const TVec< T > &y) |
template<class T> T | min (const TMat< T > &mat) |
template<class T> T | max (const TMat< T > &mat) |
template<class T> void | argmin (const TMat< T > &mat, int &mini, int &minj) |
Stores the position of the min in the 'mini' & 'minj' arg. | |
template<class T> void | argmax (const TMat< T > &mat, int &maxi, int &maxj) |
template<class T> int | argmin (const TMat< T > &m) |
return mini*width+minj | |
template<class T> int | argmax (const TMat< T > &m) |
return maxi*width+maxj | |
template<class T> void | rowSum (const TMat< T > &mat, const TMat< T > &singlecolumn) |
template<class T> void | rowSum (const TMat< T > &mat, const TVec< T > &colvec) |
template<class T> void | rowMean (const TMat< T > &mat, const TMat< T > &singlecolumn) |
template<class T> void | rowVariance (const TMat< T > &mat, const TMat< T > &singlecolumn, const TMat< T > &rowmean) |
template<class T> void | rowSumOfSquares (const TMat< T > &mat, const TMat< T > &singlecolumn) |
template<class T> void | rowMax (const TMat< T > &mat, const TMat< T > &singlecolumn) |
template<class T> void | rowMax (const TMat< T > &mat, const TVec< T > &colvec) |
template<class T> void | rowMin (const TMat< T > &mat, const TMat< T > &singlecolumn) |
template<class T> void | rowMin (const TMat< T > &mat, const TVec< T > &colvec) |
template<class T> void | rowArgmax (const TMat< T > &mat, const TMat< T > &singlecolumn) |
template<class T> void | rowArgmin (const TMat< T > &mat, const TMat< T > &singlecolumn) |
template<class T> void | columnSum (const TMat< T > &mat, TVec< T > &result) |
template<class T> void | columnSumOfSquares (const TMat< T > &mat, TVec< T > &result) |
template<class T> void | columnMean (const TMat< T > &mat, TVec< T > &result) |
template<class T> void | columnWeightedMean (const TMat< T > &mat, TVec< T > &result) |
template<class T> void | columnVariance (const TMat< T > &mat, TVec< T > &result, const TVec< T > &columnmean) |
template<class T> void | columnWeightedVariance (const TMat< T > &mat, TVec< T > &result, const TVec< T > &column_weighted_mean) |
template<class T> void | columnMax (const TMat< T > &mat, TVec< T > &result) |
template<class T> void | columnMin (const TMat< T > &mat, TVec< T > &result) |
template<class T> void | columnArgmax (const TMat< T > &mat, TVec< T > &result) |
template<class T> void | columnArgmin (const TMat< T > &mat, TVec< T > &result) |
template<class T> T | mahalanobis_distance (const TVec< T > &input, const TVec< T > &meanvec, const TMat< T > &inversecovmat) |
template<class T> void | computeMean (const TMat< T > &m, TVec< T > &meanvec) |
compute the mean of the rows of m (looping over columns) | |
template<class T> void | computeMeanAndVariance (const TMat< T > &m, TVec< T > &meanvec, TVec< T > &variancevec) |
compute the mean and variance of the rows of m (looping over columns) | |
template<class T> void | computeCovar (const TMat< T > &m, const TVec< T > &meanvec, TMat< T > &covarmat) |
template<class T> void | computeMeanAndCovar (const TMat< T > &m, TVec< T > &meanvec, TMat< T > &covarmat) |
template<class T> void | computeMeanAndStddev (const TMat< T > &m, TVec< T > &meanvec, TVec< T > &stddevvec) |
compute the mean and standard deviations of the rows of m (looping over columns) | |
template<class T> void | computeColumnsMeanAndStddev (const TMat< T > &m, TMat< T > &meanvec, TMat< T > &stddevvec) |
compute the mean and standard deviations of the colums of m (looping over s) (the result is stored in column vectors meanvec and stddevvec) | |
template<class T> void | normalize (TMat< T > &m) |
substract mean, and divide by stddev (these are estimated globally) | |
template<class T> void | normalizeRows (const TMat< T > &m) |
Divides each row by the sum of its elements. | |
template<class T> void | normalizeColumns (const TMat< T > &m) |
Divides each column by the sum of its elements. | |
template<class T> void | normalize (TMat< T > &m, double n) |
divide each row by its n norm | |
template<class T> void | operator+= (const TMat< T > &m, T scalar) |
template<class T> void | operator *= (const TMat< T > &m, T scalar) |
template<class T> void | operator-= (const TMat< T > &m, T scalar) |
template<class T> void | operator/= (const TMat< T > &m, T scalar) |
template<class T> void | operator/= (const TMat< T > &m, int scalar) |
template<class T> void | operator+= (const TMat< T > &m, const TVec< T > &v) |
adds v to every row | |
template<class T> void | operator-= (const TMat< T > &m, const TVec< T > &v) |
subtracts v from every row | |
template<class T> void | operator *= (const TMat< T > &m, const TVec< T > &v) |
does an elementwise multiplication of every row by v | |
template<class T> void | operator *= (const TMat< T > &m1, const TMat< T > &m2) |
does an elementwise division of every row by v | |
template<class T> void | operator/= (const TMat< T > &m, const TVec< T > &v) |
template<class T> void | operator/= (const TMat< T > &m1, const TMat< T > &m2) |
does an elementwise division | |
template<class T> void | operator+= (const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | operator-= (const TMat< T > &m1, const TMat< T > &m2) |
template<class T> TMat< T > | operator- (const TMat< T > &m1, const TMat< T > &m2) |
template<class T> TMat< T > | operator+ (const TMat< T > &m1, const TMat< T > &m2) |
template<class T> void | substract (const TMat< T > &m1, const TMat< T > &m2, TMat< T > &destination) |
template<class T> void | add (const TMat< T > &m1, const TMat< T > &m2, TMat< T > &destination) |
template<class T> TMat< T > | operator- (const TMat< T > &m) |
return a negated copy of m | |
template<class T> void | negateElements (const TMat< T > &m) |
x'_ij = -x_ij; | |
template<class T> void | invertElements (const TMat< T > &m) |
x'_ij = 1.0/x_ij; | |
template<class T> TMat< T > | leftPseudoInverse (TMat< T > &m) |
template<class T> void | leftPseudoInverse (const TMat< T > &m, TMat< T > &inv) |
template<class T> TMat< T > | rightPseudoInverse (TMat< T > &m) |
template<class T> void | rightPseudoInverse (const TMat< T > &m, TMat< T > &inv) |
template<class T> TMat< T > | inverse (TMat< T > &m) |
template<class T> void | inverse (const TMat< T > &m, TMat< T > &inv) |
template<class T> void | solveLinearSystemByCholesky (const TMat< T > &A, const TMat< T > &B, TMat< T > &X, TMat< T > *pL=0, TVec< T > *py=0) |
template<class T> void | solveTransposeLinearSystemByCholesky (const TMat< T > &A, const TMat< T > &B, TMat< T > &X, TMat< T > *pL=0, TVec< T > *py=0) |
template<class T> void | choleskyDecomposition (const TMat< T > &A, TMat< T > &L) |
template<class T> void | bpropCholeskyDecomposition (const TMat< T > &A, const TMat< T > &L, TMat< T > &dC_dA, TMat< T > &dC_dL) |
template<class T> void | choleskySolve (const TMat< T > &L, TVec< T > b, TVec< T > x, TVec< T > &y) |
template<class T> void | choleskySolve (const TMat< T > &L, const TMat< T > &B, TMat< T > &X, TVec< T > &y) |
template<class T> void | bpropCholeskySolve (const TMat< T > &L, const TVec< T > &x, const TVec< T > &y, TMat< T > &dC_dL, TVec< T > &dC_db, TVec< T > &dC_dx) |
template<class T> real | choleskyInvert (const TMat< T > &A, TMat< T > &Ainv) |
template<class T> TVec< T > | choleskySolve (const TMat< T > &A, const TVec< T > &b) |
template<class T> TMat< T > | choleskyInvert (const TMat< T > &A) |
template<class T> void | LU_decomposition (TMat< T > &A, TVec< T > &Trow, int &detsign, TVec< T > *p=0) |
template<class T> T | det (const TMat< T > &A) |
template<class T> T | det (const TMat< T > &LU, int detsign) |
template<class T> void | equals (const TMat< T > &src, T v, TMat< T > &dest) |
template<class T> void | transpose (const TMat< T > src, TMat< T > dest) |
template<class T> TMat< T > | transpose (const TMat< T > &src) |
template<class T> void | apply (T(*func)(const TVec< T > &), const TMat< T > &m, TMat< T > &dest) |
template<class T> void | apply (T(*func)(const TVec< T > &, const TVec< T > &), const TMat< T > &m1, const TMat< T > &m2, TMat< T > &dest) |
template<class T> void | linearRegressionNoBias (TMat< T > inputs, TMat< T > outputs, T weight_decay, TMat< T > weights) |
template<class T> void | linearRegression (TMat< T > inputs, TMat< T > outputs, T weight_decay, TMat< T > theta_t) |
template<class T> void | linearRegression (TVec< T > inputs, TVec< T > outputs, T weight_decay, TVec< T > theta_t) |
template<class T> TMat< T > | smooth (TMat< T > data, int windowsize) |
template<class T> TMat< T > | square (const TMat< T > &m) |
template<class T> TMat< T > | sqrt (const TMat< T > &m) |
template<class T> void | affineMatrixInitialize (TMat< T > W, bool output_on_columns=true, real scale=1.0) |
template<class T> TMat< T > | grep (TMat< T > data, int col, TVec< T > values, bool exclude=false) |
template<class T> void | convolve (TMat< T > m, TMat< T > mask, TMat< T > result) |
template<class T> void | subsample (TMat< T > m, int thesubsamplefactor, TMat< T > result) |
template<class T> void | classification_confusion_matrix (TMat< T > outputs, TMat< T > target_classes, TMat< T > confusion_matrix) |
template<class T> int | GramSchmidtOrthogonalization (TMat< T > A, T tolerance=1e-6) |
Orthonormalize in-place the rows of the given matrix, using successive projections on the orthogonal subspace of the previously found basis. | |
template<class T> TVec< T > | product (const TMat< T > &m, const TVec< T > &v) |
products return m x v | |
template<class T> TVec< T > | transposeProduct (const TMat< T > &m, const TVec< T > &v) |
return m' x v | |
template<class T> TMat< T > | product (const TMat< T > &m1, const TMat< T > &m2) |
return m1 x m2 | |
template<class T> TMat< T > | transposeProduct (const TMat< T > &m1, const TMat< T > &m2) |
return m1' x m2 | |
template<class T> TMat< T > | productTranspose (const TMat< T > &m1, const TMat< T > &m2) |
return m1 x m2' | |
template<class T> TMat< T > | operator+ (const TMat< T > &m, const TVec< T > &v) |
return m + v (added to every ROW of m) | |
template<class T> TMat< T > | operator- (const TMat< T > &m, const TVec< T > &v) |
return m - v (subtracted from every ROW of m) | |
template<class T> TMat< T > | operator * (const TMat< T > &m, const TVec< T > &v) |
does an elementwise multiplication of every row by v | |
template<class T> TMat< T > | operator/ (const TMat< T > &m, const TVec< T > &v) |
elementwise division of every row by v | |
template<class T> TMat< T > | operator/ (const TMat< T > &m1, const TMat< T > &m2) |
elementwise division of every row by v | |
template<class T> void | choleskySolve (const TMat< T > &L, TVec< T > b, TVec< T > x) |
template<class T> TMat< T > | grep (TMat< T > data, int col, T value, bool exclude=false) |
Same as above, but with a single value argument. | |
template<class T> void | addIfNonMissing (const TVec< T > &source, const TVec< int > &nnonmissing, TVec< T > destination) |
template<class T> void | addXandX2IfNonMissing (const TVec< T > &source, const TVec< int > &nnonmissing, TVec< T > somme, TVec< T > somme2) |
real | dot_product (real s, real *x, real *y, int n) |
void | bprop_update_layer (real *dy, real *x, real *dx, real *w, int n_y, int n_x, real learning_rate, real weight_decay) |
template<class T> void | sortRows (TMat< T > &mat, const TVec< int > &key_columns, bool increasing_order=true) |
template<class T> void | sortElements (const TVec< T > &vec) |
Sorts the elements of vec in place. | |
template<class T> void | partialSortRows (const TMat< T > &mat, int k, int sortk=1, int col=0) |
Uses partial_sort. | |
template<class T> void | sortRows (const TMat< T > &mat, int col=0, bool increasing_order=true) |
This implementation should be very efficient, but it does two memory allocation: a first one of mat.length()*(sizeof(real)+sizeof(int)) and a second one of mat.length()*sizeof(int). | |
template<class T> void | sortColumns (const TMat< T > &mat, int rownum) |
template<class T> int | binary_search (const TVec< T > &src, T x) |
template<class T> int | binary_search (const TMat< T > &src, int c, T x) |
template<class T> TMatColRowsIterator< T > | operator+ (typename TMatColRowsIterator< T >::difference_type n, const TMatColRowsIterator< T > &y) |
template<class T> TMatRowsAsArraysIterator< T > | operator+ (typename TMatRowsAsArraysIterator< T >::difference_type n, const TMatRowsAsArraysIterator< T > &y) |
template<class T> TMatRowsIterator< T > | operator+ (typename TMatRowsIterator< T >::difference_type n, const TMatRowsIterator< T > &y) |
void | operator<< (const Vec &v, real f) |
Same as fill(f) (will only work with Vec, because of a potential conflict with T == string if we wanted to make it generic). | |
template<class T> TVec< T > | deepCopy (const TVec< T > &source) |
template<class T> TVec< T > | deepCopy (const TVec< T > &source, CopiesMap &copies) |
template<class T> void | deepCopyField (TVec< T > &field, CopiesMap &copies) |
template<class T> void | swap (TVec< T > &a, TVec< T > &b) |
template<class T> void | operator<< (const TVec< T > &m1, const TVec< T > &m2) |
copy TVec << TVec | |
template<class T, class U> void | operator<< (const TVec< T > &m1, const TVec< U > &m2) |
copy TVec << TVec (different types) | |
template<class T, class U> void | operator>> (const TVec< T > &m1, const TVec< U > &m2) |
copy TVec >> TVec | |
template<class T> void | savePVec (const string &filename, const TVec< T > &vec) |
template<class T> PStream & | operator<< (PStream &out, const TVec< T > &v) |
Read and Write from C++ stream: write saves length and read resizes accordingly (the raw modes don't write any size information). | |
template<class T> PStream & | operator>> (PStream &in, TVec< T > &v) |
template<class T> void | binwrite (ostream &out, const TVec< T > &v) |
template<class T> void | binread (istream &in, TVec< T > &v) |
template<class T> void | binwrite_double (ostream &out, const TVec< T > &v) |
template<class T> void | binread_double (istream &in, TVec< T > &v) |
template<class T> ostream & | operator<< (ostream &out, const TVec< T > &v) |
template<class T> istream & | operator>> (istream &in, const TVec< T > &v) |
template<class T> bool | operator<= (const TVec< T > &left, const TVec< T > &right) |
A simple family of relational operators for TVec. | |
template<class T> bool | operator>= (const TVec< T > &left, const TVec< T > &right) |
template<class T> bool | operator< (const TVec< T > &left, const TVec< T > &right) |
template<class T> bool | operator> (const TVec< T > &left, const TVec< T > &right) |
PLEARN_IMPLEMENT_OBJECT (VecStatsCollector,"Collects basic statistics on a vector","VecStatsCollector allows to collect statistics on a series of vectors.\n""Individual vectors x are presented by calling update(x), and this class will\n""collect both individual statistics for each element (as a Vec<StatsCollector>)\n""as well as (optionally) compute the covariance matrix.") | |
DECLARE_OBJECT_PTR (VecStatsCollector) | |
PLEARN_IMPLEMENT_OBJECT (NearestNeighborPredictionCost,"ONE LINE DESCRIPTION","MULTI LINE\nHELP") | |
DECLARE_OBJECT_PTR (NearestNeighborPredictionCost) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (ObjectGenerator,"ObjectGenerator is the base class for implementing object-generation techniques.","The OptionGenerator takes a template Object, and from a list of options,\n""it will generate another Object (or a complete list).\n") | |
DECLARE_OBJECT_PTR (ObjectGenerator) | |
PLEARN_IMPLEMENT_OBJECT (RunObject,"Allows to build a non-runnable object in a PLearn script.","This Object implements a run() method so that it can be used in\n""a PLearn script, in order to build another Object given by the\n""'underlying_object' option without PLearn returning an error.\n") | |
DECLARE_OBJECT_PTR (RunObject) | |
PLEARN_IMPLEMENT_OBJECT (ShellScript,"Allows one to run shell commands (especially within a script).","This runnable object will execute the given shell commands when run.") | |
DECLARE_OBJECT_PTR (ShellScript) | |
int | print_diff (ostream &out, VMat m1, VMat m2, double tolerance) |
Prints where m1 and m2 differ by more than tolerance returns the number of such differences, or -1 if the sizes differ. | |
void | interactiveDisplayCDF (const Array< VMat > &vmats) |
void | displayBasicStats (VMat vm) |
void | printDistanceStatistics (VMat vm, int inputsize) |
bool | getList (char *str, int curj, const VMat &vm, Vec &outList, char *strReason) |
void | viewVMat (const VMat &vm) |
void | plotVMats (char *defs[], int ndefs) |
int | vmatmain (int argc, char **argv) |
PLEARN_IMPLEMENT_OBJECT (AdaptGradientOptimizer,"An optimizer that performs gradient descent with learning rate adaptation.","") | |
PLEARN_IMPLEMENT_OBJECT (ConjGradientOptimizer,"Optimizer based on the conjugate gradient method.","The conjugate gradient algorithm is basically the following :\n""- 0: initialize the search direction d = -gradient\n""- 1: perform a line search along direction d for the minimum of the gradient\n""- 2: move to this minimum, update the search direction d and go to step 1\n""There are various methods available through the options for both steps 1 and 2.") | |
PLEARN_IMPLEMENT_OBJECT (GradientOptimizer,"Optimization by gradient descent.","GradientOptimizer is the simple usual gradient descent algorithm \n"" (the number of samples on which to estimate gradients before an \n"" update, which determines whether we are performing 'batch' \n"" 'stochastic' or even 'minibatch', is currently specified outside \n"" this class, typically in the numer of s/amples of the meanOf function \n"" to be optimized, as its 'nsamples' parameter). \n""Options for GradientOptimizer are [ option_name: <type> (default) ]: \n"" - start_learning_rate: <real> (0.01) \n"" the initial learning rate \n"" - decrease_constant: <real> (0) \n"" the learning rate decrease constant \n""\n""GradientOptimizer derives form Optimizer. \n") | |
DECLARE_OBJECT_PTR (GradientOptimizer) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (HyperOptimizer,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (HSetVal,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (HTryAll,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (HCoordinateDescent,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (HTryCombinations,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (HyperOptimizer) | |
DECLARE_OBJECT_PTR (HSetVal) | |
DECLARE_OBJECT_PTR (HTryAll) | |
DECLARE_OBJECT_PTR (HCoordinateDescent) | |
DECLARE_OBJECT_PTR (HTryCombinations) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (Optimizer,"ONE LINE DESCR","NO HELP") | |
void | varDeepCopyField (Var &field, CopiesMap &copies) |
To use varDeepCopyField. | |
DECLARE_OBJECT_PTR (Optimizer) | |
RandomVar | operator * (RandomVar a, RandomVar b) |
********************** GLOBAL FUNCTIONS ********************** //!< | |
RandomVar | operator+ (RandomVar a, RandomVar b) |
RandomVar | operator- (RandomVar a, RandomVar b) |
Return a MatRandomVar that is the element-by-element difference of two RandomVar's. | |
RandomVar | operator/ (RandomVar a, RandomVar b) |
Return a MatRandomVar that is the element-by-element ratio of two RandomVar's. | |
RandomVar | exp (RandomVar x) |
exponential function applied element-by-element | |
RandomVar | log (RandomVar x) |
natural logarithm function applied element-by-element | |
RandomVar | extend (RandomVar v, real extension_value, int n_extend) |
RandomVar | hconcat (const RVArray &a) |
real | EM (ConditionalExpression conditional_expression, RVArray parameters_to_learn, VMat distr, int n_samples, int max_n_iterations, real relative_improvement_threshold, bool accept_worsening_likelihood, bool compute_final_train_NLL) |
real | EM (ConditionalExpression conditional_expression, RVArray parameters_to_learn, VMat distr, int n_samples, int max_n_iterations, real relative_improvement_threshold, bool compute_final_train_NLL) |
Var | P (ConditionalExpression conditional_expression, bool clearMarksUponReturn) |
Var | logP (ConditionalExpression conditional_expression, bool clearMarksUponReturn, RVInstanceArray *parameters_to_learn) |
Var | ElogP (ConditionalExpression conditional_expression, RVInstanceArray ¶meters_to_learn, bool clearMarksUponReturn) |
RandomVar | marginalize (const RandomVar &RV, const RandomVar &hiddenRV) |
Vec | sample (ConditionalExpression conditional_expression) |
void | sample (ConditionalExpression conditional_expression, Mat &samples) |
Var | Sample (ConditionalExpression conditional_expression) |
RandomVar | normal (real mean, real standard_dev, int d, real minimum_standard_deviation) |
Functions to build a normal distribution. | |
RandomVar | normal (RandomVar mean, RandomVar log_variance, real minimum_standard_deviation) |
RandomVar | mixture (RVArray components, RandomVar log_weights) |
RandomVar | multinomial (RandomVar log_probabilities) |
real | oEM (ConditionalExpression conditional_expression, RVArray parameters_to_learn, VMat distr, int n_samples, int max_n_iterations, real relative_improvement_threshold=0.001, bool compute_final_train_NLL=true) |
real | oEM (ConditionalExpression conditional_expression, RVArray parameters_to_learn, VMat distr, int n_samples, Optimizer &MStepOptimizer, int max_n_iterations, real relative_improvement_threshold=0.001, bool compute_final_train_NLL=true) |
int | establish_connection (int n_hosts, const char *hostnames[], int port_no) |
int | establish_connection (const char *hostname, int port_no) |
int | establish_connection (const int argc, const char *argv[]) |
void * | MemoryMap (const char *filename, tFileHandle &handle, bool read_only, off_t &filesize) |
returns a pointer to the memory-mapped file or 0 if it fails for some reason. | |
void | memoryUnmap (void *data, tFileHandle handle, int length) |
vector< string > | execute (const string &command) |
int | getSystemTotalMemory () |
PLEARN_IMPLEMENT_OBJECT (AbsVariable,"ONE LINE DESCR","NO HELP") | |
AbsVariable *. | |
DECLARE_OBJECT_PTR (AbsVariable) | |
Var | abs (Var v) |
PLEARN_IMPLEMENT_OBJECT (AffineTransformVariable,"Affine transformation of a vector variable.","NO HELP") | |
DECLARE_OBJECT_PTR (AffineTransformVariable) | |
Var | affine_transform (Var vec, Var transformation) |
first row of transformation is the bias. | |
PLEARN_IMPLEMENT_OBJECT (AffineTransformWeightPenalty,"Affine transformation with Weight decay terms","NO HELP") | |
DECLARE_OBJECT_PTR (AffineTransformWeightPenalty) | |
Var | affine_transform_weight_penalty (Var transformation, real weight_decay, real bias_decay=0, bool L1_penalty=false) |
weight decay and bias decay terms This has not been tested yet [Pascal: a tester]. | |
PLEARN_IMPLEMENT_OBJECT (ArgmaxVariable,"Compute the index of the maximum value in the input","NO HELP") | |
ArgmaxVariable *. | |
DECLARE_OBJECT_PTR (ArgmaxVariable) | |
Var | argmax (Var v) |
PLEARN_IMPLEMENT_OBJECT (ArgminOfVariable,"ONE LINE DESCR","NO HELP") | |
Var | argminOf (Var v, Var expression, Var values_of_v, VarArray inputs) |
PLEARN_IMPLEMENT_OBJECT (ArgminVariable,"Compute the index of the minimum value in the input","NO HELP") | |
ArgminVariable *. | |
DECLARE_OBJECT_PTR (ArgminVariable) | |
Var | argmin (Var v) |
PLEARN_IMPLEMENT_OBJECT (BinaryClassificationLossVariable,"For one-dimensional output: class is 0 if output < 0.5, and 1 if >= 0.5.","NO HELP") | |
BinaryClassificationLossVariable *. | |
DECLARE_OBJECT_PTR (BinaryClassificationLossVariable) | |
Var | binary_classification_loss (Var network_output, Var classnum) |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (BinaryVariable,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (ClassificationLossVariable,"Indicator(classnum==argmax(netout))","NO HELP") | |
ClassificationLossVariable *. | |
DECLARE_OBJECT_PTR (ClassificationLossVariable) | |
Var | classification_loss (Var network_output, Var classnum) |
PLEARN_IMPLEMENT_OBJECT (ColumnIndexVariable,"Return a row vector with the elements indexed in each column","NO HELP") | |
ColumnIndexVariable *. | |
DECLARE_OBJECT_PTR (ColumnIndexVariable) | |
Var | matrixIndex (Var mat, Var index) |
PLEARN_IMPLEMENT_OBJECT (ColumnSumVariable,"ONE LINE DESCR","NO HELP") | |
Var | columnSum (Var v) |
PLEARN_IMPLEMENT_OBJECT (ConcatColumnsVariable,"Concatenation of the columns of several variables","NO HELP") | |
ConcatColumnsVariable *. | |
DECLARE_OBJECT_PTR (ConcatColumnsVariable) | |
Var | hconcat (const VarArray &varray) |
PLEARN_IMPLEMENT_OBJECT (ConcatOfVariable,"Concatenates the results of each operation in the loop into the resulting variable","NO HELP") | |
ConcatOfVariable *. | |
DECLARE_OBJECT_PTR (ConcatOfVariable) | |
Var | concatOf (VMat distr, Func f) |
concatOf | |
Var | concatOf (Var output, const VarArray &inputs, VMat distr, int nsamples, VarArray parameters=VarArray()) |
deprecated old version, do not use! | |
PLEARN_IMPLEMENT_OBJECT (ConcatRowsVariable,"Concatenation of the rows of several variables","NO HELP") | |
ConcatRowsVariable *. | |
DECLARE_OBJECT_PTR (ConcatRowsVariable) | |
Var | vconcat (const VarArray &varray) |
PLEARN_IMPLEMENT_OBJECT (ConvolveVariable,"A convolve var; equals convolve(input, mask)","NO HELP") | |
ConvolveVariable *. | |
DECLARE_OBJECT_PTR (ConvolveVariable) | |
Var | convolve (Var input, Var mask) |
PLEARN_IMPLEMENT_OBJECT (CrossEntropyVariable,"cost = - sum_i {target_i * log(output_i) + (1-target_i) * log(1-output_i)}","NO HELP") | |
CrossEntropyVariable *. | |
DECLARE_OBJECT_PTR (CrossEntropyVariable) | |
Var | cross_entropy (Var network_output, Var targets) |
PLEARN_IMPLEMENT_OBJECT (CutAboveThresholdVariable,"ONE LINE DESCR","NO HELP") | |
CutAboveThresholdVariable *. | |
DECLARE_OBJECT_PTR (CutAboveThresholdVariable) | |
Var | cutAboveThreshold (Var v, real threshold) |
Var | negative (Var v) |
PLEARN_IMPLEMENT_OBJECT (CutBelowThresholdVariable,"ONE LINE DESCR","NO HELP") | |
CutBelowThresholdVariable *. | |
DECLARE_OBJECT_PTR (CutBelowThresholdVariable) | |
Var | cutBelowThreshold (Var v, real threshold) |
Var | positive (Var v) |
PLEARN_IMPLEMENT_OBJECT (DeterminantVariable,"The argument must be a square matrix Var and the result is its determinant","NO HELP") | |
DeterminantVariable *. | |
DECLARE_OBJECT_PTR (DeterminantVariable) | |
Var | det (Var m) |
PLEARN_IMPLEMENT_OBJECT (DiagonalizedFactorsProductVariable,"Variable that represents the leftmatrix*diag(vector)*rightmatrix product","The three parents are respectively the left matrix U, the center vector d,\n""and the right matrix V. Options allow to transpose the matrices.\n""The output value has elements (i,j) equal to sum_k U_{ik} d_k V_{kj}\n") | |
DiagonalizedFactorsProductVariable *. | |
DECLARE_OBJECT_PTR (DiagonalizedFactorsProductVariable) | |
Var | diagonalized_factors_product (Var left_matrix, Var center_diagonal, Var right_matrix) |
PLEARN_IMPLEMENT_OBJECT (DilogarithmVariable,"This Var computes the dilogarithm function","The dilogarithm function is useful to compute the primitive of the softplus.\n"" dilogarithm(x) = sum_{k=1}^\\infty x^k/k^2\n""so dilogarithm'(x) = -(1/x)log(1-x), i.e. e^x dilogarithm'(-e^x)=log(1+e^x)=softplus(x)\n""and primitive(softplus)(x) = -dilogarithm(-e^x)\n") | |
DilogarithmVariable *. | |
DECLARE_OBJECT_PTR (DilogarithmVariable) | |
Var | dilogarithm (Var v) |
Var | softplus_primitive (Var v) |
PLEARN_IMPLEMENT_OBJECT (DivVariable,"Divide 2 matrix vars of same size elementwise","NO HELP") | |
DivVariable *. | |
DECLARE_OBJECT_PTR (DivVariable) | |
PLEARN_IMPLEMENT_OBJECT (DotProductVariable,"Dot product between 2 matrices (or vectors) with same number of elements","NO HELP") | |
DotProductVariable *. | |
DECLARE_OBJECT_PTR (DotProductVariable) | |
Var | dot (Var v1, Var v2) |
dot product | |
PLEARN_IMPLEMENT_OBJECT (DuplicateColumnVariable,"ONE LINE DESCR","NO HELP") | |
DuplicateColumnVariable *. | |
DECLARE_OBJECT_PTR (DuplicateColumnVariable) | |
Var | duplicateColumn (Var v, int the_width) |
PLEARN_IMPLEMENT_OBJECT (DuplicateRowVariable,"ONE LINE DESCR","NO HELP") | |
DuplicateRowVariable *. | |
DECLARE_OBJECT_PTR (DuplicateRowVariable) | |
Var | duplicateRow (Var v, int the_length) |
PLEARN_IMPLEMENT_OBJECT (DuplicateScalarVariable,"ONE LINE DESCR","NO HELP") | |
DuplicateScalarVariable *. | |
DECLARE_OBJECT_PTR (DuplicateScalarVariable) | |
Var | duplicateScalar (Var v, int the_length, int the_width) |
PLEARN_IMPLEMENT_OBJECT (ElementAtPositionVariable,"A variable of size length() x width(), filled with zeros except for the ""single element indexed by input2 =(i,j) or input2 = (k).","NO HELP") | |
ElementAtPositionVariable *. | |
DECLARE_OBJECT_PTR (ElementAtPositionVariable) | |
PLEARN_IMPLEMENT_OBJECT (EqualConstantVariable,"A scalar var; equal 1 if input1==input2, 0 otherwise","NO HELP") | |
EqualConstantVariable *. | |
DECLARE_OBJECT_PTR (EqualConstantVariable) | |
Var | operator== (Var v1, real cte) |
result[i] = 1 if v1[i]==cte, 0 otherwise | |
Var | operator== (real cte, Var v1) |
result[i] = 1 if v1[i]==cte, 0 otherwise | |
PLEARN_IMPLEMENT_OBJECT (EqualScalarVariable,"A scalar var; equal 1 if input1==input2, 0 otherwise","NO HELP") | |
EqualScalarVariable *. | |
DECLARE_OBJECT_PTR (EqualScalarVariable) | |
PLEARN_IMPLEMENT_OBJECT (EqualVariable,"A scalar var; equal 1 if input1==input2, 0 otherwise","NO HELP") | |
EqualVariable *. | |
Var | isequal (Var v1, Var v2) |
DECLARE_OBJECT_PTR (EqualVariable) | |
PLEARN_IMPLEMENT_OBJECT (ErfVariable,"ONE LINE DESCR","NO HELP") | |
ErfVariable *. | |
DECLARE_OBJECT_PTR (ErfVariable) | |
Var | erf (Var v) |
PLEARN_IMPLEMENT_OBJECT (ExpVariable,"ONE LINE DESCR","NO HELP") | |
ExpVariable *. | |
DECLARE_OBJECT_PTR (ExpVariable) | |
Var | exp (Var v) |
PLEARN_IMPLEMENT_OBJECT (ExtendedVariable,"Variable that extends the input variable by appending rows at ""its top and bottom and columns at its left and right.","NO HELP") | |
ExtendedVariable *. | |
DECLARE_OBJECT_PTR (ExtendedVariable) | |
Var | extend (Var v, int top_extent, int bottom_extent, int left_extent, int right_extent, real fill_value=0.0) |
general extension of a matrix in any direction | |
Var | extend (Var v, real extension_value=1.0, int n_extend=1) |
simple extension of a vector (same semantic as old extend, when we only had vectors) | |
Func | operator/ (Func f, real value) |
PLEARN_IMPLEMENT_OBJECT (Function,"Implements a function defined as a var graph","NO HELP") | |
template<> void | deepCopyField (Func &field, CopiesMap &copies) |
DECLARE_OBJECT_PTR (Function) | |
DECLARE_OBJECT_PP (Func, Function) | |
PLEARN_IMPLEMENT_OBJECT (HardSlopeVariable,"This Var computes the hard_slope function","The hard_slope function is linear by parts function:\n""0 in [-infty,left], linear in [left,right], and 1 in [right,infty], and continuous.\n""If the arguments are vectors than the operation is performed element by element on all of them.\n") | |
HardSlopeVariable *. | |
DECLARE_OBJECT_PTR (HardSlopeVariable) | |
Var | hard_slope (Var x, Var left, Var right) |
Var | d_hard_slope (Var x, Var left, Var right) |
PLEARN_IMPLEMENT_OBJECT (IfThenElseVariable,"Variable that represents the element-wise IF-THEN-ELSE","NO HELP") | |
IfThenElseVariable *. | |
DECLARE_OBJECT_PTR (IfThenElseVariable) | |
Var | ifThenElse (Var If, Var Then, Var Else) |
IT WOULD BE NICE IF WE COULD REDEFINE (:?). | |
PLEARN_IMPLEMENT_OBJECT (IndexAtPositionVariable,"ONE LINE DESCR","NO HELP") | |
IndexAtPositionVariable *. | |
DECLARE_OBJECT_PTR (IndexAtPositionVariable) | |
PLEARN_IMPLEMENT_OBJECT (InterValuesVariable,"if values = [x1,x2,...,x10], the resulting variable is [(x1+x2)/2,(x2+x3)/2, ... (x9+x10)/2]","NO HELP") | |
InterValuesVariable *. | |
DECLARE_OBJECT_PTR (InterValuesVariable) | |
Var | interValues (Var values) |
if values = [x1,x2,...,x10], the resulting variable is [(x1+x2)/2,(x2+x3)/2, ... | |
PLEARN_IMPLEMENT_OBJECT (InvertElementsVariable,"ONE LINE DESCR","NO HELP") | |
InvertElementsVariable *. | |
DECLARE_OBJECT_PTR (InvertElementsVariable) | |
Var | invertElements (Var v) |
PLEARN_IMPLEMENT_OBJECT (IsAboveThresholdVariable,"ONE LINE DESCR","NO HELP") | |
IsAboveThresholdVariable *. | |
DECLARE_OBJECT_PTR (IsAboveThresholdVariable) | |
Var | isAboveThreshold (Var v, real threshold=0, real truevalue=1, real falsevalue=0, bool strict=false) |
Var | operator>= (Var v, real threshold) |
Var | operator<= (Var v, real threshold) |
PLEARN_IMPLEMENT_OBJECT (IsLargerVariable,"ONE LINE DESCR","NO HELP") | |
IsLargerVariable *. | |
DECLARE_OBJECT_PTR (IsLargerVariable) | |
Var | operator> (Var v1, Var v2) |
Var | operator<= (Var v1, Var v2) |
PLEARN_IMPLEMENT_OBJECT (IsMissingVariable,"ONE LINE DESCR","NO HELP") | |
IsMissingVariable *. | |
DECLARE_OBJECT_PTR (IsMissingVariable) | |
Var | isMissing (Var x) |
PLEARN_IMPLEMENT_OBJECT (IsSmallerVariable,"ONE LINE DESCR","NO HELP") | |
IsSmallerVariable *. | |
DECLARE_OBJECT_PTR (IsSmallerVariable) | |
Var | operator< (Var v1, Var v2) |
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
Var | operator>= (Var v1, Var v2) |
PLEARN_IMPLEMENT_OBJECT (LeftPseudoInverseVariable,"ONE LINE DESCR","NO HELP") | |
LeftPseudoInverseVariable *. | |
DECLARE_OBJECT_PTR (LeftPseudoInverseVariable) | |
Var | leftPseudoInverse (Var v) |
PLEARN_IMPLEMENT_OBJECT (LiftOutputVariable,"The result is the output if the target is 1, and the opposite of the output ""otherwise. This variable is to be used with a LiftStatsCollector, in a""stochastic gradient descent.","NO HELP") | |
LiftOutputVariable *. | |
DECLARE_OBJECT_PTR (LiftOutputVariable) | |
Var | lift_output (Var linear_output, Var target) |
PLEARN_IMPLEMENT_OBJECT (LogAddVariable,"output = log(exp(input1)+exp(input2)) but it is ""computed in such a way as to preserve precision","NO HELP") | |
LogAddVariable *. | |
DECLARE_OBJECT_PTR (LogAddVariable) | |
Var | logadd (Var &input1, Var &input2) |
PLEARN_IMPLEMENT_OBJECT (LogSoftmaxVariable,"ONE LINE DESCR","NO HELP") | |
LogSoftmaxVariable *. | |
DECLARE_OBJECT_PTR (LogSoftmaxVariable) | |
Var | log_softmax (Var v) |
PLEARN_IMPLEMENT_OBJECT (LogSumVariable,"ONE LINE DESCR","NO HELP") | |
Var | logadd (Var input) |
PLEARN_IMPLEMENT_OBJECT (LogVariable,"ONE LINE DESCR","NO HELP") | |
LogVariable *. | |
DECLARE_OBJECT_PTR (LogVariable) | |
Var | log (Var v) |
PLEARN_IMPLEMENT_OBJECT (MarginPerceptronCostVariable,"Compute sigmoid of its first input, and then computes the negative ""cross-entropy cost","NO HELP") | |
MarginPerceptronCostVariable *. | |
DECLARE_OBJECT_PTR (MarginPerceptronCostVariable) | |
Var | margin_perceptron_cost (Var output, Var target, real margin) |
PLEARN_IMPLEMENT_OBJECT (MatrixAffineTransformFeedbackVariable,"Affine transformation of a MATRIX variable.","NO HELP") | |
DECLARE_OBJECT_PTR (MatrixAffineTransformFeedbackVariable) | |
PLEARN_IMPLEMENT_OBJECT (MatrixAffineTransformVariable,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (MatrixAffineTransformVariable) | |
PLEARN_IMPLEMENT_OBJECT (MatrixElementsVariable,"Fills the elements of a matrix using the given scalar Variable ""expression, that depends on index variables i and j, that loop from ""0 to ni-1 and 0 to nj-1 respectively.","NO HELP") | |
MatrixElementsVariable *. | |
DECLARE_OBJECT_PTR (MatrixElementsVariable) | |
Var | matrixElements (Var expression, const Var &i, const Var &j, int ni, int nj, const VarArray ¶meters) |
PLEARN_IMPLEMENT_OBJECT (MatrixInverseVariable,"Matrix inversions... ","NO HELP") | |
MatrixInverseVariable *. | |
DECLARE_OBJECT_PTR (MatrixInverseVariable) | |
Var | matrixInverse (Var v) |
PLEARN_IMPLEMENT_OBJECT (MatrixOneHotSquaredLoss,"ONE LINE DESCR","NO HELP") | |
MatrixOneHotSquaredLoss *. | |
DECLARE_OBJECT_PTR (MatrixOneHotSquaredLoss) | |
PLEARN_IMPLEMENT_OBJECT (MatrixSoftmaxLossVariable,"ONE LINE DESCR","NO HELP") | |
MatrixSoftmaxLossVariable *. | |
DECLARE_OBJECT_PTR (MatrixSoftmaxLossVariable) | |
PLEARN_IMPLEMENT_OBJECT (MatrixSoftmaxVariable,"ONE LINE DESCR","NO HELP") | |
MatrixSoftmaxVariable *. | |
DECLARE_OBJECT_PTR (MatrixSoftmaxVariable) | |
PLEARN_IMPLEMENT_OBJECT (MatrixSumOfVariable,"ONE LINE DESCR","NO HELP") | |
MatrixSumOfVariable *. | |
DECLARE_OBJECT_PTR (MatrixSumOfVariable) | |
Var | sumOf (VMat distr, Func f, int nsamples, int input_size) |
Var | meanOf (VMat distr, Func f, int nsamples, int input_size) |
PLEARN_IMPLEMENT_OBJECT (MatRowVariable,"Variable that is the row of matrix mat indexed by variable input","NO HELP") | |
MatRowVariable *. | |
DECLARE_OBJECT_PTR (MatRowVariable) | |
Var | accessRow (const Mat &m, Var index) |
PLEARN_IMPLEMENT_OBJECT (Max2Variable,"Elementwise max over 2 elements: max(v1,v2)[i] = max(v1[i],v2[i]) ""with same dimensions as the input vectors","NO HELP") | |
Max2Variable *. | |
DECLARE_OBJECT_PTR (Max2Variable) | |
Var | max (Var v1, Var v2) |
PLEARN_IMPLEMENT_OBJECT (MaxVariable,"ONE LINE DESCR","NO HELP") | |
MaxVariable *. | |
DECLARE_OBJECT_PTR (MaxVariable) | |
Var | max (Var v) |
PLEARN_IMPLEMENT_OBJECT (MiniBatchClassificationLossVariable,"ONE LINE DESCR","NO HELP") | |
MiniBatchClassificationLossVariable *. | |
DECLARE_OBJECT_PTR (MiniBatchClassificationLossVariable) | |
PLEARN_IMPLEMENT_OBJECT (MinusColumnVariable,"ONE LINE DESCR","NO HELP") | |
MinusColumnVariable *. | |
DECLARE_OBJECT_PTR (MinusColumnVariable) | |
PLEARN_IMPLEMENT_OBJECT (MinusRowVariable,"ONE LINE DESCR","NO HELP") | |
MinusRowVariable *. | |
DECLARE_OBJECT_PTR (MinusRowVariable) | |
PLEARN_IMPLEMENT_OBJECT (MinusScalarVariable,"ONE LINE DESCR","NO HELP") | |
MinusScalarVariable *. | |
PLEARN_IMPLEMENT_OBJECT (MinusTransposedColumnVariable,"ONE LINE DESCR","NO HELP") | |
MinusTransposedColumnVariable *. | |
DECLARE_OBJECT_PTR (MinusTransposedColumnVariable) | |
PLEARN_IMPLEMENT_OBJECT (MinusVariable,"ONE LINE DESCR","NO HELP") | |
MinusVariable *. | |
DECLARE_OBJECT_PTR (MinusVariable) | |
Var | minus (Var v, Var w) |
PLEARN_IMPLEMENT_OBJECT (MinVariable,"ONE LINE DESCR","NO HELP") | |
MinVariable *. | |
DECLARE_OBJECT_PTR (MinVariable) | |
Var | min (Var v) |
PLEARN_IMPLEMENT_OBJECT (MulticlassLossVariable,"ONE LINE DESCR","NO HELP") | |
MulticlassLossVariable *. | |
DECLARE_OBJECT_PTR (MulticlassLossVariable) | |
Var | multiclass_loss (Var network_output, Var targets) |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (NaryVariable,"ONE LINE DESCR","NO HELP") | |
NaryVariable *. | |
PLEARN_IMPLEMENT_OBJECT (NegateElementsVariable,"Elementwise negation and inversion...","NO HELP") | |
NegateElementsVariable *. | |
DECLARE_OBJECT_PTR (NegateElementsVariable) | |
Var | negateElements (Var v) |
PLEARN_IMPLEMENT_OBJECT (NegCrossEntropySigmoidVariable,"Compute sigmoid of its first input, and then computes the negative ""cross-entropy cost","NO HELP") | |
NegCrossEntropySigmoidVariable *. | |
DECLARE_OBJECT_PTR (NegCrossEntropySigmoidVariable) | |
Var | stable_cross_entropy (Var linear_output, Var target) |
PLEARN_IMPLEMENT_OBJECT (NllSemisphericalGaussianVariable,"Computes the negative log-likelihood of a Gaussian on some data point, depending on the nearest neighbors."," This class implements the negative log-likelihood cost of a Markov chain that\n"" uses semispherical gaussian transition probabilities. The parameters of the\n"" semispherical gaussians are a tangent plane, two variances,\n"" one mean and the distance of the point with its nearest neighbors.\n"" The two variances correspond to the shared variance of every manifold directions\n"" and of every noise directions. \n"" This variable is used to do gradient descent on the parameters, but\n"" not to estimate de likelihood of the Markov chain a some point, which is\n"" more complex to estimate.\n") | |
NllSemisphericalGaussianVariable *. | |
DECLARE_OBJECT_PTR (NllSemisphericalGaussianVariable) | |
Var | nll_semispherical_gaussian (Var tangent_plane_var, Var mu_var, Var sm_var, Var sn_var, Var neighbors_dist_var, Var p_target_var, Var p_neighbors_var, Var noise, Var mu_noisy, bool use_noise=false, real epsilon=1e-6) |
PLEARN_IMPLEMENT_OBJECT (OneHotSquaredLoss,"Computes sum(square_i(netout[i]-(i==classnum ?hotval :coldval))","NO HELP") | |
OneHotSquaredLoss *. | |
DECLARE_OBJECT_PTR (OneHotSquaredLoss) | |
Var | onehot_squared_loss (Var network_output, Var classnum, real coldval=0., real hotval=1.) |
PLEARN_IMPLEMENT_OBJECT (OneHotVariable,"Represents a vector of a given lenth, that has value 1 at the index ""given by another variable and 0 everywhere else","NO HELP") | |
OneHotVariable *. | |
DECLARE_OBJECT_PTR (OneHotVariable) | |
Var | onehot (int the_length, Var hotindex, real coldvalue=0.0, real hotvalue=1.0) |
PLEARN_IMPLEMENT_OBJECT (PDistributionVariable,"Variable that represents a random variable according to some PDistribution object","") | |
PDistributionVariable *. | |
DECLARE_OBJECT_PTR (PDistributionVariable) | |
PLEARN_IMPLEMENT_OBJECT (PLogPVariable,"Returns the elementwise x*log(x) in a (hopefully!) numerically stable way","NO HELP") | |
PLogPVariable *. | |
DECLARE_OBJECT_PTR (PLogPVariable) | |
Var | plogp (Var v) |
PLEARN_IMPLEMENT_OBJECT (PlusColumnVariable,"Adds a single-column var to each column of a matrix var","NO HELP") | |
PlusColumnVariable *. | |
DECLARE_OBJECT_PTR (PlusColumnVariable) | |
PLEARN_IMPLEMENT_OBJECT (PlusConstantVariable,"Adds a scalar constant to a matrix var","NO HELP") | |
PlusConstantVariable *. | |
DECLARE_OBJECT_PTR (PlusConstantVariable) | |
PLEARN_IMPLEMENT_OBJECT (PlusRowVariable,"Adds a single-row var to each row of a matrix var","NO HELP") | |
PlusRowVariable *. | |
DECLARE_OBJECT_PTR (PlusRowVariable) | |
PLEARN_IMPLEMENT_OBJECT (PlusScalarVariable,"Adds a scalar var to a matrix var","NO HELP") | |
PlusScalarVariable *. | |
DECLARE_OBJECT_PTR (PlusScalarVariable) | |
PLEARN_IMPLEMENT_OBJECT (PlusVariable,"Adds 2 matrix vars of same size","NO HELP") | |
PlusVariable *. | |
DECLARE_OBJECT_PTR (PlusVariable) | |
PLEARN_IMPLEMENT_OBJECT (PowVariable,"Elementwise pow (returns 0 wherever input is negative)","NO HELP") | |
PowVariable *. | |
DECLARE_OBJECT_PTR (PowVariable) | |
Var | pow (Var v, real power) |
Var | sqrt (Var v) |
PLEARN_IMPLEMENT_OBJECT (PowVariableVariable,"x^y where x and y are variables but y is scalar ""or it has the same size as x","NO HELP") | |
PowVariableVariable *. | |
Var | pow (Var v, Var power) |
PLEARN_IMPLEMENT_OBJECT (ProductTransposeVariable,"Matrix product between matrix1 and transpose of matrix2","NO HELP") | |
ProductTransposeVariable *. | |
DECLARE_OBJECT_PTR (ProductTransposeVariable) | |
Var | productTranspose (Var &m1, Var &m2) |
PLEARN_IMPLEMENT_OBJECT (ProductVariable,"Matrix product","NO HELP") | |
ProductVariable *. | |
DECLARE_OBJECT_PTR (ProductVariable) | |
Var | product (Var v1, Var v2) |
general matrix product | |
PLEARN_IMPLEMENT_OBJECT (ProjectionErrorVariable,"Computes the projection error of a set of vectors on a non-orthogonal basis.\n","The first input is a set of n_dim vectors (possibly seen as a single vector of their concatenation) f_i, each in R^n\n""The second input is a set of T vectors (possibly seen as a single vector of their concatenation) t_j, each in R^n\n""There are several options that control which kind of projection error is actually computed:\n""If !use_subspace_distance {the recommended setting}, the output is\n"" sum_j min_w || t_j - sum_i w_i f_i ||^2 / ||t_j||^2\n"" where the denominator can be eliminated (not recommended) by turning off the\n"" normalize_by_neighbor_distance option. In this expression, w is a local\n"" n_dim-vector that is optmized analytically.\n"" If the 'ordered_vectors' is set, the gradient is not computed truthfully\n"" but in such a way as to induce a natural ordering among the vectors f_i.\n"" For each f_i, the above criterion is applied using a projection that\n"" involves only the first i vectors f_1...f_i. In this way the first vector f_1\n"" tries to *explain* the vectors t_j as well as possible with a single dimension,\n"" and the vector f_2 learns to *explain* what f_2 did not already predict, etc...\n"" When this option is set, we also choose the w_i in the same greedy way, starting\n"" from w_1 chosen to minimize the projection error wrt f_1, w_2 chosen to minimize the\n"" residual projection error left on f_2, etc... Hence the cost minimized wrt f_k on neighbor j is\n"" ||t_j - sum_{i<=k} w_i f_i||^2 / ||t_j||^2\n"" (this cost is minimized to choose w_k, and to get a gradient on f_k as well).\n"" In that case no SVD is used, instead one obtains an analytic solution for w_k:\n"" w_k = (t_j . f_k - sum_{i<k} w_i f_i . f_k)/||f_k||^2.\n"" The output produced by fprop is sum_j || t_j - sum_i w_i f_i ||^2 / ||t_j||^2\n"" where the w_i are chosen as in the previous equation.\n""However, if use_subspace_distance (not recommended), the output is\n"" min_{w,u} || sum_i w_i f_i - sum_j u_j t_j ||^2 .\n""In both cases, if norm_penalization>0, an extra term is added:\n"" norm_penalization * sum_i (||f_i||^2 - 1)^2.\n""The 'epsilon' and 'regularization' options are used to regularize the SVD-based matrix\n""inversion involved in minimizing for w: only the singular values of F' that are\n""above 'epsilon' are inverted (and their singular vectors considered, and then they\n""are incremented by 'regularization' before inverting.\n") | |
ProjectionErrorVariable *. | |
DECLARE_OBJECT_PTR (ProjectionErrorVariable) | |
Var | projection_error (Var f, Var t, real norm_penalization=0, int n=-1, bool normalize_by_neighbor_distance=true, bool use_subspace_distance=false, real epsilon=0, real regularization=0, bool ordered_vectors=true) |
PLEARN_IMPLEMENT_OBJECT (ReshapeVariable,"Variable that views another variable, but with a different length() and width() ""(the only restriction being that length()*width() remain the same)","NO HELP") | |
ReshapeVariable *. | |
DECLARE_OBJECT_PTR (ReshapeVariable) | |
Var | reshape (Var v, int newlength, int newwidth) |
PLEARN_IMPLEMENT_OBJECT (RightPseudoInverseVariable,"ONE LINE DESCR","NO HELP") | |
RightPseudoInverseVariable *. | |
DECLARE_OBJECT_PTR (RightPseudoInverseVariable) | |
Var | rightPseudoInverse (Var v) |
PLEARN_IMPLEMENT_OBJECT (RowAtPositionVariable,"Variables positionned inside a larger zero variable ...","NO HELP") | |
RowAtPositionVariable *. | |
DECLARE_OBJECT_PTR (RowAtPositionVariable) | |
PLEARN_IMPLEMENT_OBJECT (RowSumVariable,"Result is a single column that contains the sum of each row of the input","NO HELP") | |
RowSumVariable *. | |
DECLARE_OBJECT_PTR (RowSumVariable) | |
Var | rowSum (Var v) |
PLEARN_IMPLEMENT_OBJECT (SemiSupervisedProbClassCostVariable,"ONE LINE DESCR","NO HELP") | |
SemiSupervisedProbClassVariable *. | |
DECLARE_OBJECT_PTR (SemiSupervisedProbClassCostVariable) | |
PLEARN_IMPLEMENT_OBJECT (SigmoidVariable,"ONE LINE DESCR","NO HELP") | |
SigmoidVariable *. | |
Var | softmax (Var x1, Var x2, Var hardness) |
DECLARE_OBJECT_PTR (SigmoidVariable) | |
Var | sigmoid (Var v) |
PLEARN_IMPLEMENT_OBJECT (SignVariable,"sign(x) = 1 if x>0, -1 if x<0, 0 if x=0, all done element by element.","NO HELP") | |
SignVariable *. | |
DECLARE_OBJECT_PTR (SignVariable) | |
Var | sign (Var input) |
PLEARN_IMPLEMENT_OBJECT (SoftmaxLossVariable,"ONE LINE DESCR","NO HELP") | |
SoftmaxLossVariable *. | |
DECLARE_OBJECT_PTR (SoftmaxLossVariable) | |
Var | softmax (Var input, Var index) |
PLEARN_IMPLEMENT_OBJECT (SoftmaxVariable,"ONE LINE DESCR","NO HELP") | |
SoftmaxVariable *. | |
DECLARE_OBJECT_PTR (SoftmaxVariable) | |
Var | softmax (Var v) |
PLEARN_IMPLEMENT_OBJECT (SoftplusVariable,"This is the primitive of a sigmoid: log(1+exp(x))","NO HELP") | |
SoftplusVariable *. | |
DECLARE_OBJECT_PTR (SoftplusVariable) | |
Var | softplus (Var v) |
PLEARN_IMPLEMENT_OBJECT (SoftSlopeIntegralVariable,"This Var computes the integral of the soft_slope function in an interval.","Compute the integral of soft_slope(x,s,l,r) over x from a to b\n") | |
SoftSlopeIntegralVariable *. | |
DECLARE_OBJECT_PTR (SoftSlopeIntegralVariable) | |
Var | soft_slope_integral (Var smoothness, Var left, Var right, real a=0, real b=1) |
PLEARN_IMPLEMENT_OBJECT (SoftSlopeVariable,"This Var computes the soft_slope function","The soft_slope function is a soft version of linear by parts function.\n""(as smoothness goes to infty). More precisely it converges to a function that is\n""0 in [-infty,left], linear in [left,right], and 1 in [right,infty], and continuous\n""It is always monotonically increasing wrt x (positive derivative in x).\n""If the arguments are vectors than the operation is performed element by element on all of them.\n") | |
SoftSlopeVariable *. | |
DECLARE_OBJECT_PTR (SoftSlopeVariable) | |
Var | soft_slope (Var x, Var smoothness, Var left, Var right) |
Var | d_soft_slope (Var x, Var smoothness, Var left, Var right) |
Var | soft_slope_limit (Var x, Var smoothness, Var left, Var right) |
PLEARN_IMPLEMENT_OBJECT (SourceVariable,"ONE LINE DESCR","NO HELP") | |
SourceVariable *. | |
DECLARE_OBJECT_PTR (SourceVariable) | |
PLEARN_IMPLEMENT_OBJECT (SquareRootVariable,"ONE LINE DESCR","NO HELP") | |
SquareRootVariable *. | |
DECLARE_OBJECT_PTR (SquareRootVariable) | |
Var | squareroot (Var v) |
PLEARN_IMPLEMENT_OBJECT (SquareVariable,"ONE LINE DESCR","NO HELP") | |
SquareVariable *. | |
DECLARE_OBJECT_PTR (SquareVariable) | |
Var | square (Var v) |
PLEARN_IMPLEMENT_OBJECT (SubMatTransposeVariable,"ONE LINE DESCR","NO HELP") | |
SubMatTransposeVariable *. | |
DECLARE_OBJECT_PTR (SubMatTransposeVariable) | |
Var | transpose (Var v) |
PLEARN_IMPLEMENT_OBJECT (SubMatVariable,"ONE LINE DESCR","NO HELP") | |
SubMatVariable *. | |
DECLARE_OBJECT_PTR (SubMatVariable) | |
Var | subMat (Var v, int i, int j, int l, int w) |
PLEARN_IMPLEMENT_OBJECT (SubsampleVariable,"A subsample var; equals subsample(input, the_subsamplefactor)","NO HELP") | |
SubsampleVariable *. | |
DECLARE_OBJECT_PTR (SubsampleVariable) | |
Var | subsample (Var input, int subsample_factor) |
PLEARN_IMPLEMENT_OBJECT (SumAbsVariable,"ONE LINE DESCR","NO HELP") | |
SumAbsVariable *. | |
DECLARE_OBJECT_PTR (SumAbsVariable) | |
Var | sumabs (Var v) |
PLEARN_IMPLEMENT_OBJECT (SumOfVariable,"Variable that sums the value of a Func evaluated on each row of a VMat","NO HELP") | |
SumOfVariable *. | |
DECLARE_OBJECT_PTR (SumOfVariable) | |
Var | sumOf (VMat distr, Func f, int nsamples) |
sumOf | |
Var | sumOf (Var output, const VarArray &inputs, VMat distr, int nsamples, VarArray parameters=VarArray()) |
deprecated old version do not use! | |
Var | meanOf (VMat distr, Func f, int nsamples) |
meanOf | |
Var | meanOf (Var output, const VarArray &inputs, VMat distr, int nsamples, VarArray parameters=VarArray()) |
deprecated old version do not use! | |
PLEARN_IMPLEMENT_OBJECT (SumOverBagsVariable,"Variable that sums the value of a Func each time evaluated on a subsequence of a VMat\n","returns\n"" Sum_{bags in vmat} f(inputs and targets in bag)\n""(it can average this sum over the number of bags if the 'average' option is set).\n""By convention a bag is a sequence of rows of the vmat in which the last column of the target\n""indicates whether the row is the first one (and/or) the last one, with its two least significant bits:\n"" last_column_of_target == 1 ==> first row\n"" last_column_of_target == 2 ==> last row\n"" last_column_of_target == 0 ==> intermediate row\n"" last_column_of_target == 1+2==3 ==> single-row bag (both first and last).\n""The option n_samples controls how many terms in the sum are considered at a time:\n"" n_samples <= 0: sum over the whole vmat (e.g. for batch gradient computation)\n"" n_samples = 1: sum over a single bag at a time (e.g. for stochastic gradient)\n"" where each fprop or fbprop advances to the next bag\n"" otherwise: sum over n_samples bags at a time (e.g. for min-batch training)\n""The last column of the target is not given in the call to f, but a bag_size input is provided instead.\n""The inputs to f are: (matrix of bag inputs, the bag size, the bag target, [the bag weight])\n""(the bag weight is included only if there are weights in the original VMat).") | |
SumOverBagsVariable *. | |
DECLARE_OBJECT_PTR (SumOverBagsVariable) | |
Var | sumOverBags (VMat vmat, Func f, int max_bag_size, int nsamples, bool average=false, bool transpose=false) |
sumOf | |
PLEARN_IMPLEMENT_OBJECT (SumSquareVariable,"ONE LINE DESCR","NO HELP") | |
SumSquareVariable *. | |
DECLARE_OBJECT_PTR (SumSquareVariable) | |
Var | sumsquare (Var v) |
PLEARN_IMPLEMENT_OBJECT (SumVariable,"ONE LINE DESCR","NO HELP") | |
SumVariable *. | |
DECLARE_OBJECT_PTR (SumVariable) | |
Var | sum (Var v) |
PLEARN_IMPLEMENT_OBJECT (TanhVariable,"ONE LINE DESCR","NO HELP") | |
TanhVariable *. | |
DECLARE_OBJECT_PTR (TanhVariable) | |
Var | tanh (Var v) |
PLEARN_IMPLEMENT_OBJECT (TimesColumnVariable,"Multiplies each column of a matrix var elementwise with a single column variable","NO HELP") | |
TimesColumnVariable *. | |
DECLARE_OBJECT_PTR (TimesColumnVariable) | |
PLEARN_IMPLEMENT_OBJECT (TimesConstantVariable,"Multiplies a matrix var by a scalar constant","NO HELP") | |
TimesConstantVariable *. | |
DECLARE_OBJECT_PTR (TimesConstantVariable) | |
PLEARN_IMPLEMENT_OBJECT (TimesRowVariable,"Multiplies each row of a matrix var elementwise with a single row variable","NO HELP") | |
TimesRowVariable *. | |
DECLARE_OBJECT_PTR (TimesRowVariable) | |
PLEARN_IMPLEMENT_OBJECT (TimesScalarVariable,"Multiplies a matrix var by a scalar var","NO HELP") | |
TimesScalarVariable *. | |
DECLARE_OBJECT_PTR (TimesScalarVariable) | |
Var | timesScalar (Var v, Var scalar) |
PLEARN_IMPLEMENT_OBJECT (TimesVariable,"Multiplies 2 matrix vars of same size elementwise","NO HELP") | |
TimesVariable *. | |
DECLARE_OBJECT_PTR (TimesVariable) | |
Var | times (Var v, Var w) |
PLEARN_IMPLEMENT_OBJECT (TransposeProductVariable,"Matrix product between transpose of matrix1 and matrix2","NO HELP") | |
TransposeProductVariable *. | |
DECLARE_OBJECT_PTR (TransposeProductVariable) | |
Var | transposeProduct (Var &m1, Var &m2) |
PLEARN_IMPLEMENT_OBJECT (UnaryHardSlopeVariable,"Hard slope function whose Var input is only the argument of the function.","Maps x (elementwise) to 0 if x<left, 1 if x>right, and linear in between otherwise.") | |
UnaryHardSlopeVariable *. | |
DECLARE_OBJECT_PTR (UnaryHardSlopeVariable) | |
Var | unary_hard_slope (Var v, real l=-1, real r=1) |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (UnaryVariable,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (UnequalConstantVariable,"A scalar var; equal 1 if input1!=c, 0 otherwise","NO HELP") | |
UnequalConstantVariable *. | |
DECLARE_OBJECT_PTR (UnequalConstantVariable) | |
Var | operator!= (Var v1, real cte) |
result[i] = 1 if v1[i]!=cte, 0 otherwise | |
Var | operator!= (real cte, Var v1) |
result[i] = 1 if v1[i]!=cte, 0 otherwise | |
PLEARN_IMPLEMENT_OBJECT (UnfoldedFuncVariable,"Variable that puts in the rows of its output matrix the value\n""of a Func evaluated on each row of an input matrix.\n","The input_matrix and output matrix have n_unfold rows. A separate propagation path\n""is created that maps (using the Func as a template) each input row to each output row.\n""The parents of this variable include the non-input parents of the Func.\n") | |
UnfoldedFuncVariable *. | |
DECLARE_OBJECT_PTR (UnfoldedFuncVariable) | |
Var | unfoldedFunc (Var input_matrix, Func f, bool transpose=false) |
PLEARN_IMPLEMENT_OBJECT (UnfoldedSumOfVariable,"Variable that sums the value of a Func evaluated on each row of a matrix.\n","However, unlike the SumOfVariable, it does so by unfolding the Func (up to given maximum number\n""of times 'max_bag_size'), and it allows that number to be variable. Each of the unfolded Func\n""is applied on a different row of the input matrix. The number of rows to sum is specified on the\n""fly by another input, the bag_size.\n") | |
UnfoldedSumOfVariable *. | |
DECLARE_OBJECT_PTR (UnfoldedSumOfVariable) | |
Var | unfoldedSumOf (Var input_matrix, Var bag_size, Func f, int max_bag_size) |
ostream & | operator<< (ostream &out, const Var &v) |
Var | var (real init_value) |
template<> void | deepCopyField (Var &field, CopiesMap &copies) |
Specialized in order to display a warning message. | |
Var | operator+ (Var v, real cte) |
Var | operator+ (real cte, Var v) |
Var | operator- (Var v, real cte) |
Var | operator+ (Var v1, Var v2) |
void | operator+= (Var &v1, const Var &v2) |
Var | operator- (Var v1, Var v2) |
Var | operator- (Var v) |
void | operator-= (Var &v1, const Var &v2) |
Var | operator- (real cte, Var v) |
Var | operator * (Var v, real cte) |
Var | operator * (real cte, Var v) |
Var | operator * (Var v1, Var v2) |
element-wise multiplications | |
Var | operator/ (Var v, real cte) |
Var | operator/ (real cte, Var v) |
Var | operator/ (Var v1, Var v2) |
Var | operator== (Var v1, Var v2) |
Var | operator!= (Var v1, Var v2) |
Var | isdifferent (Var v1, Var v2) |
Var | mean (Var v) |
Var | neg_log_pi (Var p, Var index) |
Var | softmax (Var input, int index) |
Var | pownorm (Var input, real n) |
Var | norm (Var input, real n) |
Var | entropy (Var v, bool normalize) |
Var | distance (Var input1, Var input2, real n) |
Var | powdistance (Var input1, Var input2, real n) |
VarArray | propagationPath (const VarArray &inputs, const VarArray &outputs) |
The function that computes a propagation path *. | |
VarArray | propagationPath (const VarArray &outputs) |
returns the propagationpath going from all sources that influence the outputs to the outputs. | |
VarArray | propagationPathToParentsOfPath (const VarArray &inputs, const VarArray &outputs) |
from all sources to all direct non-inputs parents of the path inputs-->outputs | |
VarArray | nonInputParentsOfPath (VarArray inputs, VarArray outputs) |
Isn't this useless? as we have a constructor of VarArray from Var that should be called automatically !!!???? (Pascal). | |
VarArray | allSources (const VarArray &v) |
returns all sources that influence the given vars | |
VarArray | operator- (const VarArray &a, const VarArray &b) |
returns all variables of a that are not in b | |
VarArray | nonInputSources (const VarArray &inputs, const VarArray &outputs) |
returns all sources that influence outputs except those that influence it only through inputs | |
void | operator<< (VarArray &ar, const Array< Vec > &values) |
void | operator>> (VarArray &ar, const Array< Vec > &values) |
void | printInfo (VarArray &a) |
void | printInfo (VarArray inputs, const Var &output, bool show_gradients) |
template<> void | deepCopyField (VarArray &field, CopiesMap &copies) |
void | operator<< (VarArray &ar, const Vec &datavec) |
void | operator>> (VarArray &ar, const Vec &datavec) |
VarArray | operator & (Var v1, Var v2) |
DECLARE_TYPE_TRAITS (VarArray) | |
PStream & | operator>> (PStream &in, VarArray &o) |
PStream & | operator<< (PStream &out, const VarArray &o) |
PLEARN_IMPLEMENT_OBJECT (VarArrayElementVariable,"Selects one element of a VarArray according to a Var index */","NO HELP") | |
VarArrayElementVariable *. | |
DECLARE_OBJECT_PTR (VarArrayElementVariable) | |
PLEARN_IMPLEMENT_OBJECT (VarColumnsVariable,"ONE LINE DESCR","NO HELP") | |
VarColumnsVariable *. | |
DECLARE_OBJECT_PTR (VarColumnsVariable) | |
PLEARN_IMPLEMENT_OBJECT (VarElementVariable,"ONE LINE DESCR","NO HELP") | |
VarElementVariable *. | |
DECLARE_OBJECT_PTR (VarElementVariable) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (Variable,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (Variable) | |
DECLARE_OBJECT_PP (Var, Variable) | |
PLEARN_IMPLEMENT_OBJECT (VarRowsVariable,"Variable that is a subset of a matrix's rows; ""input1 : matrix from which rows are selected; ""input2 : vector whose elements are row indices in input1","NO HELP") | |
VarRowsVariable *. | |
DECLARE_OBJECT_PTR (VarRowsVariable) | |
PLEARN_IMPLEMENT_OBJECT (VarRowVariable,"Variable that is the row of the input1 variable indexed by the input2 variable","NO HELP") | |
VarRowVariable *. | |
DECLARE_OBJECT_PTR (VarRowVariable) | |
PLEARN_IMPLEMENT_OBJECT (VecElementVariable,"Variable that is the element of vector vec indexed by variable input","NO HELP") | |
VecElementVariable *. | |
DECLARE_OBJECT_PTR (VecElementVariable) | |
Var | accessElement (const Vec &v, Var index) |
PLEARN_IMPLEMENT_OBJECT (WeightedSumSquareVariable,"ONE LINE DESCR","NO HELP") | |
WeightedSumSquareVariable *. | |
DECLARE_OBJECT_PTR (WeightedSumSquareVariable) | |
Var | weighted_sumsquare (Var v, Var w) |
PLEARN_IMPLEMENT_OBJECT (AsciiVMatrix,"ONE LINE DESCR","AsciiVMatrix implements a file in ascii format") | |
DECLARE_OBJECT_PTR (AsciiVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (AutoVMatrix,"Automatically builds an appropriate VMat given its specification.","AutoVMatrix tries to interpret the given 'specification' (it will call getDataSet) and\n""will be a wrapper around the appropriate VMatrix type, simply forwarding calls to it.\n""AutoVMatrix can be used to access the UCI databases.\n") | |
DECLARE_OBJECT_PTR (AutoVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (BatchVMatrix,"ONE LINE DESCR","VMat class that replicates small parts of a matrix (mini-batches), so that each mini-batch appears twice (consecutively).") | |
DECLARE_OBJECT_PTR (BatchVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (BootstrapSplitter,"A splitter whose splits are bootstrap samples of the original dataset","BootstrapSplitter implements a ...") | |
DECLARE_OBJECT_PTR (BootstrapSplitter) | |
PLEARN_IMPLEMENT_OBJECT (BootstrapVMatrix,"A VMatrix that sees a bootstrap subset of its parent VMatrix.\n""This is not a real bootstrap since a sample can only appear once.","") | |
BootstrapVMatrix *. | |
DECLARE_OBJECT_PTR (BootstrapVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (ByteMemoryVMatrix,"ONE_LINE_DESCR","ONE LINE HELP") | |
DECLARE_OBJECT_PTR (ByteMemoryVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (CenteredVMatrix,"A VMatrix that centers a dataset.","The empirical mean is subtracted to each row of the underlying VMat.") | |
DECLARE_OBJECT_PTR (CenteredVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (CompressedVMatrix,"ONE LINE DESCR","ONE LINE HELP") | |
DECLARE_OBJECT_PTR (CompressedVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (ConcatColumnsVMatrix,"ONE LINE DESCR","NO HELP") | |
ConcatColumnsVMatrix *. | |
DECLARE_OBJECT_PTR (ConcatColumnsVMatrix) | |
VMat | hconcat (VMat d1, VMat d2) |
VMat | hconcat (Array< VMat > ds) |
PLEARN_IMPLEMENT_OBJECT (ConcatRowsSubVMatrix,"ONE LINE DESC","ONE LINE HELP") | |
ConcatRowsSubVMatrix *. | |
DECLARE_OBJECT_PTR (ConcatRowsSubVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (ConcatRowsVMatrix,"Concatenates the rows of a number of VMat.","It can also be used to select fields which are common to those VMat,\n""using the 'only_common_fields' option.\n""Otherwise, the fields are just assumed to be those of the first VMat.\n") | |
ConcatRowsVMatrix *. | |
DECLARE_OBJECT_PTR (ConcatRowsVMatrix) | |
VMat | vconcat (VMat d1, VMat d2) |
VMat | vconcat (Array< VMat > ds) |
PLEARN_IMPLEMENT_OBJECT (CrossReferenceVMatrix,"ONE LINE DESC","ONE LINE HELP") | |
CrossReferenceVMatrix *. | |
DECLARE_OBJECT_PTR (CrossReferenceVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (CumVMatrix,"Add columns that a cumulated values of given columns","The user specifies one or more columns and for each such <column-name>\n""a cum-<column-name> column is created which will contain the sum from row 0\n""to the current row of <column-name>.\n") | |
DECLARE_OBJECT_PTR (CumVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (DatedJoinVMatrix,"Join two vmatrices, taking into account a date field.","The two vmatrices play an asymmetric role. They are called\n""master and slave. The resulting vmatrix has one row for each row\n""of the master vmatrix (or optionally of the slave vmatrix). Its\n""columns are a concatenation of selected columns of the master vmatrix\n""and of selected columns of the slave which 'match' according to a rule\n""(always in the order: master fields, slave fields). Matchint is\n""obtained using shared 'key fields'. Optionally, for matching, a date field\n""in the master is forced to belong to a date interval in the slave,\n""as follows: slave_date_start < master_date <= slave_date_end.\n""If no match is found then the master (or slave) columns are left with missing values.\n""If more than one slave row matches, then the one with the latest\n""slave_date_start is used (and a warning is optionally issued). If\n""no slave_date_start field is provided then no date constraint is\n""enforced, and the last key-matching slave row is matched to a master row.\n""An option (output_the_slave) allows to output one row for each slave row\n""instead of the default which outputs one row for each master row.\n""Note that if (output_the_slave) then the non-matching master rows are 'lost'\n""whereas if (!output_the_slave) then the non-matching slave rows are 'lost'.\n""If output_the_slave and more than one master row matches with a given slave_row\n""then the SUM of the master fields is computed (i.e. be careful that their sum is meaningful)\n") | |
DECLARE_OBJECT_PTR (DatedJoinVMatrix) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (DatedVMatrix,"ONE_LINE_DESC","ONE_LINE_HELP") | |
DatedVMatrix *. | |
DECLARE_OBJECT_PTR (DatedVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (DBSplitter,"A Splitter that contains several databases.","The databases to be used can be specified with the 'databases' option. ") | |
DECLARE_OBJECT_PTR (DBSplitter) | |
PLEARN_IMPLEMENT_OBJECT (DiskVMatrix,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (DiskVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (ExplicitSplitter,"ONE LINE DESCR","ExplicitSplitter allows you to define a 'splitter' by giving explicitly the datasets for each split\n""as a matrix VMatrices.\n""(This splitter in effect ignores the 'dataset' it is given with setDataSet) \n") | |
DECLARE_OBJECT_PTR (ExplicitSplitter) | |
PLEARN_IMPLEMENT_OBJECT (ExtendedVMatrix,"ONE_LINE_DESC","ONE_LINE_HELP") | |
ExtendedVMatrix *. | |
DECLARE_OBJECT_PTR (ExtendedVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (FileVMatrix,"ONE LINE DESCR","NO HELP") | |
FileVMatrix *. | |
int | strlen (char *s) |
DECLARE_OBJECT_PTR (FileVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (FilteredVMatrix,"A filtered view of its source vmatrix","The filter is an exression in VPL language.\n""The filtered indexes are saved in the metadata directory, that NEEDS to\n""be provided.\n") | |
DECLARE_OBJECT_PTR (FilteredVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (FilterSplitter,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (FilterSplitter) | |
PLEARN_IMPLEMENT_OBJECT (FinancePreprocVMatrix,"ONE LINE DESCR","FinancePreprocVMatrix implements a VMatrix with extra preprocessing columns.") | |
DECLARE_OBJECT_PTR (FinancePreprocVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (ForwardVMatrix,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (ForwardVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (FractionSplitter,"A Splitter that can extract several subparts of a dataset in each split.","Ranges of the dataset are specified explicitly as start:end positions,\n""that can be absolute or relative to the number of samples in the training set.") | |
DECLARE_OBJECT_PTR (FractionSplitter) | |
PLEARN_IMPLEMENT_OBJECT (GeneralizedOneHotVMatrix,"ONE LINE DESC","ONE LINE HELP") | |
GeneralizedOneHotVMatrix *. | |
DECLARE_OBJECT_PTR (GeneralizedOneHotVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (GetInputVMatrix,"This VMatrix only sees the input part of its source VMatrix.","") | |
DECLARE_OBJECT_PTR (GetInputVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (GramVMatrix,"Computes the Gram matrix of a given kernel.","Currently, this class inherits from a MemoryVMatrix, and the Gram matrix\n""is stored in memory.\n") | |
DECLARE_OBJECT_PTR (GramVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (IndexedVMatrix,"ONE LINE DESCR"," VMat class that sees a matrix as a collection of triplets (row, column, value)\n""Thus it is a N x 3 matrix, with N = the number of elements in the original matrix.\n") | |
DECLARE_OBJECT_PTR (IndexedVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (InterleaveVMatrix,"ONE LINE DESC","ONE LINE HELP") | |
InterleaveVMatrix *. | |
DECLARE_OBJECT_PTR (InterleaveVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (JoinVMatrix,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (JoinVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (JulianizeVMatrix,"ONE LINE DESCR","JulianizeVMatrix provides a conversion from a VMat containing dates\n""in an explicit 3-column (YYYY,MM,DD) or 6-column (YYYY,MM,DD,HH,MM,SS)\n""format to a Julian day number format (including fractional part to\n""represent the hour within the day). The dates can be at any columns,\n""not only columns 0-2 (or 0-5). More than a single date can be\n""converted.\n") | |
DECLARE_OBJECT_PTR (JulianizeVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (KernelVMatrix,"ONE LINE DESC","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (KFoldSplitter,"K-fold cross-validation splitter.","KFoldSplitter implements K splits of the dataset into a training-set and a test-set.\n""If the number of splits is higher than the number of examples, leave-one-out cross-validation\n""will be performed.") | |
DECLARE_OBJECT_PTR (KFoldSplitter) | |
PLEARN_IMPLEMENT_OBJECT (KNNVMatrix,"A VMatrix that sees the nearest neighbours of each sample in the source VMat.","Each sample is followed by its (knn-1) nearest neighbours.\n""To each row is appended an additional target, which is:\n"" - 1 if it is the first of a bag of neighbours,\n"" - 2 if it is the last of a bag,\n"" - 0 if it is none of these,\n"" - 3 if it is both (only for knn == 1).\n""In addition, if a kernel_pij kernel is provided,, in the input part of the VMatrix\n""is appended p_ij, where\n"" p_ij = K(x_i,x_j) / \\sum_{k \\in knn(i), k != i} K(x_i,x_k)\n""where K = kernel_pij, and j != i (for j == i, p_ij = -1).") | |
DECLARE_OBJECT_PTR (KNNVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (LearnerProcessedVMatrix,"ONE LINE DESCR","LearnerProcessedVMatrix implements a VMatrix processed on the fly by a learner (which will optionally be first trained on the source vmatrix)") | |
DECLARE_OBJECT_PTR (LearnerProcessedVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (LocalNeighborsDifferencesVMatrix,"Computes the difference between each input row and its nearest neighbors.","For each row x of the source VMatrix, the resulting row will be the\n""concatenation of n_neighbors vectors, each of which is the difference\n""between one of the nearest neighbors of x in the source and x itself.\n") | |
DECLARE_OBJECT_PTR (LocalNeighborsDifferencesVMatrix) | |
VMat | local_neighbors_differences (VMat source, int n_neighbors, bool concat=false, bool append_indexes=false) |
PLEARN_IMPLEMENT_OBJECT (MemoryVMatrix,"A VMatrix whose data is stored in memory.","The data can either be given directly by a Mat, or by another VMat that\n""will be precomputed in memory at build time.\n") | |
MemoryVMatrix *. | |
DECLARE_OBJECT_PTR (MemoryVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (MovingAverageVMatrix,"Perform moving average of given columns","The user specifies one or more columns and for each such <column-name>\n""a moving average window size: a ma<windowsize>-<column-name> column is\n""created which will contain at row t the moving average from row t-<windowsize>+1\n""to t inclusively of <column-name>.\n") | |
DECLARE_OBJECT_PTR (MovingAverageVMatrix) | |
Declares a few other classes and functions related to this class. | |
PLEARN_IMPLEMENT_OBJECT (MultiInstanceVMatrix,"Virtual Matrix for a multi instance dataset","In a multi-instance dataset examples come in 'bags' with only one target label\n""for each bag. This class is built upon a source text file that describes such\n""a dataset (see the help on the 'filename' option for format details).\n""The resulting VMatrix shows the following structure in its rows, with\n""all the rows of a bag being consecutive. Each row represents an instance and has:\n"" - the input features for the instance\n"" - the bag's source_targetsize target values (repeated over bag instances)\n"" - a bag signal integer that identifies the beginning and end of the bag:\n"" 1 means the first instance of the bag\n"" 2 means the last instance of the bag\n"" 3 is for a bag with a single row (= 1+2)\n"" 0 is for intermediate instances.\n""The targetsize of the VMatrix is automatically set to source_targetsize+1\n""since the bag_signal is included (appended) in the target vector\n") | |
DECLARE_OBJECT_PTR (MultiInstanceVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (OneHotVMatrix,"ONE LINE DESC","NO HELP") | |
OneHotVMatrix *. | |
VMat | onehot (VMat d, int nclasses, real cold_value=0.0, real hot_value=1.0) |
DECLARE_OBJECT_PTR (OneHotVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (PairsVMatrix,"ONE LINE DESC","NO HELP") | |
PairsVMatrix *. | |
DECLARE_OBJECT_PTR (PairsVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (PLearnerOutputVMatrix,"Use a PLearner (or a set of them) to transform the input part of a data set into the learners outputs","The input part of this VMatrix is obtained from the input part an original data set on which\n""one or more PLearner's computeOutput method is applied. The other columns of the original data set\n""are copied as is. Optionally, the raw input can be copied as well\n""always in the input part of the new VMatrix. The order of the elements of a new row is as follows:\n"" - the outputs of the learners (concatenated) when applied on the input part of the original data,\n"" - optionally, the raw input part of the original data,\n"" - all the non-input columns of the original data.") | |
DECLARE_OBJECT_PTR (PLearnerOutputVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (PrecomputedVMatrix,"VMatrix that caches (pre-computes on disk) the content of a source vmatrix","This sub-class of SourceVMatrix pre-computes the content of a source vmatrix\n""in a dmat or pmat file. The name of the disk file is obtained from the metadatadir option\n""followed by precomp.dmat or precomp.pmat") | |
DECLARE_OBJECT_PTR (PrecomputedVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (ProcessingVMatrix,"ONE LINE DESCRIPTION","MULTI-LINE \nHELP") | |
DECLARE_OBJECT_PTR (ProcessingVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (RangeVMatrix,"ONE LINE DESC","NO HELP") | |
Range VMatrix *. | |
VMat | vrange (real start, real end, real step=1.0) |
DECLARE_OBJECT_PTR (RangeVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (RegularGridVMatrix,"ONE LINE DESCR","RegularGridVMatrix represents the list of coordinates along a regularly spaced grid.") | |
DECLARE_OBJECT_PTR (RegularGridVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (RemapLastColumnVMatrix,"ONE LINE DESC","NO HELP") | |
RemapLastColumnVMatrix *. | |
VMat | remapLastColumn (VMat d, Mat mapping) |
VMat | remapLastColumn (VMat d, real if_equals_value, real then_value=1.0, real else_value=-1.0) |
DECLARE_OBJECT_PTR (RemapLastColumnVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (RemoveDuplicateVMatrix,"A VMatrix that removes any duplicated entry in its source VMat.","") | |
DECLARE_OBJECT_PTR (RemoveDuplicateVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (RemoveRowsVMatrix,"ONE LINE DESC","NO HELP") | |
RemoveRowsVMatrix *. | |
VMat | removeRows (VMat d, Vec rownums) |
VMat | removeRow (VMat d, int rownum) |
DECLARE_OBJECT_PTR (RemoveRowsVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (RepeatSplitter,"Repeat a given splitter a certain amount of times, with the possibility to\n""shuffle randomly the dataset each time","NO HELP") | |
DECLARE_OBJECT_PTR (RepeatSplitter) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (RowBufferedVMatrix,"A base class for VMatrices that keep the last row(s) in a buffer for faster access.","") | |
RowBufferedVMatrix *. | |
DECLARE_OBJECT_PTR (RowBufferedVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (RowsSubVMatrix,"ONE LINE DESCRIPTION","MULTI-LINE \nHELP") | |
DECLARE_OBJECT_PTR (RowsSubVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (SelectColumnsVMatrix,"Selects variables from a source matrix according to given vector of indices.","Alternatively, the variables can be given by their names.") | |
SelectColumnsVMatrix *. | |
DECLARE_OBJECT_PTR (SelectColumnsVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (SelectRowsFileIndexVMatrix,"ONE LINE DESC","NO HELP") | |
SelectRowsFileIndexVMatrix *. | |
DECLARE_OBJECT_PTR (SelectRowsFileIndexVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (SelectRowsVMatrix,"VMat class that selects samples from a source matrix according to given vector of indices.","") | |
SelectRowsVMatrix *. | |
DECLARE_OBJECT_PTR (SelectRowsVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (SequentialSplitter,"ONE LINE DESCR","SequentialSplitter implements several splits, TODO: Comments") | |
DECLARE_OBJECT_PTR (SequentialSplitter) | |
PLEARN_IMPLEMENT_OBJECT (ShiftAndRescaleVMatrix,"ONE LINE DESCR","ShiftAndRescaleVMatrix allows to shift and scale the first n_inputs columns of an underlying_vm.\n") | |
ShiftAndRescaleVMatrix *. | |
DECLARE_OBJECT_PTR (ShiftAndRescaleVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (SortRowsVMatrix,"Sort the samples of a VMatrix according to one (or more) given columns.","The implementation is not efficient at all, feel free to improve it !") | |
SortRowsVMatrix *. | |
DECLARE_OBJECT_PTR (SortRowsVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (SourceVMatrix,"Super-class for VMatrices that point to another one (the source vmatrix)","") | |
DECLARE_OBJECT_PTR (SourceVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (SourceVMatrixSplitter,"Returns the splits of an underlying splitter, seen by a SourceVMatrix.","") | |
PLEARN_IMPLEMENT_OBJECT (SparseVMatrix,"ONE LINE DESC","NO HELP") | |
SparseVMatrix *. | |
DECLARE_OBJECT_PTR (SparseVMatrix) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (Splitter,"ONE LINE DESCR","NO HELP") | |
void | split (VMat d, real test_fraction, VMat &train, VMat &test, int i, bool use_all) |
Vec | randomSplit (VMat d, real test_fraction, VMat &train, VMat &test) |
void | split (VMat d, real validation_fraction, real test_fraction, VMat &train, VMat &valid, VMat &test, bool do_shuffle) |
Splits the dataset d into 3 subsets. | |
void | randomSplit (VMat d, real validation_fraction, real test_fraction, VMat &train, VMat &valid, VMat &test) |
Splits the dataset d into 3 subsets (similar to above). | |
DECLARE_OBJECT_PTR (Splitter) | |
PLEARN_IMPLEMENT_OBJECT (StrTableVMatrix,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (StrTableVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (SubInputVMatrix,"A VMat that only takes part of the input of its source VMat.","This can be useful for instance to only take the first k components\n""after applying some dimensionality reduction method.") | |
DECLARE_OBJECT_PTR (SubInputVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (SubVMatrix,"ONE LINE DESCR","NO HELP") | |
SubVMatrix *. | |
DECLARE_OBJECT_PTR (SubVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (TemporalHorizonVMatrix,"ONE LINE DESCR"," VMat class that delay the last entries of an underlying VMat by a certain horizon.\n") | |
TemporalHorizonVMatrix *. | |
DECLARE_OBJECT_PTR (TemporalHorizonVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (TestInTrainSplitter,"A splitter that adds the test points given by another splitter into the training set.","The underlying splitter should return train / test sets of constant size.\n""For instance, if the underlying splitter returns 3 splits of (train,test)\n""pairs with size 2000 and 500, this splitter will return:\n"" - for 'percentage_added' == 5%, 15 splits of size 2100 and 100, with each\n"" test point appearing once and only once in a train set and a test set\n"" - for 'percentage_added' == 20%, 6 splits of size 2400,400 and 2400,100, with\n"" each test point appearing once or more in a train set, and only once in a\n"" test set (note that the test points appearing more than once in a train set\n"" will be those at the beginning of the test sets returned by the underlying\n"" splitter)\n") | |
DECLARE_OBJECT_PTR (TestInTrainSplitter) | |
VMat | thresholdVMat (VMat d, real threshold, real cold_value=0.0, real hot_value=1.0, bool gt_threshold=true) |
PLEARN_IMPLEMENT_OBJECT (ToBagSplitter,"A Splitter that makes any existing splitter operate on bags only.","The dataset provided must contain bag information, as described in\n""SumOverBagsVariable") | |
DECLARE_OBJECT_PTR (ToBagSplitter) | |
PLEARN_IMPLEMENT_OBJECT (TrainTestBagsSplitter,"Splits a dataset in two parts","TrainTestBagsSplitter implements a single split of the dataset into\n""a training set and a test set (the test part being the last few samples of the dataset)\n""Optionally a third set is provided which is the training set itself (in order to test on it)\n") | |
DECLARE_OBJECT_PTR (TrainTestBagsSplitter) | |
PLEARN_IMPLEMENT_OBJECT (TrainTestSplitter,"ONE LINE DESCR","TrainTestSplitter implements a single split of the dataset into a training-set and a test-set (the test part being the last few samples of the dataset)") | |
DECLARE_OBJECT_PTR (TrainTestSplitter) | |
PLEARN_IMPLEMENT_OBJECT (TrainValidTestSplitter,"This splitter will basically return [Train+Valid, Test].","The train test returned by the splitter is formed from the first n_train+n_valid\n""samples in the dataset. The other samples are returned in the test set.\n""The validation and test sets (given by the samples after the n_train-th one) can\n""be shuffled in order to get a different validation and test sets at each split.\n""However, the train set (the first n_train samples) remains fixed.") | |
DECLARE_OBJECT_PTR (TrainValidTestSplitter) | |
PLEARN_IMPLEMENT_OBJECT (TransposeVMatrix,"A VMatrix that sees the transpose of another VMatrix.","") | |
DECLARE_OBJECT_PTR (TransposeVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (UniformizeVMatrix,"ONE LINE DESC","NO HELP") | |
UniformizeVMatrix *. | |
DECLARE_OBJECT_PTR (UniformizeVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (UniformVMatrix,"ONE LINE DESC","NO HELP") | |
Uniform VMatrix *. | |
DECLARE_OBJECT_PTR (UniformVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (UpsideDownVMatrix,"ONE LINE DESCRIPTION","MULTI-LINE \nHELP") | |
DECLARE_OBJECT_PTR (UpsideDownVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (VecExtendedVMatrix,"ONE LINE DESC","NO HELP") | |
VecExtendedVMatrix *. | |
DECLARE_OBJECT_PTR (VecExtendedVMatrix) | |
template<> void | deepCopyField (VMat &field, CopiesMap &copies) |
VMat | loadAsciiAsVMat (const string &filename) |
Load an ASCII file and return the corresponding VMat (this will be a MemoryVMatrix, since the entire file is loaded in memory). | |
DECLARE_OBJECT_PP (VMat, VMatrix) | |
void | operator<< (const Mat &dest, const VMatrix &src) |
void | operator>> (const VMatrix &src, const Mat &dest) |
void | operator<< (const Mat &dest, const VMat &src) |
void | operator>> (const VMat &src, const Mat &dest) |
Array< VMat > | operator & (const VMat &d1, const VMat &d2) |
ostream & | operator<< (ostream &out, const VMat &m) |
void | computeWeightedMean (Vec weights, VMat d, Vec &meanvec) |
Statistics functions *. | |
void | computeRange (VMat d, Vec &minvec, Vec &maxvec) |
void | computeRowMean (VMat d, Vec &meanvec) |
void | computeMean (VMat d, Vec &meanvec) |
Mat | computeBasicStats (VMat m) |
void | computeStats (VMat m, VecStatsCollector &st, bool report_progress) |
TVec< StatsCollector > | computeStats (VMat m, int maxnvalues, bool report_progress) |
Retirns the unconditional statistics of each field. | |
PP< ConditionalStatsCollector > | computeConditionalStats (VMat m, int condfield, TVec< RealMapping > ranges) |
returns the cooccurence statistics conditioned on the given field | |
Array< Mat > | computeConditionalMeans (VMat trainset, int targetsize, Mat &basic_stats) |
void | computeMeanAndVariance (VMat d, Vec &meanvec, Vec &variancevec) |
void | computeInputMean (VMat d, Vec &meanvec) |
Computes the (possibly weighted) mean and covariance of the input part of the dataset. | |
void | computeInputMeanAndCovar (VMat d, Vec &meanvec, Mat &covarmat) |
void | computeInputMeanAndVariance (VMat d, Vec &meanvec, Vec &var) |
void | computeWeightedMeanAndCovar (Vec weights, VMat d, Vec &meanvec, Mat &covarmat) |
real | computeWeightedMeanAndCovar (VMat d, Vec &meanvec, Mat &covarmat, real threshold) |
Last column of d is supposed to contain the weight for each sample Samples with a weight less or equal to threshold will be ignored (returns the sum of all the weights actually used). | |
void | computeMeanAndCovar (VMat m, Vec &meanvec, Mat &covarmat, ostream &logstream) |
computes empirical mean and covariance in a single pass | |
void | computeMeanAndStddev (VMat d, Vec &meanvec, Vec &stddevvec) |
void | autocorrelation_function (const VMat &data, Mat &acf) |
VMat | normalize (VMat d, Vec meanvec, Vec stddevvec) |
VMat | normalize (VMat d, int inputsize, int ntrain) |
Here, mean and stddev are estimated on d.subMat(0,0,ntrain,inputsize). | |
VMat | grep (VMat d, int col, Vec values, bool exclude) |
map< real, int > | countOccurencesInColumn (VMat m, int col) |
returns a map mapping all different values appearing in column col to their number of occurences | |
map< real, TVec< int > > | indicesOfOccurencesInColumn (VMat m, int col) |
returns a map mapping all different values appearing in column col to a vector of the corresponding row indices in the VMat (this proceeds in 2 passes, first calling countOccurencesInColumn to allocate the exact memory) | |
VMat | grep (VMat d, int col, Vec values, const string &indexfile, bool exclude) |
VMat | filter (VMat d, const string &indexfile) |
VMat | shuffle (VMat d) |
returns a SelectRowsVMatrix that has d's rows shuffled | |
VMat | bootstrap (VMat d, bool reorder, bool norepeat) |
returns a SelectRowsVMatrix that has d's rows bootstrapped (sample with replacement and optionally re-ordered). | |
Mat | transposeProduct (VMat m) |
computes M'.M | |
Mat | transposeProduct (VMat m1, VMat m2) |
computes M1'.M2 | |
Vec | transposeProduct (VMat m1, Vec v2) |
computes M1'.V2 | |
Mat | productTranspose (VMat m1, VMat m2) |
computes M1.M2' | |
Mat | product (Mat m1, VMat m2) |
computes M1.M2 | |
VMat | transpose (VMat m1) |
returns M1' | |
real | linearRegression (VMat inputs, VMat outputs, real weight_decay, Mat theta_t, bool use_precomputed_XtX_XtY, Mat XtX, Mat XtY, real &sum_squared_Y, bool return_squared_loss, int verbose_every, bool cholesky) |
Mat | linearRegression (VMat inputs, VMat outputs, real weight_decay) |
Version that does all the memory allocations of XtX, XtY and theta_t. Returns theta_t. | |
real | weightedLinearRegression (VMat inputs, VMat outputs, VMat gammas, real weight_decay, Mat theta_t, bool use_precomputed_XtX_XtY, Mat XtX, Mat XtY, real &sum_squared_Y, real &sum_gammas, bool return_squared_loss, int verbose_every, bool cholesky) |
Linear regression where each input point is given a different importance weight (the gammas); returns weighted average of squared loss. | |
Mat | weightedLinearRegression (VMat inputs, VMat outputs, VMat gammas, real weight_decay) |
Version that does all the memory allocations of XtX, XtY and theta_t. Returns theta_t. | |
VMat | rebalanceNClasses (VMat inputs, int nclasses, const string &filename) |
void | fullyRebalance2Classes (VMat inputs, const string &filename, bool save_indices) |
Rebalance a 2-class VMat such as to keep all the examples of the dominant class. | |
VMat | temporalThreshold (VMat distr, int threshold_date, bool is_before, int yyyymmdd_col) |
VMat | temporalThreshold (VMat distr, int threshold_date, bool is_before, int yyyy_col, int mm_col, int dd_col) |
void | correlations (const VMat &x, const VMat &y, Mat &r, Mat &pvalues) |
Compute the correlations between each of the columns of x and each of the columns of y. | |
void | computeNearestNeighbors (VMat dataset, Vec x, TVec< int > &neighbors, int ignore_row) |
VMat | normalize (VMat d, int inputsize) |
time_t | getDateOfCode (const string &codefile) |
PLEARN_IMPLEMENT_OBJECT (VMatLanguage,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_OBJECT (PreprocessingVMatrix,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (VMatLanguage) | |
DECLARE_OBJECT_PTR (PreprocessingVMatrix) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (VMatrix,"ONE LINE DESCR","NO HELP") | |
VMatrix *. | |
string | getHost () |
int | getPid () |
string | getUser () |
DECLARE_OBJECT_PTR (VMatrix) | |
PLEARN_IMPLEMENT_OBJECT (VMatrixFromDistribution,"A VMatrix built from sampling a distribution","VMatrixFromDistribution implements a VMatrix whose data rows are drawn from a distribution\n""or that contains the density or log density sampled on a grid (depending on \"mode\").\n""The matrix is computed in memory at build time\n") | |
PLEARN_IMPLEMENT_OBJECT (VVec,"ONE LINE DESCR","NO HELP") | |
void | operator>> (const VVec &vv, const Vec &v) |
void | operator<< (const VVec &vv, const Vec &v) |
void | operator<< (const Vec &v, const VVec &vv) |
void | operator>> (const Vec &v, const VVec &vv) |
PLEARN_IMPLEMENT_OBJECT (VVMatrix,"A VMat that reads a '.vmat' file.","") | |
DECLARE_OBJECT_PTR (VVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (YMDDatedVMatrix,"ONE LINE DESC","NO HELP") | |
DECLARE_OBJECT_PTR (YMDDatedVMatrix) | |
PLEARN_IMPLEMENT_OBJECT (AdaBoost,"AdaBoost boosting algorithm for TWO-CLASS classification","Given a classification weak-learner, this algorithm \"boosts\" it in\n""order to obtain a much more powerful classification algorithm.\n""The classifier is two-class, returning 0 or 1, or a number between 0 and 1\n""(in that case the user can set the 'pseudo_loss_adaboost' option, which\n""computes a more precise notion of error taking into account the precise\n""value outputted by the soft classifier).\n""The nstages option from PLearner is used to specify the desired\n""number of boosting rounds (but the algorithm can stop earlier if\n""the next weak learner is unable to unable to make significant progress.\n") | |
DECLARE_OBJECT_PTR (AdaBoost) | |
PLEARN_IMPLEMENT_OBJECT (ClassifierFromDensity,"A classifier built from density estimators using Bayes' rule.","ClassifierFromDensity allowd to build a classifier\n""by building one density estimator for each class, \n""and using Bayes rule to combine them. \n") | |
DECLARE_OBJECT_PTR (ClassifierFromDensity) | |
PLEARN_IMPLEMENT_OBJECT (MultiInstanceNNet,"Multi-instance feedforward neural network for probabilistic classification","The data has the form of a set of input vectors x_i associated with a single\n""label y. Each x_i is an instance and the overall set of instance is called a bag.\n""We don't know which of the inputs is responsible for the label, i.e.\n""there are hidden (not observed) labels y_i associated with each of the inputs x_i.\n""We also know that y=1 if at least one of the y_i is 1, otherwise y=0, i.e.\n"" y = y_1 or y_2 or ... y_m\n""In terms of probabilities, it means that\n"" P(Y=0|x_1..x_m) = \\prod_{i=1}^m P(y_i=0|x_i)\n""which determines the likelihood of the observation (x_1...x_m,y).\n""The neural network implements the computation of P(y_i=1|x_i). The same\n""model is assumed for all instances in the bag. The number of instances is variable but\n""bounded a-priori (max_n_instances). The gradient is computed for a whole bag\n""at a time. The architectural parameters and hyper-parameters of the model\n""are otherwise the same as for the generic NNet class.\n""The bags within each data set are specified with a 2nd target column\n""(the first column is 0, 1 or missing; it should not be missing for the\n""last column of the bag). The second target column should be 0,1,2, or 3:\n"" 1: first row of a bag\n"" 2: last row of a bag\n"" 3: simultaneously first and last, there is only one row in this bag\n"" 0: intermediate row of a bag\n""following the protocol expected by the SumOverBagsVariable.\n") | |
DECLARE_OBJECT_PTR (MultiInstanceNNet) | |
PLEARN_IMPLEMENT_OBJECT (ConditionalDensityNet,"Neural Network that Implements a Positive Random Variable Conditional Density","The input vector is used to compute parameters of an output density or output\n""cumulative distribution as well as output expected value. The ASSUMPTIONS\n""on the generating distribution P(Y|X) are the following:\n"" * Y is a single real value\n"" * 0 <= Y <= maxY, with maxY a known finite value\n"" * the density has a mass point at Y=0\n"" * the density is continuous for Y>0\n""The form of the conditional cumulative of Y is the following (separate_mass_points=false):\n"" P(Y<=y|theta) = (1/Z) (s(a) + sum_i u_i s(b_i) g(y,theta,i))\n""or for separate_mass_point=true:\n"" P(Y<=y|theta) = sigmoid(a) + (1-sigmoid(a))(sum_i u_i s(b_i) (g(y,theta,i)-g(0,theta,i))/Z\n""where s(z)=log(1+exp(z)) is the softplus function, and g is a monotonic function\n""in y whose first derivative and indefinite integral are known analytically.\n""The u_i are fixed from the unconditional distribution, such that s(b_i)=1 gives\n""approximately the right unconditional cumulative function (for infinite hardness):\n"" u_i = P(mu_{i-1}<Y<=mu_i) [unconditional].\n""The parameters theta of Y's distribution are (a,b_1,b_2,...,c_1,c_2,...,mu_1,mu_2,...),\n""which are obtained as the unconstrained outputs (no output transfer function) of a neural network.\n""The normalization constant Z is computed analytically easily: (separate_mass_point=false)\n"" Z = s(a) + sum_i u_i s(b_i) g(y,theta,i)\n""or for separate_mass_point=true:\n"" Z = sum_i s(b_i) (g(y,theta,i)-g(0,theta,i))\n""The current implementation considers two choices for g:\n"" - sigmoid_steps: g(y,theta,i) = sigmoid(h*s(c_i)*(y-mu_i)/(mu_{i+1}-mu_i))\n"" - sloped_steps: g(y,theta,i) = 1 + s(s(c_i)*(mu_i-y))-s(s(c_i)*(mu_{i+1}-y))/(s(c_i)*(mu_{i+1}-mu_i))\n""where h is the 'initial_hardness' option.\n""The density is analytically obtained using the derivative g' of g and\n""expected value is analytically obtained using the primitive G of g.\n""For the mass point at the origin,\n"" P(Y=0|theta) = P(Y<=0|theta).\n""(which is simply sigmoid(a) if separate_mass_point).\n""For positive values of Y: (separate_mass_point=false)\n"" p(y|theta) = (1/Z) sum_i s(b_i) g'(y,theta,i).\n""or for separate_mass_point=true:\n"" p(y|theta) = (1-sigmoid(a)) (1/Z) sum_i s(b_i) g'(y,theta,i).\n""And the expected value of Y is obtained using the primitive: (separate_mass_point=false)\n"" E[Y|theta] = (1/Z)*s(a)*M + sum_i u_i s(b_i)(G(M,theta,i)-G(0,theta,i)))\n""or for separate_mass_point=true:\n"" E[Y|theta] = M - ((sigmoid(a)-(1-sigmoid(a)*(1/Z)*sum_i u_i s(b_i)g(0,theta,i))*M + (1-sigmoid(a))*(1/Z)*sum_i u_i s(b_i)(G(M,theta,i)-G(0,theta,0)))\n""Training the model can be done by maximum likelihood (minimizing the log of the\n""density) or by minimizing the average of squared error (y-E[Y|theta])^2\n""or a combination of the two (with the max_likelihood_vs_squared_error_balance option).\n""The step 'centers' mu_i are initialized according to some rule, in the interval [0,maxY]:\n"" - uniform: at regular intervals in [0,maxY]\n"" - log-scale: as the exponential of values at regular intervals in [0,log(1+maxY)], minus 1.\n""The c_i and b_i are initialized to inverse_softplus(1), and a using the empirical unconditional P(Y=0).\n""For the output curve options (outputs_def='L',D','C', or 'S'), the lower_bound and upper_bound\n""options of PDistribution are automatically set to 0 and maxY respectively.\n") | |
DECLARE_OBJECT_PTR (ConditionalDensityNet) | |
PLEARN_IMPLEMENT_OBJECT (ConditionalDistribution,"ONE LINE DESCR","You must call setInput to set the condition before using the distribution") | |
DECLARE_OBJECT_PTR (ConditionalDistribution) | |
PLEARN_IMPLEMENT_OBJECT (ConditionalGaussianDistribution,"ConditionalGaussianDistribution is a gaussian distribution ""in which the parameters could be learned or specified manually.","") | |
DECLARE_OBJECT_PTR (ConditionalGaussianDistribution) | |
PLEARN_IMPLEMENT_OBJECT (Distribution,"This class is deprecated, use PDistribution instead.","NO HELP") | |
DECLARE_OBJECT_PTR (Distribution) | |
PLEARN_IMPLEMENT_OBJECT (EmpiricalDistribution,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (EmpiricalDistribution) | |
PLEARN_IMPLEMENT_OBJECT (GaussianDistribution,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (GaussianDistribution) | |
PLEARN_IMPLEMENT_OBJECT (GaussianProcessRegressor,"Basic version of Gaussian Process regression.","NO HELP") | |
DECLARE_OBJECT_PTR (GaussianProcessRegressor) | |
PLEARN_IMPLEMENT_OBJECT (GaussMix,"Gaussian mixture, either set non-parametrically or trained by EM.","GaussMix implements a mixture of L gaussians.\n""There are 4 possible parametrization types:\n"" - spherical : gaussians have covar matrix = diag(sigma). Parameter used : sigma.\n"" - diagonal : gaussians have covar matrix = diag(sigma_i). Parameters used : diags.\n"" - general : gaussians have an unconstrained covariance matrix.\n"" The user specifies the number 'n_eigen' of eigenvectors kept when\n"" decomposing the covariance matrix. The remaining eigenvectors are\n"" considered as having a fixed eigenvalue equal to the next highest\n"" eigenvalue in the decomposition.\n"" - factor : (not implemented!) as in the general case, the gaussians are defined\n"" with K<=D vectors (through KxD matrix 'V'), but these need not be\n"" orthogonal/orthonormal.\n"" The covariance matrix used will be V(t)V + psi with psi a D-vector\n"" (through parameter diags).\n""2 parameters are common to all 4 types :\n"" - alpha : the ponderation factor of the gaussians\n"" - mu : their centers\n") | |
DECLARE_OBJECT_PTR (GaussMix) | |
PLEARN_IMPLEMENT_OBJECT (HistogramDistribution,"Represents and possibly learns (using a smoother) a univariate distribution as a histogram.","This class represents a univariate distribution with a set of bins and their densities\n""The bins can be fixed or learned by a Binner object, and the densities\n""can be learned from a training set. The empirical densities in the bins can also\n""be smoothed with a Smoother (which is a general purpose univariate function\n""smoothing mechanism. If the data is not univariate, then only the LAST column\n""is considered. The smoother can either smooth the density or the survival fn.\n") | |
DECLARE_OBJECT_PTR (HistogramDistribution) | |
PLEARN_IMPLEMENT_OBJECT (LocallyWeightedDistribution,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (LocallyWeightedDistribution) | |
PLEARN_IMPLEMENT_OBJECT (ManifoldParzen2,"ManifoldParzen implements a manifold Parzen.","") | |
void | computeNearestNeighbors (Mat dataset, Vec x, Mat &neighbors, int ignore_row=-1) |
void | computePrincipalComponents (Mat dataset, Vec &eig_values, Mat &eig_vectors) |
void | computeLocalPrincipalComponents (Mat &dataset, int which_pattern, Mat &delta_neighbors, Vec &eig_values, Mat &eig_vectors, Vec &mean) |
DECLARE_OBJECT_PTR (ManifoldParzen2) | |
PLEARN_IMPLEMENT_OBJECT (PConditionalDistribution,"(THIS CLASS IS DEPRECATED, use PDistribution instead). Conditional distribution or conditional density model P(Y|X)","Abstract superclass for conditional distribution classes.\n""It is a subclass of PDistribution, with the added method\n"" setInput(Vec& input)\n""to set X, that must be called before PDistribution methods such as\n""log_density,cdf,survival_fn,expectation,variance,generate.\n""The PDistribution option output_defs must be set to specify\n""what the PLearner method computeOutput will produce. If it is\n""set to 'l' (log_density), 'd' (density), 'c' (cdf), or 's' (survival_fn)\n""then the input part of the data should contain both the input X and\n""the 'target' Y values (targetsize()==0). Instead, if output_defs is set to\n"" 'e' (expectation) or 'v' (variance), then the input part of the data should\n""contain only X, while the target part should contain Y\n") | |
PLEARN_IMPLEMENT_OBJECT (PDistribution,"PDistribution is the base class for distributions.\n","PDistributions derive from PLearner (as some of them may be fitted to data with train()),\n""but they have additional methods allowing for ex. to compute density or generate data points.\n""The default implementations of the learner-type methods for computing outputs and costs work as follows:\n"" - the outputs_def option allows to choose which outputs are produced\n"" - cost is a vector of size 1 containing only the negative log-likelihood (NLL), i.e. -log_density.\n""A PDistribution may be conditional P(Y|X), if the option 'conditional_flags' is set. If it is the case,\n""the input should always be made of both the 'input' part (X) and the 'target' part (Y), even if the\n""output may not need to use the Y part. The exception is when computeOutput() needs to be called\n""successively with the same value of X: in this case, after a first call with both X and Y, one may\n""only provide Y as input, and X will be assumed to be unchanged.\n") | |
PLEARN_IMPLEMENT_OBJECT (SpiralDistribution,"Generates samples drawn from a 2D spiral","SpiralDistribution is a generative model that generates 2D (x,y) samples in the following manner:\n"" t ~ uniform([tmin, tmax])^uniformity \n"" x = lambda*t*sin(alpha*t) + N(0,sigma) \n"" y = lambda*t*cos(alpha*t) + N(0,sigma) \n") | |
DECLARE_OBJECT_PTR (SpiralDistribution) | |
PLEARN_IMPLEMENT_OBJECT (UnconditionalDistribution,"This class is a simplified version of PDistribution for unconditional distributions.","Its only goal is to hide the conditional side of PDistributions to make it simpler.") | |
DECLARE_OBJECT_PTR (UnconditionalDistribution) | |
PLEARN_IMPLEMENT_OBJECT (UniformDistribution,"Implements uniform distribution over intervals.","Currently, only very few methods are implemented.\n""For example, to sample points in 2D in [a,b] x [c,d], use\n"" min = [a c]\n"" max = [b d]\n") | |
DECLARE_OBJECT_PTR (UniformDistribution) | |
PLEARN_IMPLEMENT_OBJECT (AddCostToLearner,"A PLearner that just adds additional costs to another PLearner.","In addition, this learner can be used to compute costs on bags instead of\n""individual samples, using the option 'compute_costs_on_bags'.\n""\n""Feel free to make this class evolve by adding new costs, or rewriting it\n""in a better fashion, because this one is certainly not perfect.\n""To use the lift cost, do the following:\n"" (1) add a cost of type 1 to this object's option 'costs'\n"" (2) replace the template_stats_collector of your PTester with one like this:\n"" template_stats_collector =\n"" LiftStatsCollector (\n"" lift_fraction = 0.1 ;\n"" output_column = \"lift_output\" ;\n"" opposite_lift = 0 ; # to set to 1 if we want to optimize it\n"" sign_trick = 1 ;\n"" (3) ask for the lift in the stats:\n"" statnames = [\n"" \"E[test1.LIFT]\"\n"" \"E[test1.LIFT_MAX]\"\n"" ];") | |
DECLARE_OBJECT_PTR (AddCostToLearner) | |
PLEARN_IMPLEMENT_OBJECT (EmbeddedLearner,"Wraps an underlying learner","EmbeddedLearner implements nothing but forwarding \n""calls to an underlying learner. It is typically used as\n""baseclass for learners that are built on top of another learner") | |
DECLARE_OBJECT_PTR (EmbeddedLearner) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (Learner,"DEPRECATED CLASS: Derive from PLearner instead","NO HELP") | |
void | prettyprint_test_results (ostream &out, const Learner &learner, const Vec &results) |
PLEARN_IMPLEMENT_OBJECT (NeighborhoodSmoothnessNNet,"Feedforward neural network whose hidden units are smoothed according to input neighborhood\n","TODO") | |
DECLARE_OBJECT_PTR (NeighborhoodSmoothnessNNet) | |
PLEARN_IMPLEMENT_OBJECT (NeuralNet,"DEPRECATED: Use NNet instead","NO HELP") | |
DECLARE_OBJECT_PTR (NeuralNet) | |
PLEARN_IMPLEMENT_OBJECT (NNet,"Ordinary Feedforward Neural Network with 1 or 2 hidden layers","Neural network with many bells and whistles...") | |
DECLARE_OBJECT_PTR (NNet) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (PLearner,"The base class for all PLearn learners.","") | |
PLEARN_IMPLEMENT_OBJECT (SelectInputSubsetLearner,"PLearner which selects a subset of the inputs for an embedded learner.","This learner class contains an embedded learner for which it selects a subset of the inputs.\n""The subset can be either selected explicitly or chosen randomly (the user chooses what fraction\n""of the original inputs will be selected).") | |
DECLARE_OBJECT_PTR (SelectInputSubsetLearner) | |
PLEARN_IMPLEMENT_OBJECT (StackedLearner,"Implements stacking, that combines two levels of learner, the 2nd level using the 1st outputs as inputs","Stacking is a generic strategy in which two levels (or more, recursively) of learners\n""are combined. The lower level may have one or more learners, and they may be trained\n""on the same or different data from the upper level single learner. The outputs of the\n""1st level learners are concatenated and serve as inputs to the second level learner.\n""IT IS ASSUMED THAT ALL BASE LEARNERS HAVE THE SAME NUMBER OF INPUTS AND OUTPUTS\n""There is also the option to copy the input of the 1st level learner as additional\n"" inputs for the second level (put_raw_input).\n""A Splitter can optionally be provided to specify how to split the data into\n""the training /validation sets for the lower and upper levels respectively\n") | |
DECLARE_OBJECT_PTR (StackedLearner) | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (StatefulLearner,"PLearner with an internal state","PLearner with an internal state.\n""It replaces, for efficacity and compatibility reasons, SequentialLearner.") | |
DECLARE_OBJECT_PTR (StatefulLearner) | |
PLEARN_IMPLEMENT_OBJECT (TestingLearner,"ONE LINE DESCRIPTION","MULTI-LINE \nHELP") | |
DECLARE_OBJECT_PTR (TestingLearner) | |
PLEARN_IMPLEMENT_OBJECT (GraphicalBiText,"Probabilistically tag a bitext (english-other language) with senses from WordNet","NO HELP") | |
VMat | loadToVMat (string file, string name, int window, int n_examples) |
bool | lessPair (pair< int, float > &p1, pair< int, float > &p2) |
PLEARN_IMPLEMENT_OBJECT (Dictionary,"Mapping string->int and int->string","MULTI LINE\nHELP") | |
DECLARE_OBJECT_PTR (Dictionary) | |
PLEARN_IMPLEMENT_OBJECT (TextSenseSequenceVMatrix,"VMat class that takes another VMat which contains a sequence (rows) ""of words/sense/POS triplets extracted from a corpus and implements a ""representation of a target word and its context.","") | |
void | samePos (ProbabilitySparseMatrix &m1, ProbabilitySparseMatrix &m2, string m1name, string m2name) |
void | check_prob (ProbabilitySparseMatrix &pYX, string Yname, string Xname) |
void | check_prob (Set Y, const map< int, real > &pYx) |
void | update (ProbabilitySparseMatrix &pYX, ProbabilitySparseMatrix &nYX) |
void | updateAndClearCounts (ProbabilitySparseMatrix &pYX, ProbabilitySparseMatrix &nYX) |
ostream & | operator<< (ostream &out, ProbabilitySparseMatrix &pyx) |
void | print (ostream &out, ProbabilitySparseMatrix &pyx, Set Y, Set X) |
void | print (ostream &out, RowMapSparseMatrix< real > &m) |
void | print (ostream &out, const map< int, real > &vec, int size) |
void | print (ostream &out, const map< int, real > &vec) |
void | print (ostream &out, const map< int, real > &vec, Set V) |
PStream & | operator<< (PStream &out, const PPointableSet &pp_set) |
PStream & | operator>> (PStream &in, PPointableSet &pp_set) |
PPointableSet * | newSet () |
void | merge (Set a, Set b, Set res) |
void | difference (Set a, Set b, Set res) |
void | intersection (Set a, Set b, Set res) |
ostream & | operator<< (ostream &out, Set s) |
string | trimWord (string word) |
bool | isLetter (char c) |
bool | isDigit (char c) |
bool | isAlpha (char c) |
bool | isLegalPunct (char c) |
string | stemWord (string &word) |
string | stemWord (string &word, int wn_pos) |
char * | cstr (string &str) |
void | removeDelimiters (string &s, string delim, string replace) |
bool | startsWith (string &base, string s) |
void | replaceChars (string &str, string char_to_replace, string replacing_char) |
PLEARN_IMPLEMENT_OBJECT (Experiment,"DEPRECATED: use PTester instead","") | |
DECLARE_OBJECT_PTR (Experiment) | |
void | DX_write_2D_fields (ostream &out, const string &basename, TVec< Mat > fields, real x0, real y0, real deltax, real deltay, TVec< string > fieldnames=TVec< string >()) |
void | DX_write_2D_fields (ostream &out, const string &basename, Vec X, Vec Y, TVec< Mat > fields) |
TVec< Mat > | computeOutputFields (PP< PLearner > learner, Vec X, Vec Y) |
TVec< Mat > | computeOutputFields (PP< PLearner > learner, int nx, int ny, real x0, real y0, real deltax, real deltay) |
TVec< Mat > | computeOutputFieldsAutoRange (PP< PLearner > learner, VMat dataset, int nx, int ny, real &x0, real &y0, real &deltax, real &deltay, real extraspace=.10) |
void | computeXYPositions (VMat dataset, int nx, int ny, Vec &X, Vec &Y, real extraspace=.10) |
void | DX_create_dataset_outputs_file (const string &filename, PP< PLearner > learner, VMat dataset) |
Will write a file containing a field with the dataset positions "dset" field will be input -> target, outputs. | |
void | DX_create_grid_outputs_file (const string &filename, PP< PLearner > learner, VMat dataset, int nx, int ny, bool include_datapoint_grid=false, real xmin=MISSING_VALUE, real xmax=MISSING_VALUE, real ymin=MISSING_VALUE, real ymax=MISSING_VALUE, real extraspace=.10) |
The "outputs" field will contain sample-grid inputs -> outputs Where the sample grid is made of a regular grid of nx.ny points (in the range [xmin, xmax] x [ymin, ymax]) xmin, xmax, ymin and ymax may be left to MISSING_VALUE, in which case an automatic range will be determined from the range of the points in the given dataset extended by extraspace (ex: .10 == 10%). | |
PLEARN_IMPLEMENT_OBJECT (GenerateDecisionPlot,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (GenerateDecisionPlot) | |
PLEARN_IMPLEMENT_OBJECT (Grapher,"ONE LINE DESCR","NO HELP") | |
real | color (int colornum, real lightness) |
DECLARE_OBJECT_PTR (Grapher) | |
Mat | compute_learner_outputs (PP< PLearner > learner, VMat inputs) |
void | determine_grid_for_dataset (VMat dataset, int nx, int ny, real &x0, real &y0, real &deltax, real &deltay, real extraspace) |
double | determine_density_integral_from_log_densities_on_grid (Vec log_densities, real deltax, real deltay) |
Mat | compute_learner_outputs_on_grid (PP< PLearner > learner, int nx, int ny, real x0, real y0, real deltax, real deltay) |
Returns a nx*ny x learner->outputsize() matrix of outputs corresponding to the nx*ny grid points. | |
void | DX_write_2D_data (ostream &out, const string &basename, Mat data) |
considers data to have 2d input (first 2 columns of data) | |
void | DX_write_2D_data_for_grid (ostream &out, const string &basename, int nx, int ny, real x0, real y0, real deltax, real deltay, Mat data) |
data must have nx*ny rows and must corresponds to values associated with the 2D positions of the grid (typically learner outputs on that grid) | |
void | DX_save_2D_data (const string &filename, const string &basename, Mat data) |
considers data to have 2d input (first 2 columns of data) | |
void | DX_save_2D_data_for_grid (const string &filename, const string &basename, int nx, int ny, real x0, real y0, real deltax, real deltay, Mat data) |
data must have nx*ny rows and must corresponds to values associated with the 2D positions of the grid (typically learner outputs on that grid) | |
TVec< string > | addprepostfix (const string &prefix, const TVec< string > &names, const string &postfix) |
template<class T> TVec< T > | operator & (const T &x, const TVec< T > &v) |
PLEARN_IMPLEMENT_OBJECT (PTester,"Evaluates the performance of a PLearner","The PTester class allows you to describe a typical learning experiment that you wish to perform, \n""as a training/testing of a learning algorithm on a particular dataset.\n""The splitter is used to obtain one or several (such as for k-fold) splits of the dataset \n""and training/testing is performed on each split. \n""Requested statistics are computed, and all requested results are written in an appropriate \n""file inside the specified experiment directory. \n") | |
DECLARE_OBJECT_PTR (PTester) | |
PLEARN_IMPLEMENT_OBJECT (ConstantRegressor,"PLearner that outputs a constant (input-independent) vector.\n","ConstantRegressor is a PLearner that outputs a constant (input-independent\n""but training-data-dependent) vector. It is a regressor (i.e. during training\n""the constant vector is chosen to minimize the (possibly weighted) average\n""of the training set targets. Let\n"" N = number of training examples,\n"" M = target size (= output size),\n"" y_{ij} = the jth target value of the ith training example,\n"" w_i = weight associated to the ith training example,\n""then the j-th component of the learned vector is\n"" (sum_{i=1}^N w_i * y_ij) / (sum_{i=1}^N w_i)\n""The output can also be set manually with the 'constant_output' vector option\n") | |
DECLARE_OBJECT_PTR (ConstantRegressor) | |
PLEARN_IMPLEMENT_OBJECT (LinearRegressor,"Ordinary Least Squares and Ridge Regression, optionally weighted","This class performs OLS (Ordinary Least Squares) and Ridge Regression, optionally on weighted\n""data, by solving the linear equation (X'W X + weight_decay*n_examples*I) theta = X'W Y\n""where X is the (n_examples x (1+inputsize)) matrix of extended inputs (with a 1 in the first column),\n""Y is the (n_example x targetsize), W is a diagonal matrix of weights (one per example)\n""{the identity matrix if weightsize()==0 in the training set}, and theta is the resulting\n""set of parameters. W_{ii} is obtained from the weight column of the training set, if any.\n""This column must have width 0 (no weight) or 1.\n""A prediction (computeOutput) is obtained from an input vector as follows:\n"" output = theta * (1,input)\n""The criterion that is minimized by solving the above linear system is the squared loss""plus squared norm penalty (weight_decay*sum_{ij} theta_{ij}^2) PER EXAMPLE. This class also measures""the ordinary squared loss (||output-theta||^2). The two costs are named 'mse+penalty' and 'mse' respectively.\n""Training has two steps: (1) computing X'W X and X' W Y, (2) solving the linear system.\n""The first step takes time O(n_examples*inputsize^2 + n_examples*inputsize*outputsize).\n""The second step takes time O(inputsize^3).\n""If train() is called repeatedly with different values of weight_decay, without intervening\n""calls to forget(), then the first step will be done only once, and only the second step\n""is repeated.\n") | |
DECLARE_OBJECT_PTR (LinearRegressor) | |
PLEARN_IMPLEMENT_OBJECT (PLS,"Partial Least Squares Regression (PLSR).","You can use this learner to perform regression, and / or dimensionality\n""reduction.\n""PLS regression assumes the target Y and the data X are linked through:\n"" Y = T.Q' + E\n"" X = T.P' + F\n""The underlying coefficients T (the 'scores') and the loading matrices\n""Q and P are seeked. It is then possible to compute the prediction y for\n""a new input x, as well as its score vector t (its representation in\n""lower-dimensional coordinates).\n""The available algorithms to perform PLS (chosen by the 'method' option) are:\n""\n"" ==== PLS1 ====\n""The classical PLS algorithm, suitable only for a 1-dimensional target. The\n""following algorithm is taken from 'Factor Analysis in Chemistry', with an\n""additional loop that (I believe) was missing:\n"" (1) Let X (n x p) = the centered and normalized input data\n"" Let y (n x 1) = the centered and normalized target data\n"" Let k be the number of components extracted\n"" (2) s = y\n"" (3) lx' = s' X, s = X lx (normalized)\n"" (4) If s has changed by more than 'precision', loop to (3)\n"" (5) ly = s' y\n"" (6) lx' = s' X\n"" (7) Store s, lx and ly in the columns of respectively T, P and Q\n"" (8) X = X - s lx', y = y - s ly, loop to (2) k times\n"" (9) Set W = (T P')^(+) T, where the ^(+) is the right pseudoinverse\n""\n"" ==== Kernel ====\n""The code implements a NIPALS-PLS-like algorithm, which is a so-called\n""'kernel' algorithm (faster than more classical implementations).\n""The algorithm, inspired from 'Factor Analysis in Chemistry' and above all\n""www.statsoftinc.com/textbook/stpls.html, is the following:\n"" (1) Let X (n x p) = the centered and normalized input data\n"" Let Y (n x m) = the centered and normalized target data\n"" Let k be the number of components extracted\n"" (2) Initialize A_0 = X'Y, M_0 = X'X, C_0 = Identity(p), and h = 0\n"" (3) q_h = largest eigenvector of B_h = A_h' A_h, found by the NIPALS method:\n"" (3.a) q_h = a (normalized) randomn column of B_h\n"" (3.b) q_h = B_h q_h\n"" (3.c) normalize q_h\n"" (3.d) if q_h has changed by more than 'precision', go to (b)\n"" (4) w_h = C_h A_h q_h, normalize w_h and store it in a column of W (p x k)\n"" (5) p_h = M_h w_h, c_h = w_h' p_h, p_h = p_h / c_h and store it in a column\n"" of P (p x k)\n"" (6) q_h = A_h' w_h / c_h, and store it in a column of Q (m x k)\n"" (7) A_h+1 = A_h - c_h p_h q_h'\n"" M_h+1 = M_h - c_h p_h p_h',\n"" C_h+1 = C_h - w_h p_h\n"" (8) h = h+1, and if h < k, go to (3)\n""\n""The result is then given by:\n"" - Y = X B, with B (p x m) = W Q'\n"" - T = X W, where T is the score (reduced coordinates)\n""\n""You can choose to have the score (T) and / or the target (Y) in the output\n""of the learner (default is target only, i.e. regression).") | |
DECLARE_OBJECT_PTR (PLS) | |
PLEARN_IMPLEMENT_OBJECT (EmbeddedSequentialLearner,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (EmbeddedSequentialLearner) | |
Declares a few other classes and functions related to this class. | |
PLEARN_IMPLEMENT_OBJECT (MovingAverage,"ONE LINE DESCR","NO HELP") | |
PLEARN_IMPLEMENT_ABSTRACT_OBJECT (SequentialLearner,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (SequentialLearner) | |
Declares a few other classes and functions related to this class. | |
PLEARN_IMPLEMENT_OBJECT (SequentialModelSelector,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (SequentialModelSelector) | |
Declares a few other classes and functions related to this class. | |
PLEARN_IMPLEMENT_OBJECT (SequentialValidation,"The SequentialValidation class allows you to describe a typical ""sequential validation experiment that you wish to perform.","NO HELP") | |
DECLARE_OBJECT_PTR (SequentialValidation) | |
Declares a few other classes and functions related to this class. | |
PLEARN_IMPLEMENT_OBJECT (PTester,"Manages a learning experiment, with training and estimation of generalization error.","The PTester class allows you to describe a typical learning experiment that you wish to perform, \n""as a training/testing of a learning algorithm on a particular dataset.\n""The splitter is used to obtain one or several (such as for k-fold) splits of the dataset \n""and training/testing is performed on each split. \n""Requested statistics are computed, and all requested results are written in an appropriate \n""file inside the specified experiment directory. \n""Statistics can be either specified entirely from the 'statnames' option, or built from\n""'statnames' and 'statmask'. For instance, one may set:\n"" statnames = [ \"NLL\" \"mse\" ]\n"" statmask = [ [ \"E[*]\" ] [ \"test1.*\" \"test2.*\" ] [ \"E[*]\" \"STDERROR[*]\" ] ]\n""and this will compute:\n"" E[test1.E[NLL]], STDERROR[test1.E[NLL]], E[test2.E[NLL]], STDERROR[test2.E[NLL]]\n"" E[test1.E[mse]], STDERROR[test1.E[mse]], E[test2.E[mse]], STDERROR[test2.E[mse]]\n") | |
PLEARN_IMPLEMENT_OBJECT (TestMethod,"ONE LINE DESCR","NO HELP") | |
DECLARE_OBJECT_PTR (TestMethod) | |
PLEARN_IMPLEMENT_OBJECT (Train,"An easy PTester","Sometimes, we want to train a learner easily.\n""But plearn learner train does not permit to use macro variable.\n""Train is the equivalent of plearn learner train but macro variables are usable\n""Example: plearn myTrain.plearn knn=12") | |
PLEARN_IMPLEMENT_OBJECT (EntropyContrast,"Performs a EntropyContrast search","Detailed Description ") | |
DECLARE_OBJECT_PTR (EntropyContrast) | |
Mat | smartInitialization (VMat v, int n, real c, real regularization) |
PLEARN_IMPLEMENT_OBJECT (GaussianContinuum,"Learns a continuous (uncountable) Gaussian mixture with non-local parametrization","This learner implicitly estimates the density of the data through\n""a generalization of the Gaussian mixture model and of the TangentLearner\n""algorithm (see help on that class). The density is the fixed point of\n""a random walk {z_t} that follows the following transition probabilities:\n"" z_{t+1} sampled from a Gaussian associated with z_t, centered\n"" at z_t + mu(z_t), with covariance matrix S(z_t).\n""The semantic of that random walk is the following (and that is how\n""it will be estimated). Given a point z_t, the sample z_{t+1} represents\n""a 'near neighbor' of z_t. We assume that the density is smooth enough\n""that the cloud of 'near neighbors' around z_t can be modeled by a Gaussian.\n""The functions mu(.) and S(.) have globally estimated parameters (for example\n""using neural nets or linear functions of x, or linear functions of a basis).\n""Here we suppose that the eigenvalues of S(.) come from two groups:\n""the first group should correspond to locally estimated principal\n""directions of variations and there are no constraints on these eigenvalues\n""(except that they are positive), while the second group should correspond\n""to 'noise' directions, that have all the same value sigma2_noise\n""i.e. it is not necessary to explicitly model the directions of variations\n""(the eigenvectors) associated with the second group. In general we expect\n""sigma2_noise to be small compared to the first group eigenvalues, which\n""means that the Gaussians are flat in the corresponding directions, and\n""that the first group variations correspond to modeling a manifold near\n""which most of the data lie. Optionally, an embedding corresponding\n""to variations associated with the first group of eigenvalues can be learnt\n""by choosing for the architecture_type option a value of the form embedding_*.\n""Although the density is not available in closed form, it is easy (but maybe slow)\n""to sample from it: pick one of the training examples at random and then\n""follow the random walk (ideally, a long time). It is also possible in\n""principle to obtain a numerical estimate of the density at a point x,\n""by sampling enough random walk points around x.\n") | |
DECLARE_OBJECT_PTR (GaussianContinuum) | |
PLEARN_IMPLEMENT_OBJECT (Isomap,"Performs ISOMAP dimensionality reduction.","Be careful that when looking for the 'knn' nearest neighbors of a point x,\n""we consider all points from the training data D, including x itself if it\n""belongs to D. Thus, to obtain the same result as with the classical ISOMAP\n""algorithm, one should use one more neighbor.\n""Note also that when used out-of-sample, this will result in a different output\n""than an algorithm applying the same formula, but considering one less neighbor.\n") | |
DECLARE_OBJECT_PTR (Isomap) | |
PLEARN_IMPLEMENT_OBJECT (IsomapTangentLearner,"Tangent learning based on Isomap Kernel","MULTI-LINE \nHELP") | |
PLEARN_IMPLEMENT_OBJECT (KernelPCA,"Kernel Principal Component Analysis","Perform PCA in a feature space phi(x), defined by a kernel K such that\n"" K(x,y) = < phi(x), phi(y) >\n") | |
PLEARN_IMPLEMENT_OBJECT (KernelProjection,"Performs dimensionality reduction by learning eigenfunctions of a kernel.","") | |
PLEARN_IMPLEMENT_OBJECT (KPCATangentLearner,"Tangent learning based on KPCA Kernel","MULTI-LINE \nHELP") | |
DECLARE_OBJECT_PTR (KPCATangentLearner) | |
PLEARN_IMPLEMENT_OBJECT (LLE,"Performs Locally Linear Embedding.","") | |
PLEARN_IMPLEMENT_OBJECT (PCA,"Performs a Principal Component Analysis preprocessing (projecting on the principal directions).","This learner finds the empirical covariance matrix of the input part of\n""the training data, and learns to project its input vectors along the\n""principal eigenvectors of that matrix, optionally scaling by the inverse\n""of the square root of the eigenvalues (to obtained 'sphered', i.e.\n""Normal(0,I) data).\n""Alternative EM algorithms are provided, that may be useful when there is\n""a lot of data or the dimension is very high.\n") | |
DECLARE_OBJECT_PTR (PCA) | |
PLEARN_IMPLEMENT_OBJECT (SpectralClustering,"Spectral Clustering dimensionality reduction.","The current code only performs dimensionality reduction, and does not do\n""clustering.") | |
DECLARE_OBJECT_PTR (SpectralClustering) | |
PLEARN_IMPLEMENT_OBJECT (TangentLearner,"Learns local tangent plane of the manifold near which the data lie.","This learner models a manifold near which the data are supposed to lie.\n""The manifold is represented by a function which predicts a basis for the\n""tangent planes at each point x, given x in R^n. Let f_i(x) be the predicted i-th tangent\n""vector (in R^n). Then we will optimize the parameters that define the d functions f_i by\n""pushing the f_i so that they span the local tangent directions. Three criteria are\n""possible, according to the 'training_targets', 'normalize_by_neighbor_distance' and\n""'use_subspace_distance' option. The default criterion is the recommanded one, with\n"" training_targets='local_neighbors', normalize_by_neighbor_distance=1,\n""and use_subspace_distance=0 (it really did not work well in our experiments with\n""use_subspace_distance=1). This corresponds to the following cost function:\n"" sum_x sum_j min_w ||t(x,j) - sum_i w_i f_i(x)||^2 / ||t(x,j)||^2\n""where x is an example, t(x,j) is the difference vector between x and its j-th neighbor,\n""and the w_i are chosen freely for each j and x and correspond to the weights given to\n""each basis vector f_i(x) to obtain the projection of t(x,j) on the tangent plane.\n""More generally, if use_subspace_distance,\n"" criterion = min_{w,u} || sum_i w_i f_i - sum_j u_j t(x,j) ||^2\n"" under the constraint that ||w||=1.\n"" else\n"" criterion = sum_x sum_j min_w ||t(x,j) - sum_i w_i f_i(x)||^2 / ||t(x,j)||^2\n"" where the first sum is over training examples and w is a free d-vector,\n"" t(x,j) estimates local tangent directions based on near neighbors, and the denominator\n"" ||t(x,j)||^2 is optional (normalize_by_neighbor_distance). t(x,j)\n"" is defined according to the training_targets option:\n"" 'local_evectors' : local principal components (based on n_neighbors of x)\n"" 'local_neighbors': difference between x and its n_neighbors.\n""An additional criterion option that applies only to use_subspace_criterion=0 is\n""the orderered_vectors option, which applies a separate cost to each of the f_i:\n""the f_1 vector tries to make the projection of t(x,j) on f_1 close to t(x,j), while\n""the f_2 vector tries to make the projection of t(x,j) on the (f_1,f_2) basis close to t(x,j),\n""etc... i.e. the gradient on f_i is computed based on a cost that involves only\n""the projection on the first i vectors. This is analogous to principal component analysis:\n""the first vector tries to capture as much as possible of the variance, the second as much\n""as possible of the remaining variance, etc...\n""Different architectures are possible for the f_i(x) (architecture_type option):\n"" - multi_neural_network: one neural net per basis function\n"" - single_neural_network: single neural network with matrix output (one row per basis vector)\n"" - linear: F_{ij}(x) = sum_k A_{ijk} x_k\n"" - embedding_neural_network: the embedding function e_k(x) (for k-th dimension)\n"" is an ordinary neural network, and F_{ki}(x) = d(e_k(x))/d(x_i). This allows to\n"" output the embedding, instead of, or as well as, the tangent plane (output_type option).\n"" - embedding_quadratic: the embedding function e_k(x) (for k-th dimension)\n"" is a 2nd order polynomial of x, and F_{ki}(x) = d(e_k(x))/d(x_i). This allows to\n"" output the embedding, instead of, or as well as, the tangent plane (output_type option).\n") | |
DECLARE_OBJECT_PTR (TangentLearner) | |
map< string, string > | getModelAliases (const string &filename) |
reads a modelalias -> object_representation map from a model.aliases file | |
void | train_and_test (const string &modelalias, string trainalias, vector< string > testaliases) |
vector< string > | getMultipleModelAliases (const string &model) |
void | cross_valid (const string &modelalias, string trainalias, int kval) |
void | use (const string &modelfile, const string &datasetalias) |
void | usage () |
int | old_plearn_main (int argc, char **argv) |
int | plearn_main (int argc, char **argv) |
Variables | |
PLearnInit | _plearn_init_ |
const size_t | PL_HASH_NOMBRES_MAGIQUES [256] |
ostream * | error_stream = &cerr |
const string | dbdir_name = "" |
const char | MissingString = '\0' |
A few constants for representing missing values. | |
const unsigned char | MissingCharacter = (unsigned char)SCHAR_MIN |
const signed char | MissingSignedChar = (signed char)SCHAR_MIN |
const short | MissingShort = SHRT_MIN |
const int | MissingInt = INT_MIN |
const float | MissingFloat = MISSING_VALUE |
const double | MissingDouble = MISSING_VALUE |
const PDate | MissingDate |
const int | pl_dftbuflen = 4096 |
pl_stream_raw | raw |
pl_stream_clear_flags | clear_flags |
pl_stream_initiate | initiate |
pl_nullstreambuf | null_streambuf |
ostream | nullout |
a null ostream: writing to it does nothing | |
istream | nullin |
a null instream: reading from it does nothing | |
iostream | nullinout |
a null iostream: reading/writing from/to it does nothing | |
const char | DIGITsymbols [] = "0123456789" |
const char | ALPHAsymbols [] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" |
const char * | ORDINALS [] = {"d","nd","th","st",0} |
const tRule | rules [] |
const unsigned int | Hash_UNUSED_TAG = 0xffffffffu |
DataType must have new, delete and copy constructor Keys are unique. | |
const void * | Hash_DELETED_SLOT = (void *)0x00000001 |
const unsigned int | Hash_NOMBRES_MAGIQUES [256] |
double | pl_gammln_cof [7] |
float | tanhtable [TANHTABLESIZE] |
PLMathInitializer | pl_math_initializer |
_plearn_nan_type | plearn_nan |
long | the_seed = 0 |
int | iset = 0 |
real | gset |
double | MAXLOG = 7.09782712893383996732E2 |
double | MINLOG = -7.451332191019412076235E2 |
double | MACHEP = 1.11022302462515654042E-16 |
double | big = 4.503599627370496e15 |
double | biginv = 2.22044604925031308085e-16 |
string | vmat_view_dataset |
The specification of the dataset viewed by the vmat program. | |
bool | displayvg = false |
const int | STORAGE_UNUSED_HANDLE = -1 |
pl_fdstream.{h|cc} Defines a stream buffer than can be created from a POSIX file descriptor, along with a stream to use that buffer.
|
Definition at line 236 of file general.h. Referenced by PLearn::RVArray::sort(), and PLearn::RVInstanceArray::sort(). |
|
Definition at line 14 of file ProbabilitySparseMatrix.h. Referenced by PLearn::ProbabilitySparseMatrix::removeExtra(). |
|
|
a cost function maps (output,target) to a loss ************ CostFunc * Definition at line 246 of file Kernel.h. Referenced by PLearn::ClassifierFromDensity::computeCostsFromOutputs(), PLearn::Learner::computeLeaveOneOutCosts(), and PLearn::QuadraticUtilityCostFunction::QuadraticUtilityCostFunction(). |
|
In general, if there are N fields, x_1...x_N, and each can take y_i values, then the discrete value is:. where {j=N+1}^N is defined to be 1. For convenience, this class inherites from SDBVMFieldDiscrete, but does not use the inherited source_ member. Definition at line 864 of file SDBVMat.h. Referenced by PLearn::SDBVMFieldMultiDiscrete::SDBVMFieldMultiDiscrete(). |
|
Definition at line 54 of file TypeFactory.h. Referenced by PLearn::TypeFactory::register_type(). |
|
Definition at line 60 of file HyperOptimizer.h. Referenced by PLearn::HTryCombinations::optimize(), PLearn::HCoordinateDescent::optimize(), PLearn::HTryAll::optimize(), and PLearn::HSetVal::optimize(). |
|
Definition at line 59 of file HyperOptimizer.h. |
|
Definition at line 55 of file TypeFactory.h. Referenced by PLearn::TypeFactory::register_type(). |
|
Definition at line 49 of file Tensor.h. Referenced by PLearn::TTensor< T >::begin(), and PLearn::TTensorSubTensorIterator< T >::TTensorSubTensorIterator(). |
|
Definition at line 33 of file CopiesMap.h. |
|
Definition at line 34 of file CopiesMap.h. |
|
Definition at line 32 of file CopiesMap.h. |
|
Some typedefs to use the NODEEPCOPY macro with.
Definition at line 31 of file CopiesMap.h. |
|
|
Definition at line 418 of file RandomVar.h. |
|
Definition at line 77 of file Measurer.h. |
|
Typedef for the "new instance" function type, which returns a default-initialized Object.
Definition at line 53 of file TypeFactory.h. Referenced by PLearn::TypeFactory::register_type(). |
|
|
Definition at line 65 of file StatsCollector.h. Referenced by sortIdComparator(), and PLearn::StatsCollector::sortIds(). |
|
The stream classes.
|
|
|
|
a profit function maps (output,target) to a profit ********************************************************************** FINANCIAL STUFF |
|
Definition at line 196 of file SDBVMat.h. Referenced by PLearn::SDBVMatrix::appendField(). |
|
|
|
|
|
A utility typedef for the common case.
Definition at line 1178 of file SimpleDB.h. Referenced by PLearn::AutoSDBVMatrix::AutoSDBVMatrix(), halfShuffleRows(), PLearn::SDBVMatrix::SDBVMatrix(), and PLearn::SDBWithStats::SDBWithStats(). |
|
|
Definition at line 13 of file ProbabilitySparseMatrix.h. |
|
Definition at line 354 of file StatsIterator.h. Referenced by PLearn::StatsItArray::StatsItArray(). |
|
|
|
Definition at line 47 of file MemoryMap.h. Referenced by MemoryMap(). |
|
Definition at line 394 of file pl_math.h. Referenced by PLearn::MixtureRandomVariable::EMBprop(), and PLearn::Function::verifyGradient(). |
|
|
|
Definition at line 85 of file TypeFactory.h. Referenced by displayObjectHelp(), and PLearn::TypeFactory::getTypeMap(). |
|
|
Definition at line 53 of file StaticInitializer.h. Referenced by PLearn::StaticInitializer::StaticInitializer(). |
|
Definition at line 66 of file TypesNumeriques.h. |
|
A schema is simply a vector of field definitions. A field definition is a structure containing a field type and a precision. The meaning of precision is always the length in byte of the type. Type : What Precision is:
Definition at line 108 of file SimpleDB.h. Referenced by PLearn::RowIterator::getFieldType(), PLearn::FieldValue::operator *(), PLearn::FieldValue::operator+(), PLearn::FieldValue::operator-(), PLearn::FieldValue::operator/(), PLearn::FieldValue::operator<(), and PLearn::FieldValue::operator==(). |
|
Code a real number into a vector. Possible codings are one-hot-like variations, and, yes, identity. At the moment, the coding is specified by a simple enum, but later could be upgraded to support derived classes as well. This class supports remapping MISSING_VALUEs that are passed to setOutput onto some arbitrary real number (including MISSING_VALUE). One-hot coding supports a special treatment regarding missing values: if a MISSING_VALUE is passed to setOutput, and the missing_values_mapping leaves it as-is, and one-hot coding is in effect, all the elements of the one-hot vector are set to MISSING_VALUE.
Definition at line 65 of file SDBVMat.h. Referenced by PLearn::SDBVMFieldDiscrete::getOutputCoding(), and PLearn::SDBVMOutputCoder::getOutputCoding(). |
|
|
Definition at line 133 of file DistanceKernel.cc. |
|
returns the absolute path of the (possibly relative) specified path. if it's a directory, then there will be a trailing slash. Definition at line 108 of file fileutils.cc. References append_slash(), chdir(), extract_directory(), extract_filename(), getcwd(), and isdir(). Referenced by PLearn::PLearner::build_(), PLearn::PTester::build_(), PLearn::GaussianProcessRegressor::build_(), PLearn::FileVMatrix::FileVMatrix(), locateDatasetAliasesDir(), matlabSave(), readFileAndMacroProcess(), PLearn::PLearner::setExperimentDirectory(), PLearn::PTester::setExperimentDirectory(), PLearn::Learner::setExperimentDirectory(), and PLearn::VMatrix::setMetaDataDir(). |
|
Definition at line 82 of file VecElementVariable.h. Referenced by PLearn::AddCostToLearner::build_(). |
|
Definition at line 84 of file MatRowVariable.h. |
|
Definition at line 4596 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 1484 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLearn::TVec< T >::resize(). |
|
Definition at line 1467 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TVec< T >::resize(). |
|
add a bunch of sparse matrices and return result
Definition at line 297 of file SparseMatrix.cc. References PLearn::SparseMatrix::beginRow, PLearn::TVec< T >::clear(), PLearn::TVec< T >::data(), PLearn::SparseMatrix::endRow, k, PLERROR, PLearn::TVec< T >::resize(), PLearn::SparseMatrix::row, PLearn::TVec< T >::size(), and PLearn::SparseMatrix::values. Referenced by PLearn::Hash< KeyType, DataType >::addAndResize(), PLearn::MinusRandomVariable::EMBprop(), PLearn::FieldConvertCommand::FieldConvertCommand(), PLearn::SequentialModelSelector::matlabSave(), PLearn::SequentialLearner::matlabSave(), matlabSave(), operator+(), PLearn::ScaledGradientOptimizer::optimize(), and substract(). |
|
Definition at line 5742 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::GradientOptimizer::optimize(), PLearn::ExpMeanStatsIterator::update(), and PLearn::MeanStatsIterator::update(). |
|
Returns a string with the postfix appended to each *line* of the text string.
Definition at line 192 of file stringutils.h. References addprepostfix(). |
|
returns the list of names, but with an appended postfix
Definition at line 178 of file stringutils.h. References addprepostfix(). |
|
Returns a string with the prefix prepended to each *line* of the text string.
Definition at line 187 of file stringutils.h. References addprepostfix(). |
|
returns the list of names, but with a prepended prefix
Definition at line 174 of file stringutils.h. References addprepostfix(). Referenced by displayObjectHelp(), and lsdir_fullpath(). |
|
Definition at line 49 of file PExperiment.cc. References PLearn::TVec< T >::begin(), PLearn::TVec< T >::end(), and PLearn::TVec< T >::size(). |
|
Returns a string with the prefix prepended and the postfix appended to each *line* of the text string.
Definition at line 546 of file stringutils.cc. References removenewline(). |
|
returns the list of names, but with a prepended prefix and an appended postfix
Definition at line 532 of file stringutils.cc. Referenced by addpostfix(), and addprefix(). |
|
Definition at line 3720 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). |
|
Definition at line 3634 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLearn::TMat< T >::mod(), and PLERROR. |
|
Definition at line 3623 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), and PLearn::TMat< T >::mod(). Referenced by logPFittedGaussian(), and PLearn::EntropyContrast::set_NNcontinuous_gradient_from_extra_cost(). |
|
Definition at line 3760 of file TMat_maths_impl.h. |
|
Definition at line 3709 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(). |
|
Definition at line 5762 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::StderrStatsIterator::update(), and PLearn::StddevStatsIterator::update(). |
|
first row of transformation is the bias.
Definition at line 84 of file AffineTransformVariable.h. Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), and PLearn::ConditionalDensityNet::build_(). |
|
weight decay and bias decay terms This has not been tested yet [Pascal: a tester].
Definition at line 82 of file AffineTransformWeightPenalty.h. Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), and PLearn::ConditionalDensityNet::build_(). |
|
Definition at line 5554 of file TMat_maths_impl.h. References PLearn::TMat< T >::clear(), fill_random_uniform(), PLearn::TMat< T >::length(), and PLearn::TMat< T >::width(). |
|
Definition at line 460 of file plapack.cc. References computeMeanAndCovar(), eigen_SymmMat(), sqrt(), and PLearn::TMat< T >::width(). |
|
returns all sources that influence the given vars
Definition at line 1094 of file VarArray.cc. References PLearn::VarArray::sources(), and PLearn::VarArray::unmarkAncestors(). |
|
|
Definition at line 5337 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and PLERROR. |
|
Definition at line 5327 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and PLERROR. |
|
Transform a vector of T and a vector of U into a vector of V, through a binary function.
Definition at line 1400 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
Transform a vector of T into a vector of U through a unary function.
Definition at line 1385 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
Transform a vector of T into a vector of U through a unary function. Note: output type need not be specified in this case Definition at line 1376 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(). Referenced by PLearn::Kernel::apply(), PLearn::LogAddVariable::bprop(), PLearn::MixtureRandomVariable::EMBprop(), PLearn::DiagonalNormalRandomVariable::EMBprop(), PLearn::MultinomialRandomVariable::EMUpdate(), PLearn::MixtureRandomVariable::EMUpdate(), PLearn::DiagonalNormalRandomVariable::EMUpdate(), exp(), PLearn::LogAddVariable::fprop(), and PLearn::Function::verifyGradient(). |
|
Definition at line 76 of file ArgmaxVariable.h. |
|
return maxi*width+maxj
Definition at line 4000 of file TMat_maths_impl.h. References argmax(), and PLearn::TMat< T >::width(). |
|
Definition at line 3969 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 575 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), is_missing(), PLearn::TVec< T >::length(), MISSING_VALUE, and PLERROR. |
|
|
Definition at line 76 of file ArgminVariable.h. |
|
return mini*width+minj
Definition at line 3991 of file TMat_maths_impl.h. References argmin(), and PLearn::TMat< T >::width(). |
|
Stores the position of the min in the 'mini' & 'minj' arg.
Definition at line 3947 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 625 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), is_missing(), PLearn::TVec< T >::length(), MISSING_VALUE, and PLERROR. |
|
Definition at line 606 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by argmin(), columnArgmin(), PLearn::ArgminVariable::fprop(), PLearn::HTryAll::optimize(), PLearn::HTryCombinations::recursive_optimize(), rowArgmin(), PLearn::MinVariable::symbolicBprop(), and PLearn::SequentialModelSelector::train(). |
|
returns the value of v within the_values_of_v that gives the lowest value of expression (which may depend on inputs). Definition at line 86 of file ArgminOfVariable.h. |
|
Definition at line 611 of file VMat_maths.cc. References count, k, PLearn::VMat::length(), PLearn::TVec< T >::resize(), PLearn::TMat< T >::resize(), sqrt(), square(), and PLearn::VMat::width(). |
|
Definition at line 3684 of file TMat_maths_impl.h. References PLearn::TVec< T >::clear(), PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLearn::TVec< T >::resize(), and PLearn::TMat< T >::width(). |
|
Definition at line 349 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
replaces all backslashes with slash
Definition at line 355 of file stringutils.cc. |
|
Definition at line 78 of file BinaryClassificationLossVariable.h. References PLERROR. Referenced by PLearn::NNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), and PLearn::MultiInstanceNNet::build_(). |
|
Definition at line 313 of file TMat_sort.h. References k, PLearn::TMat< T >::length(), and x. |
|
Definition at line 281 of file TMat_sort.h. References k, PLearn::TVec< T >::length(), and x. Referenced by estimatedCumProb(), PLearn::SDBVMFieldRemapIntervals::getDiscreteValue(), positionOfClosestElement(), and rebalanceNClasses(). |
|
alias
Definition at line 106 of file random.h. References bnldev(). Referenced by PLearn::CompactVMatrix::perturb(). |
|
Definition at line 172 of file TVec_impl.h. References binread(), PLearn::TVec< T >::data(), and PLearn::TVec< T >::resize(). |
|
|
|
Definition at line 224 of file pl_io.h. References x. |
|
Definition at line 220 of file pl_io.h. References x. |
|
Definition at line 218 of file pl_io.h. References x. |
|
Definition at line 216 of file pl_io.h. References x. |
|
Definition at line 214 of file pl_io.h. References x. |
|
|
|
Definition at line 201 of file pl_io.h. References x. |
|
|
|
Definition at line 189 of file pl_io.h. References x. |
|
Definition at line 187 of file pl_io.h. References x. |
|
Definition at line 185 of file pl_io.h. References x. |
|
Definition at line 183 of file pl_io.h. References x. |
|
Definition at line 181 of file pl_io.h. References x. |
|
Definition at line 179 of file pl_io.h. References x. |
|
|
|
|
|
|
|
Definition at line 138 of file pl_io.h. References x. |
|
Definition at line 134 of file pl_io.h. References x. |
|
Definition at line 132 of file pl_io.h. References x. |
|
Definition at line 130 of file pl_io.h. References x. |
|
Definition at line 128 of file pl_io.h. References x. |
|
|
|
Definition at line 115 of file pl_io.h. References x. |
|
|
|
Definition at line 102 of file pl_io.h. References x. |
|
Definition at line 100 of file pl_io.h. References x. |
|
Definition at line 98 of file pl_io.h. References x. |
|
Definition at line 96 of file pl_io.h. References x. |
|
Definition at line 94 of file pl_io.h. References x. |
|
Definition at line 92 of file pl_io.h. References x. |
|
|
|
Definition at line 78 of file pl_io.h. References x. Referenced by binread(), binread_compressed(), binread_double(), binreadField(), PLearn::RowMapSparseMatrix< real >::read(), read_compr_mode_and_size(), and PLearn::Learner::test(). |
|
|
|
|
|
|
|
|
|
|
|
|
|
Definition at line 877 of file PStream.h. References binread_(), and x. |
|
Definition at line 874 of file PStream.h. References binread_(), and x. |
|
Definition at line 861 of file PStream.h. References PLERROR, PLearn::PStream::read(), and x. |
|
Definition at line 847 of file PStream.h. References PLERROR. |
|
Definition at line 1457 of file PStream.cc. References endianswap(), PLERROR, PLearn::PStream::read(), val, and x. |
|
The binread_ for float and double are special.
Definition at line 1411 of file PStream.cc. References endianswap(), PLERROR, val, and x. |
|
Definition at line 1360 of file PStream.cc. References PLearn::PStream::get(), PLERROR, and x. Referenced by binread_(), PLearn::TMat< pair< real, real > >::read(), and readSequence(). |
|
Definition at line 380 of file pl_io.cc. References binread(), mode, PLERROR, read_compr_mode_and_size(), and val. |
|
Definition at line 332 of file pl_io.cc. References binread(), mode, PLERROR, and read_compr_mode_and_size(). |
|
Definition at line 217 of file pl_io.cc. References binread(), mode, PLERROR, read_compr_mode_and_size(), and val. |
|
Definition at line 129 of file pl_io.cc. References binread(), mode, PLERROR, and read_compr_mode_and_size(). Referenced by PLearn::DiskVMatrix::getNewRow(). |
|
Definition at line 195 of file TVec_impl.h. References binread(), binread_double(), PLearn::TVec< T >::data(), and PLearn::TVec< T >::resize(). |
|
|
|
Definition at line 230 of file pl_io.h. References x. |
|
Definition at line 209 of file pl_io.h. References binread_double(), and x. |
|
Definition at line 207 of file pl_io.h. References x. |
|
|
|
Definition at line 144 of file pl_io.h. References x. |
|
Definition at line 123 of file pl_io.h. References binread_double(), and x. |
|
Definition at line 121 of file pl_io.h. References x. Referenced by binread_double(), and binreadField_double(). |
|
Definition at line 244 of file pl_io_deprecated.h. References binread(), readFieldName(), and x. |
|
Definition at line 252 of file pl_io_deprecated.h. References binread_double(), readFieldName(), and x. |
|
Definition at line 161 of file TVec_impl.h. References binwrite(), PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 225 of file pl_io.h. References binwrite(), and x. |
|
Definition at line 223 of file pl_io.h. References x. |
|
Definition at line 219 of file pl_io.h. References x. |
|
Definition at line 217 of file pl_io.h. References x. |
|
Definition at line 215 of file pl_io.h. References x. |
|
multi-element versions, giving address and number of elements
Definition at line 213 of file pl_io.h. References x. |
|
Definition at line 202 of file pl_io.h. References binwrite(), and x. |
|
Definition at line 200 of file pl_io.h. References x. |
|
note that bool are saved as unsigned short
Definition at line 191 of file pl_io.h. References binwrite(), and x. |
|
Definition at line 188 of file pl_io.h. References x. |
|
Definition at line 186 of file pl_io.h. References x. |
|
Definition at line 184 of file pl_io.h. References x. |
|
Definition at line 182 of file pl_io.h. References x. |
|
Definition at line 180 of file pl_io.h. References x. |
|
binwrite and binread for a few basic types
Definition at line 178 of file pl_io.h. References x. |
|
Definition at line 169 of file pl_io.h. References binwrite(), and x. |
|
general purpose (but less efficient) version for pointers to things that have a binwrite/binread function
Definition at line 161 of file pl_io.h. References binwrite(), and x. |
|
Definition at line 139 of file pl_io.h. References binwrite(), and x. |
|
Definition at line 137 of file pl_io.h. References x. |
|
Definition at line 133 of file pl_io.h. References x. |
|
Definition at line 131 of file pl_io.h. References x. |
|
Definition at line 129 of file pl_io.h. References x. |
|
multi-element versions, giving address and number of elements
Definition at line 127 of file pl_io.h. References x. |
|
Definition at line 116 of file pl_io.h. References binwrite(), and x. |
|
Definition at line 114 of file pl_io.h. References x. |
|
note that bool are saved as unsigned short
Definition at line 104 of file pl_io.h. References binwrite(), and x. |
|
Definition at line 101 of file pl_io.h. References x. |
|
Definition at line 99 of file pl_io.h. References x. |
|
Definition at line 97 of file pl_io.h. References x. |
|
Definition at line 95 of file pl_io.h. References x. |
|
Definition at line 93 of file pl_io.h. References x. |
|
binwrite and binread for a few basic types
Definition at line 91 of file pl_io.h. References x. |
|
Definition at line 82 of file pl_io.h. References binwrite(), and x. |
|
general purpose (but less efficient) version for pointers to things that have a binwrite/binread function
Definition at line 74 of file pl_io.h. References x. Referenced by binwrite(), binwrite_compressed(), binwrite_double(), binwriteField(), main(), PLearn::Learner::test(), PLearn::RowMapSparseMatrix< real >::write(), and write_compr_mode_and_size(). |
|
Definition at line 841 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 839 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 836 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 834 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 831 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 829 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 826 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 824 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 821 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 819 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 816 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 814 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 811 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 809 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 806 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 804 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 801 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 799 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 796 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 794 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 791 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 789 of file PStream.h. References PLearn::PStream::write(), and x. |
|
Definition at line 778 of file PStream.h. References PLearn::PStream::put(), and x. |
|
Serialization of sequences *.
Definition at line 765 of file PStream.h. References PLearn::PStream::outmode. Referenced by PLearn::TMat< pair< real, real > >::write(), and writeSequence(). |
|
Definition at line 420 of file pl_io.cc. References PLERROR. |
|
Definition at line 375 of file pl_io.cc. References PLERROR. |
|
Definition at line 257 of file pl_io.cc. References binwrite(), val, and write_compr_mode_and_size(). |
|
version for compressed array (efficient for sparse data, and small integer values) (format is detailed in .cc, see write_compr_mode_and_size function in general.cc)
Definition at line 172 of file pl_io.cc. References binwrite(), val, and write_compr_mode_and_size(). Referenced by PLearn::DiskVMatrix::appendRow(). |
|
Definition at line 184 of file TVec_impl.h. References binwrite(), binwrite_double(), PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 231 of file pl_io.h. References binwrite(), and x. |
|
Definition at line 229 of file pl_io.h. References x. |
|
Definition at line 208 of file pl_io.h. References binwrite_double(), and x. |
|
Definition at line 206 of file pl_io.h. References x. |
|
Definition at line 145 of file pl_io.h. References binwrite(), and x. |
|
Definition at line 143 of file pl_io.h. References x. |
|
Definition at line 122 of file pl_io.h. References binwrite_double(), and x. |
|
Definition at line 120 of file pl_io.h. References x. Referenced by binwrite_double(), and binwriteField_double(). |
|
generic field BINARY writing and reading
Definition at line 240 of file pl_io_deprecated.h. References binwrite(), writeFieldName(), and x. |
|
Definition at line 248 of file pl_io_deprecated.h. References binwrite_double(), writeFieldName(), and x. |
|
returns a binomial random number with probability = 'pp' and trials number = 'n' Definition at line 468 of file random.cc. References exp(), log(), log_gamma(), Pi, sqrt(), and uniform_sample(). Referenced by binomial_sample(). |
|
returns a SelectRowsVMatrix that has d's rows bootstrapped (sample with replacement and optionally re-ordered). Optionally the repeated rows are eliminated (this is actually done by shuffling and taking the first 2/3 of the rows, so the length() will be always the same). Note that the default values are fine for "on-line" learning algorithms but does not correspond to the usual "bootstrap". Definition at line 782 of file VMat_maths.cc. References PLearn::VMat::length(), PLearn::TVec< T >::resize(), PLearn::VMat::rows(), shuffleElements(), sortElements(), PLearn::TVec< T >::subVec(), uniform_multinomial_sample(), and Vec. |
|
sample with replacement the rows of source and put them in destination.
Definition at line 116 of file random.h. References PLearn::TMat< T >::length(), PLearn::TMat< T >::resize(), uniform_multinomial_sample(), and PLearn::TMat< T >::width(). |
|
returns a random number uniformly distributed between a and b Definition at line 287 of file random.cc. References RNMX, and uniform_sample(). Referenced by PLearn::UniformSampleVariable::fprop(), PLearn::UniformDistribution::generate(), and PLearn::SpiralDistribution::generate(). |
|
Definition at line 939 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TVec< T >::resize(). |
|
Definition at line 398 of file TMat_maths_specialisation.h. References prefetchnta, and x. |
|
Definition at line 4862 of file TMat_maths_impl.h. References k, PLearn::TMat< T >::length(), and PLearn::TMat< T >::resize(). |
|
Definition at line 5027 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), k, PLearn::TMat< T >::length(), and x. |
|
|
|
change current directory
Definition at line 100 of file fileutils.cc. References PLERROR. Referenced by abspath(), and readAndMacroProcess(). |
|
Definition at line 487 of file ProbabilitySparseMatrix.h. References PLearn::Set::contains(), and PLERROR. |
|
Definition at line 463 of file ProbabilitySparseMatrix.h. References PLearn::Set::begin(), PLearn::Set::end(), PLearn::ProbabilitySparseMatrix::getPYx(), PLERROR, SetIterator, x, and PLearn::ProbabilitySparseMatrix::X. |
|
Definition at line 4794 of file TMat_maths_impl.h. References k, PLearn::TMat< T >::length(), PLERROR, PLWARNING, PLearn::TMat< T >::resize(), sqrt(), sum(), and PLearn::TMat< T >::width(). Referenced by choleskyInvert(), choleskySolve(), logOfNormal(), solveLinearSystemByCholesky(), and solveTransposeLinearSystemByCholesky(). |
|
Definition at line 5164 of file TMat_maths_impl.h. References choleskyInvert(), and PLearn::TMat< T >::length(). |
|
Definition at line 5094 of file TMat_maths_impl.h. References choleskyDecomposition(), PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), log(), PLearn::TMat< T >::resize(), and sum(). Referenced by choleskyInvert(). |
|
Definition at line 5733 of file TMat_maths_impl.h. References choleskySolve(), and x. |
|
Definition at line 5151 of file TMat_maths_impl.h. References choleskyDecomposition(), choleskySolve(), PLearn::TMat< T >::length(), and x. |
|
Definition at line 4953 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, sum(), and PLearn::TMat< T >::width(). |
|
Definition at line 4915 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, sum(), PLearn::TMat< T >::width(), and x. Referenced by choleskySolve(), logOfNormal(), solveLinearSystemByCholesky(), and solveTransposeLinearSystemByCholesky(). |
|
if outputs are neg distances to each class: dist_to_correct_class/(dist_to_correct_class+dist_to_closest_other_class)
Definition at line 79 of file ClassDistanceProportionCostFunction.h. |
|
Definition at line 98 of file ClassErrorCostFunction.h. Referenced by PLearn::ClassifierFromDensity::computeCostsFromOutputs(). |
|
Definition at line 87 of file LiftBinaryCostFunction.h. |
|
difference between correct class score and max of other class' scores
Definition at line 96 of file ClassMarginCostFunction.h. |
|
Definition at line 5618 of file TMat_maths_impl.h. References argmax(), and PLearn::TMat< T >::length(). |
|
Definition at line 79 of file ClassificationLossVariable.h. Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), and PLearn::NeighborhoodSmoothnessNNet::build_(). |
|
Definition at line 609 of file TMat_impl.h. References x. |
|
Definition at line 189 of file general.h. References x. |
|
Definition at line 188 of file general.h. References x. |
|
Definition at line 187 of file general.h. References x. |
|
Definition at line 186 of file general.h. References x. |
|
Definition at line 185 of file general.h. References x. |
|
Definition at line 184 of file general.h. References x. |
|
Definition at line 183 of file general.h. References x. |
|
Definition at line 182 of file general.h. References x. |
|
Definition at line 181 of file general.h. References x. |
|
Definition at line 180 of file general.h. References x. |
|
Definition at line 179 of file general.h. References x. |
|
Definition at line 178 of file general.h. References x. |
|
clearing an element (that's called by clear_n...) Default implementation for clearing any type (will work for objects, but not for base types like int, because the default "constructor" for int leaves it uninitialised... Hence the specialisations below Definition at line 175 of file general.h. References x. Referenced by clear_n(). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
efficient specialisation for built-in types
|
|
clears n elements starting at iterator position begin
Definition at line 193 of file general.h. References clear_1(). Referenced by PLearn::TVec< pair< real, real > >::clear(), PLearn::TMat< pair< real, real > >::clear(), PLearn::Storage< pair< real, real > >::mem_alloc(), and PLearn::Storage< pair< real, real > >::resize(). |
|
closest point to x on hyperplane that passes through all points (with weight decay)
Definition at line 615 of file plapack.h. References constrainedLinearRegression(), transposeProduct(), and x. Referenced by hyperplaneDistance(). |
|
Definition at line 559 of file Grapher.cc. References PLERROR, and rgb2real(). Referenced by displayPoints(), PLearn::RGBImage::fill(), PLearn::Grapher::plot_2D_classification(), and PLearn::GraphicalBiText::printNode(). |
|
Definition at line 4252 of file TMat_maths_impl.h. References argmax(), PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4267 of file TMat_maths_impl.h. References argmin(), PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
returns a view of this vector as a single column matrix
Definition at line 739 of file TMat_impl.h. References PLearn::TVec< T >::length(), and PLearn::TVec< T >::toMat(). Referenced by PLearn::GaussMix::computeMeansAndCovariances(), PLearn::LocallyWeightedDistribution::log_density(), PLearn::GaussMix::updateFromConditionalSorting(), and PLearn::GaussMix::updateSampleWeights(). |
|
Definition at line 4230 of file TMat_maths_impl.h. References PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), max(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::MatrixSoftmaxVariable::fprop(). |
|
|
Definition at line 4241 of file TMat_maths_impl.h. References PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), min(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 73 of file ColumnSumVariable.h. |
|
all the operations below result in a row vector and are obtained by iterating (e.g. summing) over the row index, e.g. yielding the sum of each column in the result. Definition at line 4146 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by columnMean(), PLearn::GaussMix::computeMeansAndCovariances(), PLearn::TimesRowVariable::symbolicBprop(), PLearn::PlusRowVariable::symbolicBprop(), PLearn::MinusTransposedColumnVariable::symbolicBprop(), PLearn::MinusRowVariable::symbolicBprop(), and PLearn::DuplicateRowVariable::symbolicBprop(). |
|
Definition at line 4159 of file TMat_maths_impl.h. References PLearn::TMat< T >::column(), PLearn::TVec< T >::length(), PLERROR, sum_of_squares(), and PLearn::TMat< T >::width(). |
|
Definition at line 4199 of file TMat_maths_impl.h. References PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, variance(), and PLearn::TMat< T >::width(). Referenced by computeMeanAndStddev(), and computeMeanAndVariance(). |
|
Definition at line 4181 of file TMat_maths_impl.h. References PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, PLearn::TMat< T >::toVecCopy(), weighted_mean(), and PLearn::TMat< T >::width(). |
|
Definition at line 4210 of file TMat_maths_impl.h. References PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), mean(), PLERROR, PLearn::TMat< T >::toVecCopy(), weighted_variance(), and PLearn::TMat< T >::width(). |
|
gives a (intermediate) code for a numeric string (starting with #)
Definition at line 202 of file TypesNumeriques.cc. References compactRepresentationRangesAndOrdinals(), compactRepresentationShrinkNum(), and compactRepresentationTranslate(). Referenced by numericType(). |
|
Definition at line 178 of file TypesNumeriques.cc. Referenced by compactRepresentation(). |
|
Definition at line 148 of file TypesNumeriques.cc. Referenced by compactRepresentation(). |
|
Definition at line 119 of file TypesNumeriques.cc. References ALPHAsymbols, DIGITsymbols, elementOf(), ORDINALS, and stringPos(). Referenced by compactRepresentation(). |
|
Definition at line 1050 of file MatIO.cc. Referenced by loadSTATLOG(), and loadUCIMLDB(). |
|
Definition at line 1676 of file TMat_maths_impl.h. References complement_indices(), PLearn::TVec< T >::data(), PLearn::TVec< T >::fill(), PLearn::TVec< T >::length(), and PLearn::TVec< T >::resize(). Referenced by complement_indices(). |
|
Definition at line 535 of file pl_io.cc. References val, and write_compr_mode_and_size_ptr(). |
|
Definition at line 2366 of file TMat_maths_impl.h. References endl(), PLearn::TMat< T >::length(), mode, PLERROR, and read_compr_mode_and_size_ptr(). |
|
This will return a length*width matrix containing the computed outputs for a learner which has 2 dimensional input, where the inputs are taken on a regular grid ranging [min_x,max_x]x[min_y,max_y]. The mapping to the matrix m is m(i,j) = f(min_x+i*(max_x-min_x)/(length-1), min_y+j*(max_y-min_y)/(width-1)) If the output is of length 1: (class depends on which side of the threshold we are) the result put in m is output[0] - singleoutput_threshold If the output is of length 2: (score for each class) the result put in m is output[0]-output[1] Definition at line 622 of file DisplayUtils.cc. References PLearn::Learner::inputsize(), PLearn::Learner::outputsize(), PLERROR, and PLearn::Learner::use(). Referenced by displayDecisionSurface(). |
|
Definition at line 1000 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), fastsigmoid(), PLearn::TVec< T >::length(), and PLERROR. Referenced by fastsigmoid(). |
|
Definition at line 963 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), fasttanh(), PLearn::TVec< T >::length(), and PLERROR. Referenced by fasttanh(). |
|
Definition at line 1018 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), inverse_sigmoid(), PLearn::TVec< T >::length(), and PLERROR. Referenced by inverse_sigmoid(). |
|
Definition at line 48 of file learner_utils.cc. References PLearn::VMat::length(). |
|
Returns a nx*ny x learner->outputsize() matrix of outputs corresponding to the nx*ny grid points.
Definition at line 88 of file learner_utils.cc. References PLERROR, tostring(), PLearn::ProgressBar::update(), and x. |
|
Definition at line 862 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), log(), and PLERROR. Referenced by log(). |
|
Definition at line 898 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and safelog(). Referenced by safelog(). |
|
Definition at line 981 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and sigmoid(). Referenced by sigmoid(). |
|
Definition at line 880 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and sqrt(). Referenced by sqrt(). |
|
Definition at line 925 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and tanh(). Referenced by PLearn::EntropyContrast::computeNNcontinuous_hidden(), and tanh(). |
|
The returned Mat is structured as follows: row 0: mean row 1: stddev row 2: min row 3: max row 4: nmissing row 5: nzero (==0) row 6: npositive (>0) row 7: nnegative (<0) row 8: mean of positive row 9: stddev of positive Definition at line 128 of file VMat_maths.cc. References PLearn::TVec< T >::data(), PLearn::TVec< T >::fill(), is_missing(), PLearn::TVec< T >::length(), PLearn::VMat::length(), MAX_ROW, MEAN_ROW, MEANPOS_ROW, MIN_ROW, NMISSING_ROW, NNEGATIVE_ROW, NPOSITIVE_ROW, NZERO_ROW, sqrt(), square(), STDDEV_ROW, STDDEVPOS_ROW, val, and PLearn::VMat::width(). Referenced by computeConditionalMeans(). |
|
compute the mean and standard deviations of the colums of m (looping over s) (the result is stored in column vectors meanvec and stddevvec)
Definition at line 4345 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), rowMean(), rowVariance(), and sqrt(). |
|
Computes conditional mean and variance of each target, conditoned on the values of categorical integer input feature. The basic_stats matrix may be passed if previously computed (see computeBasicStats) or an empty matrix may be passed otherwise, that will compute the basic statistics. An input feature #i is considered a categorical integer input if its min and max (as found in basic_stats) are integers and are not too far apart. For these, the correponding returned array[i] matrix will contain max-min+1 rows (one for each integer value between min and max inclusive), each row containing the corresponding input value, the number of times it occured, and mean and variance for each target. The returned matrix array[i] for input features that are not considered categorical integers are empty. Definition at line 258 of file VMat_maths.cc. References computeBasicStats(), is_integer(), PLearn::TMat< T >::isNotEmpty(), k, PLearn::TMat< T >::length(), PLearn::VMat::length(), PLearn::TVec< T >::length(), Mat, MAX_ROW, mean(), MIN_ROW, sqrt(), square(), PLearn::TVec< T >::subVec(), sum(), sumsquare(), variance(), and PLearn::VMat::width(). |
|
returns the cooccurence statistics conditioned on the given field
Definition at line 235 of file VMat_maths.cc. References endl(), PLearn::VMat::length(), and PLearn::VMat::width(). |
|
Definition at line 4302 of file TMat_maths_impl.h. References externalProductScaleAcc(), PLearn::TMat< T >::length(), PLearn::TMat< T >::resize(), transposeProduct(), and PLearn::TMat< T >::width(). |
|
Computes the (possibly weighted) mean and covariance of the input part of the dataset. This will only call d->getExamplev Definition at line 358 of file VMat_maths.cc. References PLearn::TVec< T >::clear(), PLearn::VMat::getExample(), PLearn::VMat::length(), multiplyAcc(), and PLearn::TVec< T >::resize(). |
|
Definition at line 377 of file VMat_maths.cc. References PLearn::TMat< T >::clear(), PLearn::TVec< T >::clear(), externalProductScaleAcc(), PLearn::VMat::getExample(), PLearn::VMat::length(), multiplyAcc(), PLearn::TMat< T >::resize(), and PLearn::TVec< T >::resize(). Referenced by PLearn::GaussMix::computeMeansAndCovariances(), and PLearn::PCA::train(). |
|
Definition at line 406 of file VMat_maths.cc. References PLearn::TVec< T >::clear(), PLearn::VMat::getExample(), PLearn::VMat::length(), multiplyAcc(), PLearn::TVec< T >::resize(), PLearn::TVec< T >::size(), and var(). Referenced by PLearn::GaussMix::computeMeansAndCovariances(). |
|
Definition at line 139 of file ManifoldParzen2.cc. References center(), columnMean(), computeNearestNeighbors(), computePrincipalComponents(), mean(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ManifoldParzen2::train(). |
|
Definition at line 115 of file VMat_maths.cc. References PLearn::TVec< T >::clear(), PLearn::VMat::length(), PLearn::TVec< T >::resize(), and PLearn::VMat::width(). |
|
compute the mean of the rows of m (looping over columns)
Definition at line 4291 of file TMat_maths_impl.h. References columnMean(). Referenced by PLearn::CenteredVMatrix::build_(), computeMeanAndVariance(), and PLearn::EmpiricalDistribution::expectation(). |
|
computes empirical mean and covariance in a single pass < Parallel implementation < default sequential implementation Definition at line 518 of file VMat_maths.cc. References PLearn::TMat< T >::clear(), PLearn::TVec< T >::clear(), computeMeanAndCovar(), PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), externalProductAcc(), externalProductScaleAcc(), PLearn::TMat< T >::isCompact(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLearn::VMat::length(), PLERROR, PLearn::TMat< T >::resize(), PLearn::TVec< T >::resize(), PLearn::TMat< T >::size(), PLearn::VMat::toMat(), PLearn::TMat< T >::width(), and PLearn::VMat::width(). |
|
|
Definition at line 604 of file VMat_maths.cc. References computeMeanAndVariance(), PLearn::TVec< T >::length(), and sqrt(). |
|
compute the mean and standard deviations of the rows of m (looping over columns)
Definition at line 4333 of file TMat_maths_impl.h. References columnMean(), columnVariance(), PLearn::TVec< T >::length(), and sqrt(). Referenced by PLearn::ShiftAndRescaleVMatrix::build_(), loadClassificationDataset(), normalize(), normalizeDataSet(), normalizeDataSets(), and PLearn::TestDependenciesCommand::run(). |
|
Definition at line 336 of file VMat_maths.cc. References PLearn::TVec< T >::clear(), computeMean(), PLearn::VMat::length(), multiply(), PLearn::TVec< T >::resize(), substract(), and PLearn::VMat::width(). |
|
compute the mean and variance of the rows of m (looping over columns)
Definition at line 4295 of file TMat_maths_impl.h. References columnMean(), and columnVariance(). Referenced by computeMeanAndStddev(), and PLearn::PCA::train(). |
|
Definition at line 96 of file ManifoldParzen2.cc. References PLearn::TVec< T >::first(), PLearn::BottomNI< T >::getBottomN(), k, PLearn::TMat< T >::length(), PLearn::BottomNI< T >::nZeros(), PLERROR, powdistance(), PLearn::BottomNI< T >::sort(), PLearn::BottomNI< T >::update(), and x. |
|
|
Definition at line 184 of file GenerateDecisionPlot.cc. References k, PLearn::TVec< T >::resize(), tostring(), PLearn::ProgressBar::update(), and x. |
|
Definition at line 151 of file GenerateDecisionPlot.cc. References k, PLearn::TVec< T >::length(), PLearn::TVec< T >::resize(), tostring(), and PLearn::ProgressBar::update(). Referenced by computeOutputFieldsAutoRange(). |
|
Definition at line 217 of file GenerateDecisionPlot.cc. References computeOutputFields(), computeRange(), and PLearn::VMat::subMatColumns(). |
|
Definition at line 120 of file ManifoldParzen2.cc. References eigenVecOfSymmMat(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, PLearn::TMat< T >::resize(), transposeProduct(), and PLearn::TMat< T >::width(). Referenced by computeLocalPrincipalComponents(). |
|
Definition at line 83 of file VMat_maths.cc. References PLearn::TVec< T >::fill(), PLearn::VMat::length(), max(), min(), PLearn::TVec< T >::resize(), and PLearn::VMat::width(). Referenced by computeOutputFieldsAutoRange(), computeXYPositions(), determine_grid_for_dataset(), and DX_create_grid_outputs_file(). |
|
Definition at line 592 of file StatsCollector.cc. References k, PLearn::TVec< T >::length(), and PLearn::TVec< T >::resize(). Referenced by PLearn::VMatrix::getRanges(). |
|
For each column of mat, sort the elements and put in the 'ranks' matrix (of the same dimensions) the rank of original elements. More precisely, Let mat(i,j) be the k-th largest element of column j, than ranks(i,j) will be k. Definition at line 177 of file random.h. References PLearn::TMat< T >::length(), PLearn::TVec< T >::resize(), PLearn::TMat< T >::resize(), shuffleRows(), sortRows(), and PLearn::TMat< T >::width(). Referenced by SpearmanRankCorrelation(). |
|
Definition at line 104 of file VMat_maths.cc. References PLearn::VMat::length(), mean(), PLearn::TVec< T >::resize(), and PLearn::VMat::width(). |
|
Retirns the unconditional statistics of each field.
Definition at line 212 of file VMat_maths.cc. References PLearn::VMat::length(), PLearn::ProgressBar::update(), and PLearn::VMat::width(). |
|
Definition at line 191 of file VMat_maths.cc. References PLearn::VecStatsCollector::finalize(), PLearn::VecStatsCollector::forget(), PLearn::VMat::length(), PLearn::VecStatsCollector::setFieldNames(), PLearn::ProgressBar::update(), PLearn::VecStatsCollector::update(), and PLearn::VMat::width(). Referenced by PLearn::ShiftAndRescaleVMatrix::build_(), and PLearn::VMatrix::getStats(). |
|
Statistics functions *.
Definition at line 64 of file VMat_maths.cc. References PLearn::TVec< T >::clear(), PLearn::TVec< T >::length(), PLearn::VMat::length(), PLERROR, PLearn::TVec< T >::resize(), sum(), and PLearn::VMat::width(). Referenced by computeWeightedMeanAndCovar(). |
|
Last column of d is supposed to contain the weight for each sample Samples with a weight less or equal to threshold will be ignored (returns the sum of all the weights actually used).
Definition at line 470 of file VMat_maths.cc. References PLearn::TMat< T >::clear(), PLearn::TVec< T >::clear(), externalProductScaleAcc(), PLearn::VMat::length(), multiplyAcc(), PLearn::TMat< T >::resize(), PLearn::TVec< T >::resize(), substract(), PLearn::TVec< T >::subVec(), and PLearn::VMat::width(). |
|
Definition at line 446 of file VMat_maths.cc. References PLearn::TMat< T >::clear(), computeWeightedMean(), externalProductScaleAcc(), PLearn::VMat::length(), PLearn::TMat< T >::resize(), substract(), and PLearn::VMat::width(). Referenced by PLearn::GaussianDistribution::train(). |
|
Definition at line 233 of file GenerateDecisionPlot.cc. References computeRange(), PLearn::TVec< T >::data(), PLearn::VMat::length(), PLearn::TVec< T >::resize(), PLearn::VMat::subMatColumns(), and x. |
|
Definition at line 202 of file TMat_impl.h. References PLearn::TVec< T >::length(). |
|
Definition at line 149 of file Array_impl.h. References PLearn::TVec< T >::data(), k, and PLearn::TVec< T >::length(). Referenced by PLearn::Learner::computeTestStatistics(), local_neighbors_differences(), PLearn::SequentialModelSelector::matlabSave(), removeElement(), and PLearn::Learner::test(). |
|
deprecated old version, do not use!
Definition at line 92 of file ConcatOfVariable.h. References concatOf(). |
|
concatOf
Definition at line 88 of file ConcatOfVariable.h. Referenced by concatOf(). |
|
negative log conditional probability
Definition at line 103 of file NegLogProbCostFunction.h. References normalize(). Referenced by PLearn::ClassifierFromDensity::computeCostsFromOutputs(). |
|
Returns w that minimizes ||X.w - Y||^2 + lambda.||w||^2 under constraint w_i = 1 Xt is the transposed of the input matrix X; Y is the target vector. This doesn't include any bias term. Definition at line 375 of file plapack.cc. References dot(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, solveLinearSystem(), PLearn::TVec< T >::subVec(), and PLearn::TMat< T >::width(). Referenced by closestPointOnHyperplane(). |
|
true if string s contains any one of the characters in symbols.
Definition at line 79 of file TypesNumeriques.cc. Referenced by looksNumeric(). |
|
Definition at line 74 of file ConvolveVariable.h. |
|
Definition at line 5581 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, sum(), and PLearn::TMat< T >::width(). Referenced by PLearn::ConvolveVariable::fprop(). |
|
Like std::copy, but with an explicit cast to the destination type.
Definition at line 160 of file general.h. Referenced by operator<<(). |
|
Definition at line 3888 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), PLERROR, sqrt(), and x. |
|
Definition at line 3862 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLERROR, sqrt(), PLearn::TMat< T >::width(), and x. Referenced by PLearn::FieldConvertCommand::FieldConvertCommand(), PLearn::TestDependenciesCommand::TestDependenciesCommand(), and PLearn::TestDependencyCommand::TestDependencyCommand(). |
|
Compute the correlations between each of the columns of x and each of the columns of y. The results are in the x.width() by y.width() matrix r. The p-values of the corresponding test (no correlation) are stored in the same-sized matrix pvalues. Definition at line 1228 of file VMat_maths.cc. References PLearn::TMat< T >::clear(), PLearn::TMat< T >::length(), PLearn::VMat::length(), PLERROR, PLWARNING, PLearn::TMat< T >::resize(), sqrt(), testNoCorrelationAsymptotically(), PLearn::TMat< T >::width(), PLearn::VMat::width(), and x. Referenced by PLearn::TestDependencyCommand::run(), and PLearn::TestDependenciesCommand::run(). |
|
Will return the number of non-blank lines of file #-style comments are considered blank.
Definition at line 471 of file fileutils.cc. References count, and PLERROR. Referenced by PLearn::AsciiVMatrix::build_(), parseSizeFromRemainingLines(), and PLearn::StringTable::StringTable(). |
|
returns a map mapping all different values appearing in column col to their number of occurences
Definition at line 704 of file VMat_maths.cc. References is_missing(), PLearn::VMat::length(), PLERROR, and val. Referenced by indicesOfOccurencesInColumn(). |
|
Definition at line 425 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::VecStatsCollector::getCovariance(). |
|
calls system with cp -R to recursively copy source to destination
Definition at line 358 of file fileutils.cc. Referenced by loadSTATLOG(), and loadUCIMLDB(). |
|
Definition at line 76 of file CrossEntropyVariable.h. Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), and PLearn::AddCostToLearner::build_(). |
|
Definition at line 279 of file old_plearn_main.cc. References endl(), exitmsg(), getDataSet(), getDatasetAliases(), getModelAliases(), isfile(), PLearn::TMat< T >::length(), PLearn::VMat::length(), loadAscii(), PLWARNING, read(), PLearn::TMat< T >::resize(), save(), PLearn::TVec< T >::size(), split(), tostring(), PLearn::TMat< T >::width(), and PLearn::VMat::width(). Referenced by old_plearn_main(). |
|
Definition at line 2880 of file WordNetOntology.cc. References cstr(). Referenced by cstr(), PLearn::WordNetOntology::extractSenses(), PLearn::WordNetOntology::extractTaggedWordFrequencies(), PLearn::WordNetOntology::getWordSenseIdForSenseKey(), PLearn::WordNetOntology::hasSenseInWordNet(), and stemWord(). |
|
Definition at line 76 of file CutAboveThresholdVariable.h. Referenced by negative(). |
|
Definition at line 76 of file CutBelowThresholdVariable.h. Referenced by positive(). |
|
Definition at line 79 of file HardSlopeVariable.h. References ifThenElse(), invertElements(), left(), right(), var(), and x. |
|
Definition at line 85 of file SoftSlopeVariable.h. |
|
Definition at line 368 of file pl_math.h. References left(), right(), sigmoid(), and x. Referenced by PLearn::ConditionalDensityNet::build_(). |
|
take a filename containing the name of a file per line, and return theses names as a string* of length nb_files
Definition at line 187 of file stringutils.cc. |
|
converts date to float: ex: September 29 1972: 720929; December 25 2002: 1021225 Also converts missing date to missing flat value and vice-versa.
Definition at line 162 of file PDate.cc. References PLearn::PDate::day, PLearn::PDate::isMissing(), MISSING_VALUE, PLearn::PDate::month, and PLearn::PDate::year. Referenced by PLearn::VMatLanguage::run(), PLearn::RowIterator::toDouble(), and PLearn::FieldValue::toDouble(). |
|
converts date/time to double: for example: September 29 1972: 720929; December 25 2002: 1021225. Hours/minutes/seconds are represented as FRACTIONS of days. Also converts missing date to missing double value and vice-versa. Definition at line 137 of file PDateTime.cc. References PLearn::PDateTime::day, hhmmss_to_double(), PLearn::PDateTime::hour, PLearn::PDateTime::isMissing(), PLearn::PDateTime::min, MISSING_VALUE, PLearn::PDateTime::month, PLearn::PDateTime::sec, and PLearn::PDateTime::year. Referenced by PLearn::PDateTime::operator<(). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Declares a few other classes and functions related to this class.
|
|
Declares a few other classes and functions related to this class.
|
|
Declares a few other classes and functions related to this class.
|
|
Declares a few other classes and functions related to this class.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Declares a few other classes and functions related to this class.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Definition at line 88 of file TVec_impl.h. References PLearn::TVec< T >::deepCopy(). |
|
< create empty map Definition at line 81 of file TVec_impl.h. References CopiesMap, and deepCopy(). |
|
Definition at line 599 of file TMat_impl.h. References PLearn::TMat< T >::deepCopy(). |
|
< create empty map Definition at line 592 of file TMat_impl.h. References CopiesMap, and deepCopy(). |
|
This function simply calls the previous one with an initially empty map. makes a copie of the PP with all it's fields, respecting the dependance shceme between elements and without allowing double copies of equal elements. < create empty map Definition at line 224 of file PP.h. References CopiesMap, and deepCopy(). |
|
A simple template function.
Definition at line 215 of file PP.h. References deepCopy(). |
|
This function simply calls the previous one with an initially empty map. < create empty map Definition at line 84 of file CopiesMap.h. References CopiesMap, and deepCopy(). |
|
A simple template function that calls the method.
Definition at line 79 of file CopiesMap.h. Referenced by PLearn::ClassifierFromDensity::build_(), and deepCopy(). |
|
|
|
Definition at line 235 of file VarArray.h. References PLearn::VarArray::makeDeepCopyFromShallowCopy(). |
|
Specialized in order to display a warning message.
Definition at line 74 of file Var.h. References PLWARNING. |
|
|
|
Definition at line 94 of file TVec_impl.h. References PLearn::TVec< T >::makeDeepCopyFromShallowCopy(). |
|
Definition at line 603 of file TMat_impl.h. References PLearn::TMat< T >::makeDeepCopyFromShallowCopy(). |
|
Definition at line 402 of file StatsIterator.h. References PLearn::Array< StatsIt >::makeDeepCopyFromShallowCopy(). |
|
Apparently needed to specialize this method, otherwise it was the generic deepCopyField from CopiesMap.h that was called when deep copying a TVec<StatsCollector>.
Definition at line 216 of file StatsCollector.h. References PLearn::Object::makeDeepCopyFromShallowCopy(). |
|
Definition at line 103 of file Mat.h. References PLearn::TMat< T >::makeDeepCopyFromShallowCopy(). |
|
Definition at line 72 of file Mat.h. References PLearn::TVec< T >::makeDeepCopyFromShallowCopy(). |
|
|
|
Any pointer or smart pointer: call deepCopy().
Definition at line 198 of file PP.h. References PLWARNING. |
|
Definition at line 71 of file CopiesMap.h. |
|
Types that do not require deep copy. Any type not handled below: do nothing. Support for generic deep copying Deep copying is defined for objects in the following manner: + copy constructors should always do a shallow copy. + a public method OBJTYPE* deepCopy(map<const void*, void*>& copies) const should be defined to allow deepCopying + the deepCopy method should be virtual for classes that are designed to be subclassed Take a close look at the Object class in Object.h to see how this is done. no op Definition at line 61 of file CopiesMap.h. References PLWARNING. |
|
Definition at line 86 of file Array_impl.h. References PLearn::Array< T >::makeDeepCopyFromShallowCopy(). Referenced by PLearn::Storage< pair< real, real > >::deepCopy(), PLearn::WeightedCostFunction::makeDeepCopyFromShallowCopy(), PLearn::VVMatrix::makeDeepCopyFromShallowCopy(), PLearn::VMatrix::makeDeepCopyFromShallowCopy(), PLearn::VecStatsCollector::makeDeepCopyFromShallowCopy(), PLearn::VecElementVariable::makeDeepCopyFromShallowCopy(), PLearn::Variable::makeDeepCopyFromShallowCopy(), PLearn::UnfoldedSumOfVariable::makeDeepCopyFromShallowCopy(), PLearn::UnfoldedFuncVariable::makeDeepCopyFromShallowCopy(), PLearn::TVec< T >::makeDeepCopyFromShallowCopy(), PLearn::TMat< T >::makeDeepCopyFromShallowCopy(), PLearn::TextSenseSequenceVMatrix::makeDeepCopyFromShallowCopy(), PLearn::TemporalHorizonVMatrix::makeDeepCopyFromShallowCopy(), PLearn::TangentLearner::makeDeepCopyFromShallowCopy(), PLearn::SumOverBagsVariable::makeDeepCopyFromShallowCopy(), PLearn::SumOfVariable::makeDeepCopyFromShallowCopy(), PLearn::SubVMatrix::makeDeepCopyFromShallowCopy(), PLearn::QuantilesStatsIterator::makeDeepCopyFromShallowCopy(), PLearn::LiftStatsIterator::makeDeepCopyFromShallowCopy(), PLearn::SharpeRatioStatsIterator::makeDeepCopyFromShallowCopy(), PLearn::StderrStatsIterator::makeDeepCopyFromShallowCopy(), PLearn::StddevStatsIterator::makeDeepCopyFromShallowCopy(), PLearn::StatsIterator::makeDeepCopyFromShallowCopy(), PLearn::StackedLearner::makeDeepCopyFromShallowCopy(), PLearn::Splitter::makeDeepCopyFromShallowCopy(), PLearn::SourceVMatrix::makeDeepCopyFromShallowCopy(), PLearn::SourceVariable::makeDeepCopyFromShallowCopy(), PLearn::SourceKernel::makeDeepCopyFromShallowCopy(), PLearn::SortRowsVMatrix::makeDeepCopyFromShallowCopy(), PLearn::ShellScript::makeDeepCopyFromShallowCopy(), PLearn::SequentialModelSelector::makeDeepCopyFromShallowCopy(), PLearn::SequentialLearner::makeDeepCopyFromShallowCopy(), PLearn::SelectRowsVMatrix::makeDeepCopyFromShallowCopy(), PLearn::SelectInputSubsetLearner::makeDeepCopyFromShallowCopy(), PLearn::SelectedOutputCostFunction::makeDeepCopyFromShallowCopy(), PLearn::SelectColumnsVMatrix::makeDeepCopyFromShallowCopy(), PLearn::ScaledLaplacianKernel::makeDeepCopyFromShallowCopy(), PLearn::ScaledGeneralizedDistanceRBFKernel::makeDeepCopyFromShallowCopy(), PLearn::ScaledGaussianKernel::makeDeepCopyFromShallowCopy(), PLearn::RowBufferedVMatrix::makeDeepCopyFromShallowCopy(), PLearn::RepeatSplitter::makeDeepCopyFromShallowCopy(), PLearn::RegularGridVMatrix::makeDeepCopyFromShallowCopy(), PLearn::PTester::makeDeepCopyFromShallowCopy(), PLearn::PrecomputedVMatrix::makeDeepCopyFromShallowCopy(), PLearn::PrecomputedKernel::makeDeepCopyFromShallowCopy(), PLearn::PLS::makeDeepCopyFromShallowCopy(), PLearn::PLearnerOutputVMatrix::makeDeepCopyFromShallowCopy(), PLearn::PLearner::makeDeepCopyFromShallowCopy(), PLearn::PDistributionVariable::makeDeepCopyFromShallowCopy(), PLearn::PDistribution::makeDeepCopyFromShallowCopy(), PLearn::PCA::makeDeepCopyFromShallowCopy(), PLearn::Optimizer::makeDeepCopyFromShallowCopy(), PLearn::NNet::makeDeepCopyFromShallowCopy(), PLearn::NeuralNet::makeDeepCopyFromShallowCopy(), PLearn::NeighborhoodSmoothnessNNet::makeDeepCopyFromShallowCopy(), PLearn::NegKernel::makeDeepCopyFromShallowCopy(), PLearn::NaryVariable::makeDeepCopyFromShallowCopy(), PLearn::MultiInstanceVMatrix::makeDeepCopyFromShallowCopy(), PLearn::MultiInstanceNNet::makeDeepCopyFromShallowCopy(), PLearn::MovingAverageVMatrix::makeDeepCopyFromShallowCopy(), PLearn::MemoryVMatrix::makeDeepCopyFromShallowCopy(), PLearn::MatRowVariable::makeDeepCopyFromShallowCopy(), PLearn::MatrixSumOfVariable::makeDeepCopyFromShallowCopy(), PLearn::MatrixElementsVariable::makeDeepCopyFromShallowCopy(), PLearn::LogSumVariable::makeDeepCopyFromShallowCopy(), PLearn::LocalNeighborsDifferencesVMatrix::makeDeepCopyFromShallowCopy(), PLearn::LinearRegressor::makeDeepCopyFromShallowCopy(), PLearn::LiftStatsCollector::makeDeepCopyFromShallowCopy(), PLearn::LearnerProcessedVMatrix::makeDeepCopyFromShallowCopy(), PLearn::Learner::makeDeepCopyFromShallowCopy(), PLearn::KNNVMatrix::makeDeepCopyFromShallowCopy(), PLearn::Kernel::makeDeepCopyFromShallowCopy(), PLearn::JulianizeVMatrix::makeDeepCopyFromShallowCopy(), PLearn::IndexedVMatrix::makeDeepCopyFromShallowCopy(), PLearn::HistogramDistribution::makeDeepCopyFromShallowCopy(), PLearn::GaussMix::makeDeepCopyFromShallowCopy(), PLearn::GaussianProcessRegressor::makeDeepCopyFromShallowCopy(), PLearn::GaussianKernel::makeDeepCopyFromShallowCopy(), PLearn::GaussianDistribution::makeDeepCopyFromShallowCopy(), PLearn::GaussianContinuum::makeDeepCopyFromShallowCopy(), PLearn::Function::makeDeepCopyFromShallowCopy(), PLearn::ForwardVMatrix::makeDeepCopyFromShallowCopy(), PLearn::FinancePreprocVMatrix::makeDeepCopyFromShallowCopy(), PLearn::FilterSplitter::makeDeepCopyFromShallowCopy(), PLearn::ExplicitSplitter::makeDeepCopyFromShallowCopy(), PLearn::EmpiricalDistribution::makeDeepCopyFromShallowCopy(), PLearn::EmbeddedSequentialLearner::makeDeepCopyFromShallowCopy(), PLearn::EmbeddedLearner::makeDeepCopyFromShallowCopy(), PLearn::DatedJoinVMatrix::makeDeepCopyFromShallowCopy(), PLearn::CumVMatrix::makeDeepCopyFromShallowCopy(), PLearn::ConditionalStatsCollector::makeDeepCopyFromShallowCopy(), PLearn::ConditionalDensityNet::makeDeepCopyFromShallowCopy(), PLearn::ConditionalCDFSmoother::makeDeepCopyFromShallowCopy(), PLearn::ConcatOfVariable::makeDeepCopyFromShallowCopy(), PLearn::CompactVMatrix::makeDeepCopyFromShallowCopy(), PLearn::ClassifierFromDensity::makeDeepCopyFromShallowCopy(), PLearn::BatchVMatrix::makeDeepCopyFromShallowCopy(), PLearn::Array< T >::makeDeepCopyFromShallowCopy(), PLearn::ArgminOfVariable::makeDeepCopyFromShallowCopy(), PLearn::AddCostToLearner::makeDeepCopyFromShallowCopy(), and PLearn::AdaBoost::makeDeepCopyFromShallowCopy(). |
|
Definition at line 78 of file DeterminantVariable.h. |
|
Definition at line 5262 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 5240 of file TMat_maths_impl.h. References PLearn::TMat< T >::copy(), PLearn::TMat< T >::length(), LU_decomposition(), maxabs(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::DeterminantVariable::fprop(), and PLearn::ProductRandomVariable::invertible(). |
|
Definition at line 80 of file learner_utils.cc. |
|
Definition at line 65 of file learner_utils.cc. References computeRange(), and PLearn::VMat::subMatColumns(). |
|
Referenced by lapack_Xgesdd_(). |
|
Referenced by lapackSolveLinearSystem(). |
|
Referenced by matInvert(). |
|
Referenced by matInvert(). |
|
Definition at line 3656 of file TMat_maths_impl.h. References diag(), and PLearn::TMat< T >::length(). |
|
Definition at line 3648 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TMat< T >::length(). Referenced by PLearn::EntropyContrast::compute_df_dx(), diag(), PLearn::EntropyContrast::set_NNcontinuous_gradient_from_extra_cost(), and PLearn::EntropyContrast::train(). |
|
Definition at line 87 of file DiagonalizedFactorsProductVariable.h. Referenced by PLearn::TangentLearner::build_(), and PLearn::GaussianContinuum::build_(). |
|
return the matrix with elements (i,j) = sum_k U_{ik} d_k V_{kj}
Definition at line 2421 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::EntropyContrast::compute_df_dx(), PLearn::DiagonalizedFactorsProductVariable::fprop(), and PLearn::EntropyContrast::train(). |
|
GIVEN that res(i,j) = sum_k U_{ik} d_k V_{kj}, and given dC/dres, U,d and V, accumulate gradients on dC/dU, dC/dd and dC/dV: dC/dU[i,k] += sum_j dC/dres[i,j] d_k V[k,j] dC/dd[k] += sum_{ij} dC/dres[i,j] U[i,k] V[k,j] dC/dV[k,j] += d_k * sum_i U[i,k] dC/dres[i,j].
Definition at line 2455 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::DiagonalizedFactorsProductVariable::bprop(). |
|
return the matrix with elements (i,j) = sum_k U_{ik} d_k V_{jk}
Definition at line 2492 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::DiagonalizedFactorsProductVariable::fprop(). |
|
Definition at line 2527 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::DiagonalizedFactorsProductVariable::bprop(). |
|
return the matrix with elements (i,j) = sum_k U_{ki} d_k V_{kj}
Definition at line 2567 of file TMat_maths_impl.h. References PLearn::TMat< T >::clear(), PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::DiagonalizedFactorsProductVariable::fprop(). |
|
Definition at line 2600 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::DiagonalizedFactorsProductVariable::bprop(). |
|
return the matrix with elements (i,j) = sum_k U_{ki} d_k V_{jk}
Definition at line 2641 of file TMat_maths_impl.h. References PLearn::TMat< T >::clear(), PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::DiagonalizedFactorsProductVariable::fprop(). |
|
Definition at line 2673 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), k, PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::DiagonalizedFactorsProductVariable::bprop(). |
|
Diagonalize the sub-space spanned by the rows of X(mxn) with respect to symmetric matrix A(nxn), m<=n. The eigenpairs will be put in the evalues/evectors arguments (expressed in the basis of X), and the corresponding basis in R^n will be put in the solutions(kxn) matrix. The function proceeds as follows: GramSchmid orthornormalize X, so that X X' = I(mxm) C(mxm) = X A X' solve small eigensystem C = V' S V (V = evectors, S = evalues) solutions = V X Thus in the end we have solutions solutions' = V X X' V' = I if X was orthonormal to start with solutions A solutions' = V X A X' V' = V C V' = S first collect C = X A X' symmetric part then diagonalize C = evectors' * diag(evalues) * evectors the eigen-values should be in increasing order convert the eigenvectors corresponding to the smallest eigenvalues < already 0 Definition at line 641 of file plapack.h. References PLearn::TVec< T >::clear(), PLearn::TMat< T >::copy(), dot(), eigen_SymmMat(), endl(), GramSchmidtOrthogonalization(), PLearn::TMat< T >::length(), multiplyAcc(), norm(), product(), and PLearn::TMat< T >::subMatRows(). |
|
Definition at line 578 of file TMat_impl.h. References PLearn::TVec< T >::length(). |
|
Definition at line 3664 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::length(), and pownorm(). |
|
Definition at line 93 of file Set.h. References PLearn::Set::begin(), and PLearn::Set::end(). Referenced by PLearn::FieldConvertCommand::FieldConvertCommand(), PLearn::MinusRandomVariable::MinusRandomVariable(), and PLearn::PlusRandomVariable::PlusRandomVariable(). |
|
Definition at line 3565 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::width(), and x. |
|
TVec[i] += (x[i]-y[i])^2*scale;.
Definition at line 2173 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. Referenced by PLearn::DiagonalNormalRandomVariable::EMBprop(). |
|
TVec[i] = TVec[i]*fact1 + (x[i]-y[i])^2*fact2;.
Definition at line 2191 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. |
|
Definition at line 75 of file DilogarithmVariable.h. |
|
return the dilogarithm function dilogarithm(x) = sum_{i=1}^{} x^i/i^2 = int_{z=x}^0 log(1-z)/z dz It is also useful because -dilogarithm(-exp(x)) is the primitive of the softplus function log(1+exp(x)).
Definition at line 203 of file pl_math.cc. References is_missing(), MISSING_VALUE, PLWARNING, positive_dilogarithm(), and x. Referenced by PLearn::DilogarithmVariable::fprop(), and softplus_primitive(). |
|
Definition at line 67 of file DirectNegativeCostFunction.h. |
|
Definition at line 174 of file vmatmain.cc. References endl(), PLearn::VMat::fieldName(), k, and PLearn::VMat::width(). Referenced by vmatmain(). |
|
This will display a rectangle (0,0,nx,ny) containing a 2D image of the decision surface for the given learner with the points of each class displayed with + and x, and optionally, the points in svindexes circled in black and the points in outlierindexes circled in gray. Definition at line 696 of file DisplayUtils.cc. References PLearn::TMat< T >::column(), compute2dGridOutputs(), PLearn::GhostScript::displayGray(), displayPoints(), PLearn::GhostScript::drawCircle(), PLearn::GhostScript::grestore(), PLearn::GhostScript::gsave(), PLearn::Learner::inputsize(), k, PLearn::TVec< T >::length(), PLearn::GhostScript::mapping(), max(), min(), PLearn::Learner::outputsize(), PLearn::GhostScript::setdash(), PLearn::GhostScript::setlinewidth(), and x. |
|
Definition at line 614 of file DisplayUtils.cc. References displayVarGraph(). Referenced by PLearn::SumOfVariable::fbprop(), PLearn::ConditionalDensityNet::train(), and PLearn::Function::verifySymbolicGradient(). |
|
Display a histogram of the density of the data column. By default set n_bins according to the number of data points: n_bins = min(5+dataColumn.length()/10,1000), but user can override this. By default (n_bins=0) the bins are equally spaced such that each bin receives approximately the same number of points. The user can override that by providing a vector of bin boundaries (min to bins[0], bins[0] to bins[1], ... bins[n_bins-2] to max) then n_bins will be bins.length()+1, or the user can specify regularly spaced bins with the bool argument. If normalized the the relative frequencies rather than actual frequencies are plotted. Definition at line 57 of file DisplayUtils.cc. References PLearn::TVec< T >::data(), histogram(), left(), PLearn::TVec< T >::length(), MIN, PLearn::Gnuplot::plot(), PLWARNING, PLearn::TVec< T >::resize(), sortElements(), and PLearn::TMat< T >::toVecCopy(). |
|
Will display the help message for an object of the given classname.
Definition at line 105 of file TypeFactory.cc. References addprefix(), PLearn::TypeMapEntry::constructor, endl(), PLearn::TypeMapEntry::getoptionlist_method, PLearn::TypeFactory::getTypeMap(), PLearn::TypeMapEntry::isa_method, PLearn::TypeMapEntry::multi_line_help, PLearn::TypeMapEntry::one_line_descr, PLERROR, and TypeMap. Referenced by old_plearn_main(), and PLearn::HelpCommand::run(). |
|
this draws x and + with the given radius for all the points in data (supposed to have width 3: [x, y, classnum]
Definition at line 649 of file DisplayUtils.cc. References color(), PLearn::GhostScript::drawCross(), PLearn::TMat< T >::length(), and PLearn::GhostScript::setcolor(). Referenced by displayDecisionSurface(). |
|
VarGraph *. * VarGraph * Definition at line 177 of file DisplayUtils.cc. References PLearn::TmpFilenames::addFilename(), PLearn::VarArray::ancestors(), PLearn::TVec< Var >::append(), center(), PLearn::GhostScript::centerShow(), PLearn::VarArray::clearMark(), PLearn::TVec< Var >::contains(), distance(), PLearn::GhostScript::drawArrow(), PLearn::GhostScript::drawBox(), PLearn::Var::length(), PLearn::VarArray::setMark(), PLearn::TVec< Var >::size(), PLearn::VarArray::sources(), PLearn::VarArray::unmarkAncestors(), PLearn::GhostScript::usefont(), PLearn::Var::width(), and x. Referenced by displayFunction(), PLearn::Function::fbprop(), PLearn::LogVariable::fprop(), PLearn::GradientOptimizer::optimize(), and PLearn::GradientOptimizer::optimizeN(). |
|
Definition at line 760 of file TMat_maths_impl.h. References mypow(), powdistance(), and sqrt(). Referenced by PLearn::GeodesicDistanceKernel::computeNearestGeodesicNeighbour(), PLearn::Kernel::estimateHistograms(), PLearn::GeodesicDistanceKernel::evaluate(), PLearn::DistanceKernel::evaluate(), findClosestPairsOfDifferentClass(), PLearn::GaussMix::kmeans(), L1distance(), L2distance(), PLearn::PDistributionVariable::PDistributionVariable(), positionOfClosestElement(), PLearn::GeodesicDistanceKernel::setDataForKernelMatrix(), PLearn::PLS::train(), and PLearn::ManifoldParzen2::train(). |
|
Definition at line 103 of file Var_utils.cc. References norm(). Referenced by displayVarGraph(). |
|
Definition at line 1539 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLearn::TVec< T >::resize(). |
|
Definition at line 1522 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TVec< T >::resize(). |
|
Definition at line 1517 of file TMat_maths_impl.h. References multiply(). Referenced by makeRowsSumTo1(), and PLearn::TestDependenciesCommand::TestDependenciesCommand(). |
|
Referenced by eigenSparseNonSymmMat(). |
|
Referenced by eigenSparseNonSymmMat(). |
|
dot product
Definition at line 82 of file DotProductVariable.h. |
|
Definition at line 1124 of file TMat_maths_impl.h. References PLearn::TMat< T >::begin(), PLearn::TMat< T >::data(), PLearn::TMat< T >::isCompact(), PLERROR, and PLearn::TMat< T >::size(). |
|
Special dot product that allows TVec's of different types, as long as operator*(T,U) is defined. The return type V must be specified in all circumstances, e.g. : TVec<int> v1; TVec<float> v2; double result = dot<double>(v1,v2); Definition at line 1108 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 1087 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::EntropyContrast::compute_extra_grad_wrt_df_dx(), PLearn::ConjGradientOptimizer::computeCostAndDerivative(), PLearn::KernelProjection::computeCostsFromOutputs(), PLearn::ConjGradientOptimizer::computeDerivative(), PLearn::GaussMix::computeLogLikelihood(), PLearn::PCA::computeOutput(), PLearn::ConjGradientOptimizer::conjpomdp(), constrainedLinearRegression(), PLearn::ConjGradientOptimizer::daiYuan(), diagonalizeSubspace(), PLearn::VMatrix::dot(), PLearn::RowBufferedVMatrix::dot(), PLearn::CompactVMatrix::dot(), PLearn::CompactVMatrix::dotProduct(), PLearn::SigmoidPrimitiveKernel::evaluate(), PLearn::SigmoidalKernel::evaluate(), PLearn::PolynomialKernel::evaluate(), PLearn::NormalizedDotProductKernel::evaluate(), PLearn::DotProductKernel::evaluate(), PLearn::CompactVMatrixPolynomialKernel::evaluate(), PLearn::GaussianProcessRegressor::expectation(), extract_directory(), PLearn::ConjGradientOptimizer::findDirection(), PLearn::ProjectionErrorVariable::fprop(), PLearn::ConjGradientOptimizer::gSearch(), PLearn::ConjGradientOptimizer::hestenesStiefel(), PLearn::GaussianProcessRegressor::inverseCovTimesVec(), linearRegression(), locateDatasetAliasesDir(), logOfCompactGaussian(), logOfNormal(), mahalanobis_distance(), makeExplicitPath(), PLearn::ConjGradientOptimizer::optimize(), PLearn::ConjGradientOptimizer::optimizeN(), PLearn::ConjGradientOptimizer::polakRibiere(), productTranspose(), projectOnOrthogonalSubspace(), PLearn::GaussianProcessRegressor::QFormInverse(), PLearn::TimesScalarVariable::symbolicBprop(), PLearn::PowVariableVariable::symbolicBprop(), PLearn::PLS::train(), PLearn::PCA::train(), PLearn::LinearRegressor::train(), PLearn::Function::verifyGradient(), and weightedLinearRegression(). |
|
Definition at line 368 of file TMat_maths_specialisation.h. References x. Referenced by PLearn::CompactVMatrix::dot(), PLearn::CompactVMatrixPolynomialKernel::evaluate(), and PLearn::PolynomialKernel::evaluateFromDot(). |
|
Definition at line 146 of file PDateTime.cc. References PLearn::PDateTime::day, double_to_hhmmss(), PLearn::PDateTime::hour, is_missing(), PLearn::PDateTime::min, PLearn::PDateTime::month, PLearn::PDateTime::sec, and PLearn::PDateTime::year. |
|
convert a day fraction (< 1) to hours/minutes/seconds
Definition at line 173 of file PDateTime.cc. Referenced by double_to_datetime(), and PLearn::PDateTime::PDateTime(). |
|
Referenced by eigenSparseSymmMat(). |
|
Referenced by eigenSparseSymmMat(). |
|
Referenced by eigen_SymmMat(). |
|
Referenced by lapack_Xsyevr_(). |
|
Referenced by lapack_Xsyevx_(). |
|
Referenced by lapack_Xsygvx_(). |
|
Definition at line 81 of file DuplicateColumnVariable.h. References PLERROR. |
|
Definition at line 80 of file DuplicateRowVariable.h. References PLERROR. |
|
Definition at line 81 of file DuplicateScalarVariable.h. References PLERROR. |
|
Will write a file containing a field with the dataset positions "dset" field will be input -> target, outputs.
Definition at line 278 of file GenerateDecisionPlot.cc. References endl(), PLearn::VMat::getExample(), PLearn::VMat::length(), and PLearn::ProgressBar::update(). Referenced by PLearn::GenerateDecisionPlot::run(). |
|
The "outputs" field will contain sample-grid inputs -> outputs Where the sample grid is made of a regular grid of nx.ny points (in the range [xmin, xmax] x [ymin, ymax]) xmin, xmax, ymin and ymax may be left to MISSING_VALUE, in which case an automatic range will be determined from the range of the points in the given dataset extended by extraspace (ex: .10 == 10%). This regular grid is possibly complemented (if include_datapoint_grid) with an irregular grid made of the x and y coordinates of the dataset that fall within the [xmin, xmax] x [ymin, ymax] range. Definition at line 343 of file GenerateDecisionPlot.cc. References PLearn::ProgressBar::close(), computeRange(), endl(), exp(), PLearn::VMat::getExample(), is_missing(), PLearn::VMat::length(), logadd(), PLearn::VMat::subMatColumns(), tostring(), PLearn::ProgressBar::update(), and x. Referenced by PLearn::GenerateDecisionPlot::run(). |
|
considers data to have 2d input (first 2 columns of data)
Definition at line 207 of file learner_utils.cc. References DX_write_2D_data(), and PLERROR. |
|
data must have nx*ny rows and must corresponds to values associated with the 2D positions of the grid (typically learner outputs on that grid)
Definition at line 215 of file learner_utils.cc. References DX_write_2D_data_for_grid(), and PLERROR. |
|
considers data to have 2d input (first 2 columns of data)
Definition at line 117 of file learner_utils.cc. References PLearn::TMat< T >::length(), and PLearn::TMat< T >::width(). Referenced by DX_save_2D_data(). |
|
data must have nx*ny rows and must corresponds to values associated with the 2D positions of the grid (typically learner outputs on that grid)
Definition at line 158 of file learner_utils.cc. References PLearn::TMat< T >::length(), and PLearn::TMat< T >::width(). Referenced by DX_save_2D_data_for_grid(). |
|
Definition at line 99 of file GenerateDecisionPlot.cc. References k, PLearn::TVec< T >::length(), and tostring(). |
|
If fieldnames is omitted then the fields will be named basename_0 basename_1 ... Otherwise they are named basename_ followed by the corresponding field name. Definition at line 53 of file GenerateDecisionPlot.cc. References k, PLearn::TVec< T >::length(), and tostring(). |
|
This function compute some or all eigenvalues (and optionnaly the corresponding eigenvectors) of a symmetric matrix. The eigenvectors are returned in the ROWS of e_vector. Note1: If compute_all==true, then the field nb_eigen will not be used. Note2: Your input matrix `in' will be over-written Note3: If compute_all=false only some eigen-values (and optionally e-vectors) are computed. This flag allows to select whether those largest in magnitude (the default) or smallest in magnitude are selected. Note4: This function is slightly modified. Now, you do not have to check if your input matrix is symmetric or not. Note5: The vectors and eigenvalues seem to be sorted in increasing order ( Definition at line 49 of file plapack.cc. References PLearn::TMat< T >::data(), dsyev_(), endl(), PLearn::TMat< T >::isSymmetric(), lapack_Xsyevx_(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, PLWARNING, PLearn::TVec< T >::resize(), PLearn::TMat< T >::resize(), ssyev_(), and PLearn::TMat< T >::width(). Referenced by affineNormalization(), diagonalizeSubspace(), eigen_SymmMat_decreasing(), and multivariate_normal(). |
|
same as the previous call, but eigenvalues/vectors are sorted by largest firat (in decreasing order)
Definition at line 207 of file plapack.cc. References eigen_SymmMat(), PLWARNING, PLearn::TVec< T >::swap(), and PLearn::TMat< T >::swapUpsideDown(). |
|
Same arguments as eigenSparseSymmMat except that A is not symmetric. We ignore the imaginary part if there is one. See ARPACK/SRC files for more details. To get the eigen pairs in the same order as in plapack's eigenVecOfSymmMat, do the same thing as above, but you don't have to swap the eigen vectors and eigen values. < half of the e-values from each end of the spectrum < we need some extra space... Definition at line 185 of file parpack.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), dnaupd_(), dneupd_(), PLearn::TMat< T >::length(), MIN, PLERROR, PLWARNING, product(), PLearn::TVec< T >::resize(), PLearn::TMat< T >::resize(), select(), snaupd_(), sneupd_(), PLearn::TVec< T >::subVec(), PLearn::TMat< T >::width(), and x. |
|
Compute some eigenvalues, and optionally eigenvectors, of a symmetric, possibly sparse, generalized matrix A. The only operation that will be performed on A (repetitively) is the matrix-vector product, i.e. A.product(Vec x, Vec y), yielding y = A x. This uses the ARPACK library. Returns 0 if all went well. Otherwise, see the INFO values set by [ds][eu]pd in the ARPACK/SRC files. It is possible that only a subset of the eigenvalues are found (as given by n_evalues upon return, and the new size of e_vectors/e_values). Note also that e_vectors might be internally and temporarily re-allocated to a larger size, with at most 1.5 times more rows. If you want the eigen values and eigen vectors to be returned in the same order as in plapack's eigenVecOfSymmMat, "according_to_magnitude" must be set to false and you must swap the eigen values and the eigen vectors. i.e. do something like: ............................................................. Mat evectors(nb_principal_components,train_set.length()); Vec evalues(nb_principal_components); int status; long int n_ev=nb_principal_components; status = eigenSparseSymmMat(A, evalues, evectors, n_ev, 300, true, true, false); if (status<0 || status>1) PLERROR("MyClass: eigenSparseSymmMat return error code number %d (see ARPACK dsaupd INFO variable)", status); if (status==1 || n_ev != nb_principal_components) PLERROR("MyClass: eigenSparseSymmMat computed only %d e-vectors rather than the required %d", n_ev, nb_principal_components); evalues.swap(); evectors.swapUpsideDown(); ............................................................. < half of the e-values from each end of the spectrum < we need some extra space... Definition at line 88 of file parpack.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), dsaupd_(), dseupd_(), PLearn::TMat< T >::length(), MIN, PLERROR, PLWARNING, product(), PLearn::TVec< T >::resize(), PLearn::TMat< T >::resize(), select(), ssaupd_(), sseupd_(), PLearn::TVec< T >::subVec(), PLearn::TMat< T >::width(), and x. |
|
Computes up to k largest eigen_values and corresponding eigen_vectors of symmetric matrix m. Parameters eigen_values and eigen_vectors are resized accordingly and filled by the call. The eigenvalues are returned in decreasing order (largest first). The corresponding eigenvectors are in the *ROWS* of eigen_vectors WARNING: m is destroyed during the operation. Definition at line 322 of file plapack.h. References k, lapackEIGEN(), PLearn::TVec< T >::resize(), PLearn::TMat< T >::resize(), PLearn::TVec< T >::swap(), PLearn::TMat< T >::swapUpsideDown(), and PLearn::TMat< T >::width(). Referenced by PLearn::GaussMix::computeMeansAndCovariances(), computePrincipalComponents(), PLearn::PCA::train(), PLearn::KernelProjection::train(), PLearn::GaussianProcessRegressor::train(), PLearn::GaussianDistribution::train(), and PLearn::GaussMix::updateFromConditionalSorting(). |
|
Definition at line 113 of file TypesNumeriques.cc. Referenced by compactRepresentationTranslate(). |
|
put in destination 1's when (*this)[i]==value, 0 otherwise
Definition at line 187 of file TMat_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
This is like logP but it represents the expected log-probability of obs=conditional_expression.LHS.v given the RHS, where the expectation is over the "hidden" random variables of EM in mixtures, as a function of the values of the parameters_to_learn. Definition at line 642 of file RandomVar.cc. References logP(). Referenced by EM(), and PLearn::MixtureRandomVariable::logP(). |
|
Definition at line 497 of file RandomVar.cc. References ElogP(), endl(), PLearn::RVInstanceArray::instances(), PLearn::ConditionalExpression::LHS, logP(), meanOf(), PLERROR, propagationPath(), PLearn::ConditionalExpression::RHS, PLearn::TVec< RandomVar >::size(), PLearn::RVInstance::v, PLearn::RVInstance::V, and PLearn::RVArray::values(). |
|
NOTE NOTE NOTE: THE ORDER OF THE VALUES IN THE DISTRIBUTION MUST BE: (1) conditioning variables (RHS), (2) output variables Definition at line 460 of file RandomVar.cc. References PLearn::RVInstanceArray::instances(), PLearn::ConditionalExpression::LHS, logP(), propagationPath(), PLearn::ConditionalExpression::RHS, PLearn::RVInstance::v, PLearn::RVInstance::V, and PLearn::RVArray::values(). |
|
Definition at line 82 of file byte_order.h. References endianswap8(). |
|
Definition at line 81 of file byte_order.h. References endianswap4(). |
|
Definition at line 80 of file byte_order.h. References endianswap4(). |
|
Definition at line 79 of file byte_order.h. References endianswap4(). |
|
Definition at line 78 of file byte_order.h. References endianswap4(). |
|
Definition at line 77 of file byte_order.h. References endianswap4(). |
|
Definition at line 76 of file byte_order.h. References endianswap2(). |
|
Definition at line 75 of file byte_order.h. References endianswap2(). |
|
Definition at line 72 of file byte_order.h. |
|
Definition at line 71 of file byte_order.h. |
|
Definition at line 70 of file byte_order.h. Referenced by PLearn::IntVecFile::append(), PLearn::DiskVMatrix::appendRow(), binread_(), PLearn::DiskVMatrix::build_(), PLearn::DiskVMatrix::getNewRow(), PLearn::IntVecFile::getVec(), new_read_compressed(), PLearn::PStream::operator>>(), PLearn::TMat< pair< real, real > >::read(), readSequence(), reverse_double(), reverse_float(), reverse_int(), reverse_short(), reverse_uint(), and reverse_ushort(). |
|
swaps endians for n 2-byte elements (such as short)
Definition at line 43 of file byte_order.cc. Referenced by endianswap(). |
|
swaps endians for n 4-byte elements (such as int or float)
Definition at line 54 of file byte_order.cc. Referenced by endianswap(). |
|
swaps endians for n 8-byte elements (such as double)
Definition at line 66 of file byte_order.cc. Referenced by endianswap(). |
|
Definition at line 58 of file PStream.cc. References PLearn::PStream::endl(). Referenced by PLearn::CompactVMatrix::append(), PLearn::AsciiVMatrix::appendRow(), PLearn::AsciiVMatrix::AsciiVMatrix(), PLearn::PLearnCommandRegistry::badcommand(), PLearn::GraphicalBiText::build_(), PLearn::GramVMatrix::build_(), PLearn::DatedJoinVMatrix::build_(), PLearn::AddCostToLearner::build_(), PLearn::GhostScript::centerShow(), PLearn::GraphicalBiText::check_consitency(), PLearn::CompactVMatrix::CompactVMatrix(), PLearn::VMatLanguage::compileStream(), compressedTransposeProductAcc(), PLearn::GraphicalBiText::compute_likelihood(), PLearn::GraphicalBiText::compute_nodemap(), PLearn::GaussianContinuum::compute_train_and_validation_costs(), computeConditionalStats(), PLearn::Learner::computeCosts(), PLearn::KernelProjection::computeCostsFromOutputs(), PLearn::LiftStatsCollector::computeLift(), PLearn::SDBWithStats::computeStats(), PLearn::ConjGradientOptimizer::ConjGradientOptimizer(), PLearn::SDBVMFieldICBCTargets::convertField(), PLearn::GhostScript::copypage(), PLearn::CountEventsSemaphore::CountEventsSemaphore(), PLearn::VVMatrix::createPreproVMat(), cross_valid(), diagonalizeSubspace(), PLearn::Function::differentiate(), displayBasicStats(), PLearn::GhostScript::displayBlack(), PLearn::GhostScript::displayGray(), displayObjectHelp(), PLearn::ShellProgressBar::done(), PLearn::GhostScript::drawBox(), PLearn::GhostScript::drawCircle(), PLearn::GhostScript::drawLine(), DX_create_dataset_outputs_file(), DX_create_grid_outputs_file(), eigen_SymmMat(), EM(), PLearn::RandomVariable::EM(), PLearn::MixtureRandomVariable::EMBprop(), PLearn::RandomVariable::epoch(), PLearn::GhostScript::erasepage(), errormsg(), PLearn::GaussianKernel::evaluate_i_j(), exitmsg(), PLearn::Gnuplot::export_ps(), PLearn::RowMapSparseMatrix< real >::exportToMatlabReadableFormat(), PLearn::WordNetOntology::extractAncestors(), PLearn::WordNetOntology::extractDescendants(), extractFiles(), PLearn::WordNetOntology::extractTaggedWordFrequencies(), PLearn::Gnuplot::featureplot(), PLearn::GhostScript::fillBox(), PLearn::GhostScript::fillCircle(), PLearn::LiftStatsCollector::finalize(), PLearn::ConjGradientOptimizer::findDirection(), PLearn::SimpleDB< KeyType, QueryResult >::findEqualLinear(), PLearn::ConjGradientOptimizer::fletcherSearchMain(), PLearn::ProjectionErrorVariable::fprop(), PLearn::LogVariable::fprop(), PLearn::ProbabilitySparseMatrix::fullPrint(), PLearn::VVMatrix::generateVMatIndex(), PLearn::GaussianContinuum::get_image_matrix(), PLearn::Dictionary::getId(), PLearn::GhostScript::GhostScript(), PLearn::Gnuplot::Gnuplot(), halfShuffleRows(), PLearn::PLearnCommandRegistry::help(), PLearn::HelpCommand::helpAboutScript(), PLearn::HelpCommand::helpCommands(), PLearn::HelpCommand::helpDatasets(), PLearn::HelpCommand::helpOverview(), PLearn::HelpCommand::helpScripts(), PLearn::Gnuplot::histoplot(), PLearn::SimpleDB< KeyType, QueryResult >::indexColumn(), PLearn::GraphicalBiText::init(), interactiveDisplayCDF(), lapackSVD(), PLearn::Popen::launch(), PLearn::MatlabInterface::launch(), PLearn::IPopen::launch(), PLearn::MatlabInterface::launchAndWaitFor(), PLearn::ConjGradientOptimizer::lineSearch(), PLearn::RGBImage::loadJPEG(), PLearn::SimpleDB< KeyType, QueryResult >::loadSchema(), loadToVMat(), PLearn::VMatrix::lockMetaDataDir(), main(), matInvert(), matlabSave(), PLearn::VarMeasurer::measure(), PLearn::Learner::measure(), PLearn::Gnuplot::multiplot(), PLearn::ConjGradientOptimizer::newtonSearch(), old_plearn_main(), PLearn::Learner::openTestResultsStreams(), PLearn::Learner::openTrainObjectiveStream(), operator<<(), PLearn::ScaledGradientOptimizer::optimize(), PLearn::GradientOptimizer::optimize(), PLearn::ConjGradientOptimizer::optimize(), PLearn::ConjGradientOptimizer::optimizeN(), PLearn::AdaptGradientOptimizer::optimizeN(), PLearn::Learner::outputResultLineToFile(), plearn_main(), PLearn::Gnuplot::plot(), PLearn::Gnuplot::plot3d(), PLearn::Grapher::plot_1D_regression(), PLearn::Grapher::plot_2D_classification(), PLearn::Gnuplot::plotcdf(), PLearn::Gnuplot::plotClasses(), PLearn::Gnuplot::plotdensity(), plotVMats(), prettyprint_test_results(), PLearn::WordNetOntology::print(), PLearn::VMatrix::print(), PLearn::Variable::print(), PLearn::StatsCollector::print(), PLearn::RealMapping::print(), print(), PLearn::Object::print(), PLearn::GraphicalBiText::print(), PLearn::Array< char * >::print(), PLearn::PLearnCommandRegistry::print_command_summary(), print_diff(), PLearn::GraphicalBiText::print_sensemap(), printDistanceStatistics(), PLearn::VMatrix::printFieldInfo(), printFieldNames(), PLearn::VMatrix::printFields(), PLearn::UnfoldedSumOfVariable::printInfo(), PLearn::UnfoldedFuncVariable::printInfo(), PLearn::UnaryVariable::printInfo(), PLearn::SumOverBagsVariable::printInfo(), PLearn::SumOfVariable::printInfo(), PLearn::SourceVariable::printInfo(), PLearn::NaryVariable::printInfo(), PLearn::MatrixSumOfVariable::printInfo(), PLearn::BinaryVariable::printInfo(), PLearn::TVec< pair< real, real > >::println(), PLearn::VarArray::printNames(), PLearn::GraphicalBiText::printNode(), PLearn::WordNetOntology::printNodes(), PLearn::WordNetOntology::printStats(), PLearn::ConjGradientOptimizer::printStep(), PLearn::WordNetOntology::printSynset(), PLearn::WordNetOntology::printSynsetAncestors(), PLearn::WordNetOntology::printWordAncestors(), PLearn::WordNetOntology::printWordOntology(), randomShuffleRows(), readAndMacroProcess(), reduceInputSize(), PLearn::WordNetOntology::reduceWordPolysemy_preserveSenseOverlapping(), PLearn::Profiler::report(), PLearn::Hash< KeyType, DataType >::resize(), PLearn::ResourceSemaphore::ResourceSemaphore(), PLearn::Train::run(), PLearn::TestDependencyCommand::run(), PLearn::TestDependenciesCommand::run(), PLearn::SequentialValidation::run(), PLearn::NearestNeighborPredictionCost::run(), PLearn::KolmogorovSmirnovCommand::run(), PLearn::JulianDateCommand::run(), PLearn::Grapher::run(), PLearn::GhostScript::run(), PLearn::GenerateDecisionPlot::run(), PLearn::AutoRunCommand::run(), PLearn::WordNetOntology::save(), PLearn::VMatrix::saveAMAT(), saveAscii(), PLearn::VMatrix::saveFieldInfos(), PLearn::RowMapSparseMatrix< real >::saveNonZeroElements(), PLearn::RGBImage::savePPM(), PLearn::WordNetOntology::savePredominentSyntacticClasses(), PLearn::SimpleDB< KeyType, QueryResult >::saveSchema(), PLearn::VMatrix::saveStats(), PLearn::SDBWithStats::saveStats(), PLearn::VMatrix::saveStringMappings(), PLearn::WordNetOntology::saveVocInWordnet(), PLearn::GraphicalBiText::sensetag_valid_bitext(), PLearn::GraphicalBiText::senseTagBitext(), PLearn::GraphicalBiText::set_nodemap(), PLearn::Gnuplot::seteps(), PLearn::VMatrix::setSFIFFilename(), PLearn::Gnuplot::setxrange(), PLearn::Gnuplot::setyrange(), PLearn::GhostScript::show(), PLearn::GhostScript::showpage(), PLearn::ScaledConditionalCDFSmoother::smooth(), PLearn::ProbVector::smoothNormalize(), SpearmanRankCorrelation(), split(), PLearn::Learner::stop_if_wanted(), PLearn::SequentialModelSelector::test(), PLearn::MovingAverage::test(), PLearn::GraphicalBiText::test_WSD(), PLearn::TangentLearner::train(), PLearn::SequentialModelSelector::train(), PLearn::PLS::train(), PLearn::NNet::train(), PLearn::NeighborhoodSmoothnessNNet::train(), PLearn::MultiInstanceNNet::train(), PLearn::MovingAverage::train(), PLearn::KernelProjection::train(), PLearn::GaussianContinuum::train(), PLearn::EntropyContrast::train(), PLearn::ConditionalDensityNet::train(), PLearn::ClassifierFromDensity::train(), PLearn::AdaBoost::train(), train_and_test(), PLearn::RowMapSparseMatrix< real >::transposeProduct(), PLearn::TextProgressBarPlugin::update(), PLearn::GraphicalBiText::update_WSD_model(), usage(), use(), PLearn::GhostScript::usefont(), PLearn::Function::verifyGradient(), PLearn::Function::verifyHessian(), PLearn::Function::verifyrfprop(), PLearn::Function::verifySymbolicGradient(), viewVMat(), vmatmain(), warningmsg(), PLearn::CountEventsSemaphore::~CountEventsSemaphore(), PLearn::GhostScript::~GhostScript(), PLearn::Gnuplot::~Gnuplot(), PLearn::ResourceSemaphore::~ResourceSemaphore(), and PLearn::SharedMemory< T >::~SharedMemory(). |
|
Definition at line 91 of file Var_utils.cc. References abs(), log(), normalize(), plogp(), and sum(). |
|
converts a code in corresponding string
Definition at line 55 of file TypesNumeriques.cc. References NT_CARDINAL, NT_CODE, NT_CURRENCY, NT_NOT_NUMERIC, NT_ORDINAL, NT_PERCENT, NT_PREFIXED, NT_RANGE, NT_SUFFIXED, NT_TIME, and NT_UNKNOWN_NUMERIC_TYPE. |
|
Definition at line 5277 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 1695 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 71 of file ErfVariable.h. |
|
Definition at line 64 of file plerror.cc. References endl(), ERROR_MSG_SIZE, and error_stream. |
|
Definition at line 145 of file IPopen.h. References establish_connection(), and PLERROR. |
|
Definition at line 143 of file IPopen.h. References establish_connection(), and hostname(). |
|
Definition at line 99 of file IPopen.cc. References PLERROR. Referenced by establish_connection(). |
|
Definition at line 1812 of file TMat_maths_impl.h. References binary_search(), k, PLearn::TVec< T >::length(), PLERROR, and x. Referenced by PLearn::UniformizeVMatrix::getNewRow(). |
|
Returns the full output of the command as a vector of strings, containing the lines of the answer (with any newline character removed). The command must not be waiting for input on its standard input or this call will never return. Definition at line 171 of file Popen.cc. References PLearn::PStream::getline(), and PLearn::Popen::in. Referenced by PLearn::ShellProgressBar::getWcAsciiFileLineCount(). |
|
Definition at line 109 of file plerror.cc. References endl(), ERROR_MSG_SIZE, and error_stream. Referenced by cross_valid(), getMultipleModelAliases(), old_plearn_main(), train_and_test(), and use(). |
|
Definition at line 73 of file ExpVariable.h. |
|
exponential function applied element-by-element
Definition at line 448 of file RandomVar.cc. References x. |
|
Definition at line 1639 of file TMat_maths_impl.h. |
|
computes y <- exp(x)
Definition at line 107 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::resize(), and x. Referenced by bnldev(), PLearn::NllSemisphericalGaussianVariable::bprop(), PLearn::ErfVariable::bprop(), PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::GaussianContinuum::compute_train_and_validation_costs(), PLearn::ClassifierFromDensity::computeOutput(), PLearn::GaussMix::computePosteriors(), PLearn::PDistribution::density(), PLearn::Distribution::density(), PLearn::ConditionalGaussianDistribution::density(), determine_density_integral_from_log_densities_on_grid(), DX_create_grid_outputs_file(), PLearn::MixtureRandomVariable::ElogP(), PLearn::MixtureRandomVariable::EMBprop(), PLearn::DiagonalNormalRandomVariable::EMBprop(), PLearn::LogRandomVariable::EMBprop(), PLearn::SigmoidPrimitiveKernel::evaluate(), PLearn::ScaledLaplacianKernel::evaluate(), PLearn::ScaledGeneralizedDistanceRBFKernel::evaluate(), PLearn::ScaledGaussianKernel::evaluate(), PLearn::LaplacianKernel::evaluate(), PLearn::GeneralizedDistanceRBFKernel::evaluate(), PLearn::GaussianDensityKernel::evaluate(), PLearn::ConvexBasisKernel::evaluate(), PLearn::CompactVMatrixGaussianKernel::evaluate(), PLearn::GaussianKernel::evaluateFromSquaredNormOfDifference(), PLearn::ExpMeanStatsIterator::finish(), gamdev(), gauss_01_density(), gauss_density_var(), geometric_mean(), PLearn::GaussianContinuum::get_image_matrix(), incomplete_beta(), PLearn::ConditionalDensityNet::initialize_mu(), inverse_softplus(), PLearn::LogRandomVariable::invertible(), KS_test(), logadd(), PLearn::DiagonalNormalRandomVariable::logP(), logsub(), PLearn::RandomVariable::P(), pl_gcf(), pl_gser(), poidev(), PLearn::VMatLanguage::run(), safeexp(), PLearn::GaussMix::setInput(), PLearn::DiagonalNormalRandomVariable::setValueFromParentsValue(), PLearn::ExpRandomVariable::setValueFromParentsValue(), softmax(), softplus(), softplus_primitive(), PLearn::SoftmaxLossVariable::symbolicBprop(), PLearn::LogAddVariable::symbolicBprop(), PLearn::ErfVariable::symbolicBprop(), PLearn::GaussianContinuum::train(), and PLearn::AdaBoost::train(). |
|
Definition at line 419 of file StatsIterator.h. |
|
returns an exponential distributed random number Definition at line 318 of file random.cc. References log(), and uniform_sample(). |
|
TVec[i] = (1-alpha)*TVec[i]+x[i]*alpha;.
Definition at line 2056 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. Referenced by PLearn::ScaledGradientOptimizer::optimize(). |
|
TVec[i] = (1-alpha)*TVec[i]+x[i]^2*alpha;.
Definition at line 2092 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. Referenced by PLearn::ScaledGradientOptimizer::optimize(). |
|
TVec[i] = (1-alpha)*TVec[i]+(x[i]-mu[i])^2*alpha;.
Definition at line 2071 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. |
|
simple extension of a vector (same semantic as old extend, when we only had vectors)
Definition at line 104 of file ExtendedVariable.h. References PLERROR. |
|
general extension of a matrix in any direction
Definition at line 100 of file ExtendedVariable.h. |
|
Definition at line 453 of file RandomVar.cc. Referenced by PLearn::ExtendedRandomVariable::setValueFromParentsValue(), PLearn::SubMatVariable::symbolicBprop(), and PLearn::SubMatTransposeVariable::symbolicBprop(). |
|
Definition at line 2979 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::VecStatsCollector::getCorrelation(). |
|
Definition at line 2999 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), PLearn::TMat< T >::isCompact(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, val, and PLearn::TMat< T >::width(). Referenced by PLearn::VMatrix::accumulateXtX(), PLearn::VMatrix::accumulateXtY(), PLearn::AffineTransformVariable::bprop(), computeMeanAndCovar(), and linearRegression(). |
|
Definition at line 3059 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 3039 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ProjectionErrorVariable::bprop(), computeCovar(), computeInputMeanAndCovar(), computeMeanAndCovar(), computeWeightedMeanAndCovar(), PLearn::VecStatsCollector::update(), and weightedLinearRegression(). |
|
Returns everything before the last '/' including the '/' (if there's no '/' it returns "./").
Definition at line 146 of file stringutils.cc. Referenced by abspath(), PLearn::AutoSDBVMatrix::AutoSDBVMatrix(), PLearn::VVMatrix::createPreproVMat(), PLearn::VVMatrix::extractSourceMatrix(), force_mkdir_for_file(), getDataSet(), PLearn::VVMatrix::getDateOfVMat(), locateDatasetAliasesDir(), makeFileNameValid(), readAndMacroProcess(), and readFileAndMacroProcess(). |
|
Returns everything after the last '.' of the filename (i.e. excluding the directory paths if any is present), including the '.' (if there's no '.' in the filename it returns "") Definition at line 158 of file stringutils.cc. References extract_filename(). Referenced by getDataSet(), getDataSetDate(), loadMat(), makeFileNameValid(), readFileAndMacroProcess(), PLearn::ReadAndWriteCommand::run(), PLearn::HelpCommand::run(), and vmatmain(). |
|
** File path manipulation functions ** Returns everything after the last '/' (if there's no '/' returns filepath)
Definition at line 137 of file stringutils.cc. References slash. Referenced by abspath(), PLearn::AutoSDBVMatrix::AutoSDBVMatrix(), extract_extension(), extract_filename_without_extension(), getDataSet(), matlabR11eigs(), readAndMacroProcess(), and readFileAndMacroProcess(). |
|
Returns everything before the last '.' of the filename, excluding the '.' (if there's no '.' in the filename it returns the whole filename).
Definition at line 168 of file stringutils.cc. References extract_filename(). Referenced by makeFileNameValid(). |
|
Definition at line 250 of file pl_math.h. References x. Referenced by PLearn::LiftStatsIterator::update(), PLearn::LiftStatsCollector::update(), and PLearn::Function::verifyGradient(). |
|
Definition at line 1014 of file TMat_maths_impl.h. References compute_fastsigmoid(), and PLearn::TVec< T >::length(). |
|
Definition at line 193 of file pl_math.h. References fasttanh(), and x. Referenced by compute_fastsigmoid(). |
|
Definition at line 977 of file TMat_maths_impl.h. References compute_fasttanh(), and PLearn::TVec< T >::length(). |
|
Definition at line 166 of file pl_math.h. References DOUBLE_TO_INT, MAXTANHX, tanhtable, TANHTABLESIZE, and x. Referenced by compute_fasttanh(), and fastsigmoid(). |
|
Definition at line 114 of file general.cc. Referenced by PLearn::VVMatrix::extractSourceMatrix(), filter(), fullyRebalance2Classes(), grep(), PLearn::SDBWithStats::hasStats(), PLearn::HelpCommand::helpAboutScript(), input2dSet(), PLearn::IntVecFile::open(), PLearn::FilteredVMatrix::openIndex(), plearn_main(), PLearn::VMat::precompute(), rebalanceNClasses(), PLearn::RunCommand::run(), PLearn::SourceVMatrix::setMetaDataDir(), and PLearn::Learner::stop_if_wanted(). |
|
Simple file info.
Definition at line 71 of file general.cc. Referenced by PLearn::SimpleDB< KeyType, QueryResult >::computeSize(), and filter(). |
|
Returns the length of a file, measured in bytes.
Definition at line 323 of file fileutils.cc. References PLERROR. Referenced by PLearn::IntVecFile::getVersionAndSize(), loadFileAsString(), MemoryMap(), and PLearn::Storage< pair< real, real > >::Storage(). |
|
Definition at line 1308 of file TMat_maths_impl.h. References PLearn::TVec< T >::fill(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::OneHotVMatrix::getNewRow(), PLearn::GeneralizedOneHotVMatrix::getNewRow(), and one_hot(). |
|
sample each element from the given set
Definition at line 570 of file random.cc. References PLearn::TVec< T >::begin(), PLearn::TVec< T >::end(), PLearn::TVec< T >::length(), and uniform_multinomial_sample(). Referenced by PLearn::NNet::initializeParams(). |
|
Definition at line 613 of file random.cc. References PLearn::TMat< T >::begin(), PLearn::TMat< T >::end(), gaussian_mu_sigma(), and mean(). |
|
sample each element from multivariate Normal(mean,diag(sdev^2)) distribution
Definition at line 589 of file random.cc. References PLearn::TVec< T >::begin(), PLearn::TVec< T >::end(), gaussian_mu_sigma(), PLearn::TVec< T >::length(), mean(), and PLERROR. |
|
sample each element from Normal(mean,sdev^2) distribution
Definition at line 580 of file random.cc. References PLearn::TVec< T >::begin(), PLearn::TVec< T >::end(), gaussian_mu_sigma(), and mean(). Referenced by PLearn::GaussianDistribution::generate(), PLearn::GaussMix::generateFromGaussian(), PLearn::NeuralNet::initializeParams(), PLearn::NeighborhoodSmoothnessNNet::initializeParams(), PLearn::MultiInstanceNNet::initializeParams(), PLearn::ConditionalDensityNet::initializeParams(), and PLearn::PCA::train(). |
|
Definition at line 604 of file random.cc. References PLearn::TMat< T >::begin(), PLearn::TMat< T >::end(), and uniform_sample(). |
|
sample each element from uniform distribution U[minval,maxval]
Definition at line 560 of file random.cc. References PLearn::TVec< T >::begin(), PLearn::TVec< T >::end(), and uniform_sample(). Referenced by affineMatrixInitialize(), PLearn::EntropyContrast::initialize_NNcontinuous(), PLearn::TangentLearner::initializeParams(), PLearn::NNet::initializeParams(), PLearn::GaussianContinuum::initializeParams(), and PLearn::Function::verifyGradient(). |
|
Fill the bottom left part of a matrix with its top right part, so that it becomes symmetric.
Definition at line 2805 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and PLearn::TMat< T >::mod(). |
|
returns a VMat that contains only the lines that do not have any MISSING_VALUE The indexes of the rows of the original matrix are recorded in the indexfile BEWARE: If the indexfile already exists, it is *not* recomputed, but used as is. Definition at line 758 of file VMat_maths.cc. References PLearn::IntVecFile::append(), file_exists(), file_size(), PLearn::TVec< T >::hasMissing(), PLearn::VMat::length(), PLearn::VMat::rows(), and PLearn::VMat::width(). Referenced by PLearn::EmbeddedSequentialLearner::train(). |
|
also useful to find "turn-on" options in a command line, i.e. of the form option this function just returns true if the option is found in the command_line. Note: this may be useful with command_line = stringvector(argc,argv); Definition at line 586 of file stringutils.cc. Referenced by PLearn::Hash< KeyType, DataType >::del(), PLearn::Hash< KeyType, DataType >::element(), PLearn::Hash< KeyType, DataType >::hashAddress(), PLearn::VMatrix::removeStringMapping(), and PLearn::SimpleDB< KeyType, QueryResult >::truncateFromRow(). |
|
Definition at line 687 of file Kernel.cc. References argmax(), dist(), k, sortRows(), and PLearn::TVec< real >::subVec(). |
|
Definition at line 525 of file stringutils.cc. |
|
return index of element in v, or -1 if not found
|
|
Definition at line 170 of file PDate.h. References float_to_date(). |
|
Definition at line 170 of file PDate.cc. References PLearn::PDate::day, is_missing(), PLearn::PDate::month, and PLearn::PDate::year. Referenced by PLearn::DatedJoinVMatrix::build_(), PLearn::SDBVMFieldMonths::convertField(), PLearn::SDBVMFieldDay::convertField(), PLearn::SDBVMFieldDate::convertField(), float_to_date(), and PLearn::VMatLanguage::run(). |
|
Definition at line 52 of file PStream.cc. References PLearn::PStream::flush(). Referenced by PLearn::Learner::computeLeaveOneOutCosts(), PLearn::VVec::print(), PLearn::KernelProjection::train(), vmatmain(), and PLearn::pl_fdstream::~pl_fdstream(). |
|
Forces directory creation if it doesn't already exist. (also creates any missing directory along its path) Return value indicates success (true) or failure (false). If the directory already exists, true is returned. Definition at line 252 of file fileutils.cc. References isdir(), mode, remove_trailing_slash(), and slash. Referenced by PLearn::AutoSDBVMatrix::AutoSDBVMatrix(), PLearn::VVMatrix::build_(), PLearn::SequentialValidation::build_(), PLearn::PLearner::build_(), PLearn::PTester::build_(), PLearn::GaussianProcessRegressor::build_(), PLearn::DiskVMatrix::build_(), PLearn::VVMatrix::createPreproVMat(), force_mkdir_for_file(), PLearn::VMatrix::loadStringMapping(), PLearn::VMatrix::lockMetaDataDir(), matlabSave(), PLearn::SequentialValidation::run(), PLearn::Experiment::run(), PLearn::PLearner::setExperimentDirectory(), PLearn::PTester::setExperimentDirectory(), PLearn::Learner::setExperimentDirectory(), and PLearn::VMatrix::setMetaDataDir(). |
|
Extracts the directory part of the filepath and calls force_mkdir Calls PLERROR in case of failure.
Definition at line 286 of file fileutils.cc. References extract_directory(), force_mkdir(), and PLERROR. Referenced by PLearn::FileVMatrix::build_(), save(), saveStringInFile(), PLearn::VMatrix::saveStringMappings(), and PLearn::VMatrix::setSFIFFilename(). |
|
Forces removal of directory and all its content Return value indicates success (true) or failure (false) If the directory does not exist, false is returned. Definition at line 296 of file fileutils.cc. References isdir(), and lsdir_fullpath(). Referenced by PLearn::VVMatrix::createPreproVMat(), PLearn::VMatrix::saveDMAT(), and PLearn::PrecomputedVMatrix::usePrecomputed(). |
|
Definition at line 101 of file pl_io_deprecated.h. References fread_double(). |
|
reads disk doubles into float array
Definition at line 268 of file pl_io_deprecated.cc. References fread_double(). |
|
Definition at line 255 of file pl_io_deprecated.cc. References reverse_double(). Referenced by fread_double(), PLearn::FileVMatrix::getNewRow(), loadPMat(), and loadPVec(). |
|
Definition at line 99 of file pl_io_deprecated.h. References fread_float(). |
|
reads disk floats into double array
Definition at line 246 of file pl_io_deprecated.cc. References fread_float(). |
|
Definition at line 233 of file pl_io_deprecated.cc. References reverse_float(). Referenced by fread_float(), PLearn::FileVMatrix::getNewRow(), loadADMat(), loadADVec(), loadPMat(), loadPVec(), loadSNMat(), and loadSNVec(). |
|
The following calls read a single value from the file, assuming it is in the specified representation (either little or big endian) If necessary the representation is translated to the endianness used on the current architecture. Definition at line 97 of file pl_io_deprecated.h. References fread_int(). |
|
Reads binary data from a file assuming it is in the specified representation (either little or big endian) If necessary the representation is translated to the endianness on the current architecture.
Definition at line 220 of file pl_io_deprecated.cc. References reverse_int(). Referenced by fread_int(), PLearn::IntVecFile::get(), loadADMat(), loadADVec(), loadSNMat(), and loadSNVec(). |
|
Definition at line 277 of file pl_io_deprecated.cc. References reverse_ushort(). |
|
Rebalance a 2-class VMat such as to keep all the examples of the dominant class.
Definition at line 1153 of file VMat_maths.cc. References PLearn::TmpFilenames::addFilename(), file_exists(), fname, PLearn::VMat::lastColumn(), PLearn::VMat::length(), MAX, PLearn::IntVecFile::put(), PLearn::TVec< T >::resize(), PLearn::VMat::rows(), PLearn::VMat::save(), PLearn::VMat::toMat(), and PLearn::TMat< T >::toVecCopy(). |
|
Definition at line 110 of file pl_io_deprecated.h. References fwrite_double(). |
|
writes float array to double file
Definition at line 209 of file pl_io_deprecated.cc. References fwrite_double(). |
|
Definition at line 185 of file pl_io_deprecated.cc. References reverse_double(). Referenced by PLearn::FileVMatrix::appendRow(), fwrite_double(), PLearn::FileVMatrix::put(), and PLearn::FileVMatrix::putSubRow(). |
|
Definition at line 108 of file pl_io_deprecated.h. References fwrite_float(). |
|
writes double array to float file
Definition at line 176 of file pl_io_deprecated.cc. References fwrite_float(). |
|
Definition at line 152 of file pl_io_deprecated.cc. References reverse_float(). Referenced by PLearn::FileVMatrix::appendRow(), fwrite_float(), PLearn::FileVMatrix::put(), PLearn::FileVMatrix::putSubRow(), saveSNMat(), and saveSNVec(). |
|
The following calls write a single value to the file in the specified representation, regardeless of the endianness on the current architecture.
Definition at line 106 of file pl_io_deprecated.h. References fwrite_int(). |
|
Writes binary data to the file in the specified representation (little or big endian) regardeless of the endianness used on the current architecture.
Definition at line 128 of file pl_io_deprecated.cc. References reverse_int(). Referenced by fwrite_int(), PLearn::IntVecFile::put(), saveSNMat(), and saveSNVec(). |
|
returns a gamma distributed random number Definition at line 393 of file random.cc. References exp(), log(), PLERROR, sqrt(), uniform_sample(), and x. |
|
For X ~ Normal(0,1), cumulative probability function P(X<x).
Definition at line 158 of file pl_erf.cc. Referenced by gauss_01_quantile(), gauss_cum(), normal_cdf(), p_value(), and testNoCorrelationAsymptotically(). |
|
for X ~ Normal(0,1), return density of X at x
Definition at line 191 of file pl_erf.cc. References exp(), Sqrt2Pi, and x. Referenced by gauss_density_stddev(). |
|
|
|
For X ~ Normal(0,1), inverse of cumulative probability function P(X<x) i.e. approximately gauss_01_quantile(gauss_01_cum(x)) ~=~ x (the inverse is computed with a binary search, the bisection method) Definition at line 165 of file pl_erf.cc. References gauss_01_cum(). |
|
Definition at line 74 of file pl_erf.h. References gauss_01_cum(), and x. Referenced by PLearn::LimitedGaussianSmoother::smooth(). |
|
Definition at line 91 of file pl_erf.h. References gauss_01_density(), and x. |
|
|
|
Definition at line 213 of file pl_erf.cc. References log(), Log2Pi, and x. Referenced by PLearn::GaussMix::computeLogLikelihood(). |
|
Definition at line 201 of file pl_erf.cc. References log(), Log2Pi, var(), and x. Referenced by PLearn::GaussianProcessRegressor::computeCostsFromOutputs(). |
|
returns a random number gaussian with mean 0 and standard deviation 1 Definition at line 328 of file random.cc. References gset, iset, log(), sqrt(), the_seed, and uniform_sample(). Referenced by gaussian_mu_sigma(), PLearn::EntropyContrast::gen_normal_0_1(), multivariate_normal(), and normal_sample(). |
|
returns a random number with mixture of gaussians, "w" is the mixture (must be positive numbers summing to 1), "mu" and "sigma" are the vectors of means and standard deviations for each gaussian Definition at line 369 of file random.cc. References PLearn::TVec< T >::data(), gaussian_mu_sigma(), and PLearn::TVec< T >::length(). |
|
returns a random number gaussian with mean "mu" and standard dev "sigma" Definition at line 356 of file random.cc. References gaussian_01(). Referenced by fill_random_normal(), PLearn::DiagonalNormalSampleVariable::fprop(), gaussian_mixture_mu_sigma(), PLearn::SpiralDistribution::generate(), PLearn::GaussMix::generateFromGaussian(), and PLearn::AdaBoost::train(). |
|
Computes up to k largest eigen_values and corresponding eigen_vectors of a real generalized symmetric-definite eigenproblem, of the form m1*x=(lambda)*m2*x (itype = 1), m1*m2*x=(lambda)*x (itype = 2) or m2*m1*x=(lambda)*x (itype = 3) m1 and m2 are assumed to be symmetric and m2 is also positive definite. Parameters eigen_values and eigen_vectors are resized accordingly and filled by the call. The eigenvalues are returned in decreasing order (largest first). The corresponding eigenvectors are in the *ROWS* of eigen_vectors WARNING: m1 and m2 are destroyed during the operation. Definition at line 350 of file plapack.h. References k, lapackGeneralizedEIGEN(), PLearn::TMat< T >::length(), PLERROR, PLearn::TVec< T >::resize(), PLearn::TMat< T >::resize(), PLearn::TVec< T >::swap(), PLearn::TMat< T >::swapUpsideDown(), and PLearn::TMat< T >::width(). |
|
Definition at line 3823 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), exp(), PLearn::TMat< T >::length(), log(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 363 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), exp(), PLearn::TVec< T >::length(), and PLERROR. |
|
The command_line is made of pairs of the form option value Look for an option in the command_line, and return the corresponding value if it is found, or return default_value otherwise. Note: this may be useful with command_line = stringvector(argc,argv); Definition at line 577 of file stringutils.cc. |
|
returns the current seed used by the random number generator |
|
gets the first char after removal of blanks
Definition at line 164 of file fileutils.h. |
|
gets the first char after removal of blanks and comments
Definition at line 167 of file fileutils.h. References skipBlanksAndComments(). Referenced by readAndMacroProcess(). |
|
returns the absolute path to the current working directory as a string
Definition at line 81 of file fileutils.cc. Referenced by abspath(), getDataSet(), getDataSetDate(), and readAndMacroProcess(). |
|
datasetstring can be one of the following:
Definition at line 109 of file getDataSet.cc. References c_str(), extract_directory(), extract_extension(), extract_filename(), getcwd(), getDatasetAliases(), isfile(), PLearn::PP< VMatrix >::isNull(), loadAsciiAsVMat(), loadAsciiSingleBinaryDescriptor(), loadClassificationDataset(), newObject(), pathexists(), PLERROR, readFileAndMacroProcess(), remove_extension(), removeblanks(), slash, split(), and vconcat(). Referenced by PLearn::AutoVMatrix::build_(), PLearn::LearnerCommand::compute_outputs(), PLearn::VVMatrix::createPreproVMat(), cross_valid(), plotVMats(), PLearn::VVMatrix::processJoinSection(), PLearn::TestDependencyCommand::run(), PLearn::TestDependenciesCommand::run(), PLearn::KolmogorovSmirnovCommand::run(), PLearn::LearnerCommand::test(), PLearn::LearnerCommand::train(), train_and_test(), use(), viewVMat(), and vmatmain(). |
|
Looks for 'dataset.aliases' file in specified directory and its parent directories; loads it and returns the corresponding map. Returns an empty map if file was not found. Definition at line 258 of file getDataSet.cc. References PLearn::PStream::get(), isfile(), locateDatasetAliasesDir(), PLERROR, read(), removeblanks(), and ws(). Referenced by cross_valid(), getDataSet(), getDataSetDate(), train_and_test(), and use(). |
|
Definition at line 75 of file getDataSet.cc. References extract_extension(), getcwd(), getDatasetAliases(), isfile(), mtime(), pathexists(), PLERROR, and slash. Referenced by PLearn::VVMatrix::getDateOfVMat(), PLearn::VMatLanguage::preprocess(), and vmatmain(). |
|
returns a help describing the datasetstring parameter of getDataSet
Definition at line 64 of file getDataSet.cc. References loadClassificationDatasetHelp(). Referenced by PLearn::HelpCommand::helpDatasets(), old_plearn_main(), and vmatmain(). |
|
Definition at line 56 of file VMatLanguage.cc. References mtime(), and PLERROR. Referenced by PLearn::VVMatrix::getDateOfVMat(). |
|
Definition at line 675 of file VMatrix.cc. Referenced by PLearn::VMatrix::lockMetaDataDir(). |
|
Definition at line 294 of file vmatmain.cc. References PLearn::TVec< T >::clear(), pl_isnumber(), PLearn::TVec< T >::push_back(), split(), toint(), and PLearn::VMat::width(). Referenced by viewVMat(). |
|
reads a modelalias -> object_representation map from a model.aliases file
Definition at line 72 of file old_plearn_main.cc. References PLERROR, remove_comments(), removeblanks(), smartReadUntilNext(), and ws(). Referenced by cross_valid(), getMultipleModelAliases(), and train_and_test(). |
|
Definition at line 260 of file old_plearn_main.cc. References exitmsg(), getModelAliases(), and isfile(). Referenced by old_plearn_main(). |
|
returns the next non blank line (#-style comments are considered blank)
Definition at line 451 of file fileutils.cc. Referenced by PLearn::AsciiVMatrix::build_(), and parseSizeFromRemainingLines(). |
|
Returns a vector of string containing only non-empty lines, as you guessed it.
Definition at line 594 of file stringutils.cc. References isBlank(), and split(). Referenced by PLearn::VVMatrix::buildFilteredVMatFromVPL(), and PLearn::VVMatrix::extractSourceMatrix(). |
|
Definition at line 680 of file VMatrix.cc. Referenced by PLearn::VMatrix::lockMetaDataDir(). |
|
returns a vector of length q+1 that contains the q quantiles of the sorted vector v and the last value corresponds to the last value of the vector vec. Definition at line 1928 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 9 of file procinfo.cc. References PLERROR. Referenced by PLearn::TestDependenciesCommand::run(). |
|
Definition at line 685 of file VMatrix.cc. Referenced by PLearn::VMatrix::lockMetaDataDir(). |
|
Orthonormalize in-place the rows of the given matrix, using successive projections on the orthogonal subspace of the previously found basis. The resulting matrix has the following properties:
Definition at line 5654 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), norm(), and projectOnOrthogonalSubspace(). Referenced by diagonalizeSubspace(), and PLearn::PCA::train(). |
|
Same as above, except that the indexes of the rows are stored on disk rather than in memory (a SelectRowsFileIndexVMatrix is returned rather than a SelectRowsVMatrix) BEWARE: If the indexfile already exists, it is *not* recomputed, but used as is. Definition at line 743 of file VMat_maths.cc. References PLearn::IntVecFile::append(), PLearn::TVec< T >::contains(), file_exists(), PLearn::VMat::length(), and PLearn::VMat::rows(). |
|
If exclude==false (the default) returns a VMat containing only the rows whose column col has a value that belongs to the given set of authorized values If exclude==true returns a VMat with all the other rows (corresponds to grep -v) [MISSING_VALUE is a possible value and is handled correctly] Definition at line 689 of file VMat_maths.cc. References PLearn::TVec< T >::contains(), PLearn::TVec< T >::copy(), PLearn::VMat::length(), PLearn::VMat::rows(), and PLearn::TVec< T >::subVec(). |
|
Same as above, but with a single value argument.
Definition at line 5738 of file TMat_maths_impl.h. References grep(). |
|
Definition at line 5563 of file TMat_maths_impl.h. References PLearn::TMat< T >::compact(), PLearn::TVec< T >::contains(), PLearn::TMat< T >::length(), PLearn::TMat< T >::resize(), and PLearn::TMat< T >::width(). Referenced by grep(). |
|
not quite a random shuffle (see implementation) but more efficient use of disk cache
Definition at line 937 of file SimpleDB.cc. References endl(), PLearn::SimpleDB< KeyType, QueryResult >::getInRow(), PLearn::SimpleDB< KeyType, QueryResult >::getSchema(), k, PLearn::SimpleDB< KeyType, QueryResult >::length(), SDB, and PLearn::SimpleDB< KeyType, QueryResult >::setRow(). |
|
Definition at line 75 of file HardSlopeVariable.h. |
|
Definition at line 338 of file pl_math.h. References left(), right(), and x. Referenced by PLearn::UnaryHardSlopeVariable::fprop(), PLearn::HardSlopeVariable::fprop(), soft_slope(), and tabulated_soft_slope(). |
|
Definition at line 220 of file pl_math.cc. Referenced by soft_slope_integral(), and tabulated_soft_slope_integral(). |
|
Definition at line 325 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), is_missing(), PLearn::TVec< T >::length(), MISSING_VALUE, and PLERROR. |
|
**************** Hash tables support ************************* basic hashing function that can be used in defining the hashing functions for objects or any type. This one mixes the bits in the byte_length bytes starting at byte_start, and returns an integer between 0 and MAXINT Definition at line 78 of file pl_hash_fun.cc. References PL_HASH_NOMBRES_MAGIQUES. Referenced by hashval(). |
|
hash function for hash tables
Definition at line 170 of file SmallVector.h. References hashbytes(). |
|
default which will work in many cases but not all
Definition at line 75 of file pl_hash_fun.h. References hashbytes(), and x. |
|
hashing function which must be redefined for classes that can be used as keys: unsigned int hash(const T& object); or unsigned int hash(const T object); This function returns ANY unsigned int (i.e. between 0 and MAXINT) (it is hash(x)table_size that will be used to choose an address in the hash table). It is defined here for some built-in types: Definition at line 70 of file pl_hash_fun.h. References hashbytes(), and strlen(). |
|
Definition at line 97 of file ConcatColumnsVMatrix.h. |
|
Definition at line 94 of file ConcatColumnsVMatrix.h. |
|
Definition at line 78 of file ConcatColumnsVariable.h. |
|
Definition at line 456 of file RandomVar.cc. |
|
Definition at line 214 of file Array_impl.h. References hconcat(). |
|
Definition at line 190 of file Array_impl.h. References PLERROR, and PLearn::TMat< T >::subMatColumns(). Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::VVMatrix::createPreproVMat(), hconcat(), loadUSPS(), PLearn::LocallyWeightedDistribution::log_density(), PLearn::SequentialModelSelector::matlabSave(), removeColumn(), PLearn::ConcatColumnsRandomVariable::setValueFromParentsValue(), PLearn::TangentLearner::train(), PLearn::GaussianContinuum::train(), and PLearn::ClassifierFromDensity::train(). |
|
converts an hours/minutes/seconds to a day fraction
Definition at line 166 of file PDateTime.cc. Referenced by datetime_to_double(), and PLearn::PDateTime::toJulianDay(). |
|
Definition at line 466 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and val. Referenced by displayHistogram(), and PLearn::Gnuplot::histoplot(). |
|
Definition at line 139 of file general.cc. References PLERROR. Referenced by establish_connection(), and PLearn::IPServer::machine_name(). |
|
Distance between point x and closest point on hyperplane that passes through all points.
Definition at line 619 of file plapack.h. References closestPointOnHyperplane(), L2distance(), and x. |
|
Given a vector of claims (representing the claim values for different KOLs) and a threshold value, the following function returns the class (integer between 0 and 3) of the claims vector. There are 4 classes:
Definition at line 1210 of file SDBVMat.cc. References PLearn::TVec< T >::length(). Referenced by PLearn::SDBVMFieldICBCClassification::convertField(). |
|
IT WOULD BE NICE IF WE COULD REDEFINE (:?).
Definition at line 86 of file IfThenElseVariable.h. |
|
Definition at line 1771 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::NeuralNet::build_(), PLearn::ConditionalDensityNet::build_(), d_hard_slope(), PLearn::PowVariableVariable::symbolicBprop(), PLearn::IfThenElseVariable::symbolicBprop(), and PLearn::AbsVariable::symbolicBprop(). |
|
|
|
|
|
Note that z must be in [0,1] Definition at line 146 of file random.cc. References exp(), incomplete_beta_continued_fraction(), log(), log_beta(), PLERROR, and x. Referenced by student_t_cdf(). |
|
Definition at line 94 of file random.cc. References k, PLWARNING, and x. Referenced by incomplete_beta(). |
|
returns a map mapping all different values appearing in column col to a vector of the corresponding row indices in the VMat (this proceeds in 2 passes, first calling countOccurencesInColumn to allocate the exact memory)
Definition at line 726 of file VMat_maths.cc. References countOccurencesInColumn(), and PLearn::VMat::length(). Referenced by PLearn::ClassifierFromDensity::train(). |
|
This will input a 2d binary classification problem (launches a java applet).
Definition at line 59 of file databases.cc. References file_exists(), JAVA, loadAscii(), and shuffleRows(). Referenced by loadClassificationDataset(). |
|
Definition at line 96 of file vmatmain.cc. References PLearn::StatsCollector::cdf(), endl(), k, PLearn::TVec< T >::length(), pgetline(), PLearn::Gnuplot::plot(), PLearn::TVec< T >::size(), split(), and toint(). Referenced by vmatmain(). |
|
Definition at line 100 of file Set.h. References PLearn::Set::begin(), and PLearn::Set::end(). |
|
if values = [x1,x2,...,x10], the resulting variable is [(x1+x2)/2,(x2+x3)/2, ... (x9+x10)/2] Definition at line 80 of file InterValuesVariable.h. |
|
Definition at line 4709 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::resize(), and PLearn::TMat< T >::width(). |
|
Definition at line 4699 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(). Referenced by PLearn::MatrixInverseVariable::fprop(), leftPseudoInverse(), matInvert(), and rightPseudoInverse(). |
|
Definition at line 1032 of file TMat_maths_impl.h. References compute_inverse_sigmoid(), and PLearn::TVec< T >::length(). |
|
numerically stable version of inverse_sigmoid(x) = log(x/(1-x))
Definition at line 278 of file pl_math.h. References FEQUAL, log(), PLERROR, and x. Referenced by compute_inverse_sigmoid(), PLearn::ConditionalDensityNet::initializeParams(), and PLearn::ConditionalDensityNet::train(). |
|
inverse of softplus function
Definition at line 327 of file pl_math.h. References exp(), log(), and MISSING_VALUE. Referenced by PLearn::ConditionalDensityNet::initializeParams(), and PLearn::ConditionalDensityNet::train(). |
|
Definition at line 1053 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 72 of file InvertElementsVariable.h. |
|
x'_ij = 1.0/x_ij;
Definition at line 4642 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). |
|
Definition at line 1045 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). Referenced by PLearn::ShiftAndRescaleVMatrix::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), d_hard_slope(), normalize(), operator/(), PLearn::DivVariable::symbolicBprop(), and PLearn::PLS::train(). |
|
Definition at line 261 of file pl_math.h. References x. Referenced by PLearn::CompactVMatrixPolynomialKernel::evaluate(), and PLearn::PolynomialKernel::evaluateFromDot(). |
|
Definition at line 248 of file pl_math.h. References x. Referenced by computeConditionalMeans(), and PLearn::ClassErrorCostFunction::evaluate(). |
|
Missing value for double and float are represented by NaN.
Definition at line 246 of file pl_math.h. References x. |
|
Missing value for double and float are represented by NaN.
Definition at line 243 of file pl_math.h. References x. |
|
Tells if the passed value means "missing" for its data-type. The default version of returns false (not a "missing value") Definition at line 240 of file pl_math.h. Referenced by argmax(), argmin(), PLearn::RealMapping::binnumber(), PLearn::FinancePreprocVMatrix::build_(), computeBasicStats(), PLearn::SDBVMFieldICBCTargets::convertField(), PLearn::SDBVMFieldDate::convertField(), PLearn::SDBVMField::convertMissing(), countOccurencesInColumn(), dilogarithm(), double_to_datetime(), DX_create_grid_outputs_file(), PLearn::ConditionalStatsCollector::findrange(), float_to_date(), PLearn::DilogarithmVariable::fprop(), PLearn::ConcatRowsVMatrix::fullyCheckMappings(), PLearn::ConcatRowsVMatrix::get(), PLearn::MovingAverageVMatrix::getNewRow(), PLearn::JoinVMatrix::getNewRow(), PLearn::FinancePreprocVMatrix::getNewRow(), PLearn::CumVMatrix::getNewRow(), PLearn::ConcatRowsVMatrix::getSubRow(), PLearn::VMatrix::getValString(), PLearn::SDBVMOutputCoder::handleOtherAndMissing(), harmonic_mean(), PLearn::TVec< pair< real, real > >::hasMissing(), PLearn::TMat< pair< real, real > >::hasMissing(), PLearn::RealMapping::map(), matlabSave(), mean(), new_get_compr_data_type(), new_write_raw_data_as(), PLearn::VMatLanguage::preprocess(), PLearn::RealMapping::print(), print_diff(), remove_missing(), PLearn::VMatLanguage::run(), PLearn::SDBVMOutputCoder::setOutput(), PLearn::StrTableVMatrix::StrTableVMatrix(), sum(), PLearn::VMFieldStat::update(), PLearn::StatsCollector::update(), PLearn::LiftStatsCollector::update(), PLearn::ConditionalStatsCollector::update(), viewVMat(), weighted_mean(), and PLearn::PStream::writeAsciiNum(). |
|
"hard" version of the sigmoid, i.e. the indicator function that is 1 if its argument is STRICTLY positive, and 0 otherwise Definition at line 275 of file pl_math.h. References x. |
|
Definition at line 80 of file IsAboveThresholdVariable.h. Referenced by PLearn::ConditionalDensityNet::build_(). |
|
Definition at line 2832 of file WordNetOntology.cc. References isDigit(), and isLetter(). |
|
returns true if s is a blank line (containing only space, tab, until end of line or a # comment-character is reached
Definition at line 303 of file stringutils.cc. Referenced by getNonBlankLines(), PLearn::VMatLanguage::preprocess(), and PLearn::VVMatrix::processJoinSection(). |
|
Definition at line 198 of file Var_operators.cc. References isequal(). |
|
Definition at line 2827 of file WordNetOntology.cc. Referenced by isAlpha(), and trimWord(). |
|
returns true if the given path is an existing directory (or a symbolic link pointing to a directory)
Definition at line 139 of file fileutils.cc. Referenced by abspath(), PLearn::DiskVMatrix::build_(), PLearn::VVMatrix::createPreproVMat(), force_mkdir(), force_rmdir(), goAndCreateDir(), makedir(), PLearn::VMatrix::resolveFieldInfoLink(), train_and_test(), and PLearn::PrecomputedVMatrix::usePrecomputed(). |
|
First case: v1 and v2 are two vectors of length() l resulting Var is 1 if for all i=0 to l-1, v1->value[i] == v2->value[i], 0 otherwise Second case: one of v1 or v2 is a scalar variable (length() 1) and the other is a vector of length() l resulting Var is a vector of length() l, doing an element-wise comparison Definition at line 98 of file EqualVariable.cc. Referenced by isdifferent(), PLearn::FunctionalRandomVariable::logP(), operator!=(), and operator==(). |
|
returns true if the given path is an existing regular file (or a symbolic link pointing to a file)
Definition at line 153 of file fileutils.cc. Referenced by PLearn::AsciiVMatrix::AsciiVMatrix(), PLearn::FileVMatrix::build_(), PLearn::DiskVMatrix::build_(), PLearn::AsciiVMatrix::build_(), PLearn::VVMatrix::buildFilteredVMatFromVPL(), PLearn::VVMatrix::createPreproVMat(), cross_valid(), PLearn::FileVMatrix::FileVMatrix(), PLearn::VVMatrix::generateVMatIndex(), getDataSet(), getDatasetAliases(), getDataSetDate(), PLearn::VMatrix::getFieldInfos(), PLearn::AutoSDBVMatrix::getMappings(), getMultipleModelAliases(), PLearn::VVMatrix::getPrecomputedDataName(), PLearn::VMatrix::getRanges(), PLearn::VMatrix::getSFIFFilename(), PLearn::VMatrix::getStats(), PLearn::GhostScript::GhostScript(), PLearn::VVMatrix::isPrecomputedAndUpToDate(), PLearn::VMatrix::loadStringMapping(), locateDatasetAliasesDir(), old_plearn_main(), PLearn::IntVecFile::open(), PLearn::VMatrix::resolveFieldInfoLink(), train_and_test(), and PLearn::PrecomputedVMatrix::usePrecomputed(). |
|
Definition at line 1711 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 1726 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 2837 of file WordNetOntology.cc. Referenced by trimWord(). |
|
Definition at line 2822 of file WordNetOntology.cc. Referenced by isAlpha(), and trimWord(). |
|
check that all keys of the map are int values
Definition at line 126 of file general.cc. Referenced by PLearn::CompactVMatrix::CompactVMatrix(). |
|
Definition at line 79 of file IsMissingVariable.h. References x. Referenced by PLearn::NeuralNet::build_(). |
|
returns true if s is a blank paragraph (containing only space, tab, until end of **string**)
Definition at line 318 of file stringutils.cc. |
|
Definition at line 1741 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 1756 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 832 of file TMat_impl.h. References PLearn::TVec< T >::size(). |
|
makes a single string from a vector of strings
Definition at line 499 of file stringutils.cc. |
|
Definition at line 132 of file Array_impl.h. References PLearn::TVec< T >::size(). Referenced by PLearn::Learner::measure(), PLearn::Learner::openTestResultsStreams(), PLearn::Learner::openTrainObjectiveStream(), PLearn::PTester::perform(), PLearn::VMatLanguage::preprocess(), and PLearn::SequentialValidation::run(). |
|
Returns result of Kolmogorov-Smirnov test between 2 samples The call sorts v1 and v2.
Definition at line 247 of file stats_utils.cc. References KS_test(). |
|
Kolmogorov-Smirnov test. Computes D (the max abs dfference between the 2 cdfs) and p_value P(random variable D > observed D|no difference in true prob) A reasonable value for D is 10. The call sorts v1 and v2. Definition at line 238 of file stats_utils.cc. References KS_test(), PLearn::TVec< T >::length(), max_cdf_diff(), and p_value(). |
|
Return the probability that the Kolmogorov-Smirnov statistic D takes the observed value or greater, given the null hypothesis that the distributions that are compared are really identical. N is the effective number of samples used for comparing the distributions. The argument conv gives the precision with which this probability is computed. A value above 10 does not bring much improvement. Note that the statistic D can be obtained as follows: Comparing two empirical distributions from data sets D_1 and D_2: Let F_1(x) the empirical cumulative distribution of D_1 of size N_1, and let F_2(x) the empirical cumulative distribution of D_2 of size N_2. Then D = max_x | F_1(x) - F_2(x) | and the effective N is N_1 N_2 / (N_1 + N_2). Comparing a theoretical distribution F and a data set D of size N with empirical cumulative distribution F_N: D = max_x | F(x) - F_N(x) | This function returns the following P(D > observed d | same distributions) estimated by 2 sum_{k=1}^{infty} (-1)^{k-1} exp(-2k^2 a^2) where a = sqrt(D*(sqrt(N)+0.12+0.11/sqrt(N))) Ref: Stephens, M.A. (1970), Journal of the Royal Statistical Society B, vol. 32, pp. 115-122. Definition at line 221 of file stats_utils.cc. References exp(), k, sqrt(), and x. Referenced by KS_test(), and PLearn::KolmogorovSmirnovCommand::run(). |
|
returns the value of the kth ordered element of v k can take values 0 to vec.length()-1
Definition at line 1875 of file TMat_maths_impl.h. References k, and positionOfkthOrderedElement(). Referenced by median(). |
|
Definition at line 775 of file TMat_maths_impl.h. References dist(). |
|
Definition at line 771 of file TMat_maths_impl.h. References dist(). Referenced by hyperplaneDistance(), and printDistanceStatistics(). |
|
Definition at line 64 of file plapack.h. References sgesdd_(). |
|
Definition at line 61 of file plapack.h. References dgesdd_(). Referenced by lapackSVD(). |
|
Definition at line 70 of file plapack.h. References dsyevr_(). |
|
Definition at line 67 of file plapack.h. References ssyevr_(). |
|
Definition at line 58 of file plapack.h. References ssyevx_(). |
|
Definition at line 55 of file plapack.h. References dsyevx_(). Referenced by eigen_SymmMat(), and lapackEIGEN(). |
|
Definition at line 76 of file plapack.h. References ssygvx_(). |
|
Definition at line 73 of file plapack.h. References dsygvx_(). Referenced by lapackGeneralizedEIGEN(). |
|
Computes the eigenvalues and eigenvectors of a symmetric (NxN) matrix A. Meaning of RANGE: 'A': all eigenvalues will be found. 'V': all eigenvalues in the half-open interval (low,high] will be found. 'I': will find eigenvals with indexes int(low) to int(high) included (smallest eigenval having index 0) ABSTOL is the tolerance (see lapack doc for call dsyevx_ ) If you do not wish to compute eigenvectors, provide a null (empty) 'eigenvecs'. Upon return, eigenvals will contain the M eigenvalues found in increasing order (it will be resized to M). And eigenvecs (unless initially null) will be resized to an MxN matrix containing the corresponding M eigenvectors in its *rows*. Definition at line 101 of file plapack.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), PLearn::TMat< T >::isEmpty(), PLearn::TMat< T >::isNotEmpty(), lapack_Xsyevx_(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, PLearn::TMat< T >::resize(), PLearn::TVec< T >::resize(), and PLearn::TMat< T >::width(). Referenced by eigenVecOfSymmMat(). |
|
Computes the eigenvalues and eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x A and B are assumed to be symmetric and B is also positive definite. Meaning of ITYPE Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*x Meaning of RANGE: 'A': all eigenvalues will be found. 'V': all eigenvalues in the half-open interval (low,high] will be found. 'I': will find eigenvals with indexes int(low) to int(high) included (smallest eigenval having index 0) ABSTOL is the tolerance (see lapack doc for call dsygvx_ ) If you do not wish to compute eigenvectors, provide a null (empty) 'eigenvecs'. Upon return, eigenvals will contain the M eigenvalues found in increasing order (it will be resized to M). And eigenvecs (unless initially null) will be resized to an MxN matrix containing the corresponding M eigenvectors in its *rows*. Definition at line 222 of file plapack.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), PLearn::TMat< T >::isEmpty(), PLearn::TMat< T >::isNotEmpty(), lapack_Xsygvx_(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, PLearn::TMat< T >::resize(), PLearn::TVec< T >::resize(), and PLearn::TMat< T >::width(). Referenced by generalizedEigenVecOfSymmMat(). |
|
Solves AX = B This is a simple wrapper over the lapack routine. It expects At and Bt (transposes of A and B) as input, as well as storage for resulting pivots vector of ints of same length as A. The call overwrites Bt, putting the transposed solution Xt in there, and At is also overwritten to contain the factors L and U from the factorization A = P*L*U; (the unit diagonal elements of L are not stored). The lapack status is returned: = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed. Definition at line 293 of file plapack.cc. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), dgesv_(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, PLearn::TVec< T >::resize(), sgesv_(), and PLearn::TMat< T >::width(). Referenced by solveLinearSystem(). |
|
Performs the SVD decomposition A = U.S.Vt See SVD(...) for more details. CAREFUL: the 'At' matrix argument is changed in the process! This is a straight forward call to the lapack function. As fortran uses column-major matrices, and we use row-major matrices, it's really as if we had to pass the transpose of A (denoted At) and were getting back the transpose of U (Ut) and V. If you want a version without the funny transposes, look at SVD (which simply calls this one with a different order of parameters...) Definition at line 386 of file plapack.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), endl(), PLearn::TMat< T >::isNotEmpty(), lapack_Xgesdd_(), PLearn::TMat< T >::length(), min(), PLearn::TMat< T >::mod(), PLERROR, PLearn::TMat< T >::resize(), PLearn::TVec< T >::resize(), and PLearn::TMat< T >::width(). Referenced by PLearn::GaussianContinuum::compute_train_and_validation_costs(), PLearn::ProjectionErrorVariable::fprop(), PLearn::NllSemisphericalGaussianVariable::fprop(), PLearn::GaussianContinuum::make_random_walk(), and SVD(). |
|
aligns the given string in a cell having the given width
Definition at line 56 of file stringutils.cc. Referenced by PLearn::SoftSlopeVariable::bprop(), PLearn::SoftSlopeIntegralVariable::bprop(), PLearn::HardSlopeVariable::bprop(), d_hard_slope(), d_soft_slope(), displayHistogram(), PLearn::SoftSlopeVariable::fprop(), PLearn::SoftSlopeIntegralVariable::fprop(), PLearn::HardSlopeVariable::fprop(), hard_slope(), PLearn::HardSlopeVariable::HardSlopeVariable(), operator<(), operator<<(), operator<=(), operator>(), operator>=(), soft_slope(), soft_slope_integral(), soft_slope_limit(), PLearn::SoftSlopeIntegralVariable::SoftSlopeIntegralVariable(), PLearn::SoftSlopeVariable::SoftSlopeVariable(), split_on_first(), tabulated_soft_slope(), tabulated_soft_slope_integral(), and PLearn::UnaryHardSlopeVariable::UnaryHardSlopeVariable(). |
|
Definition at line 76 of file LeftPseudoInverseVariable.h. |
|
Definition at line 4663 of file TMat_maths_impl.h. References inverse(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4653 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and PLearn::TMat< T >::width(). Referenced by PLearn::LeftPseudoInverseVariable::fprop(), and PLearn::ProductRandomVariable::invertible(). |
|
Definition at line 1034 of file GraphicalBiText.cc. |
|
Definition at line 71 of file LiftOutputVariable.h. Referenced by PLearn::NNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), and PLearn::MultiInstanceNNet::build_(). |
|
Definition at line 415 of file StatsIterator.h. |
|
Version that does all the memory allocations of XtX, XtY and theta_t. Returns theta_t.
Definition at line 974 of file VMat_maths.cc. References linearRegression(), and PLearn::VMat::width(). |
|
computes the result of the linear regression into theta_t Parameters must have the following sizes: inputs(l,n) outputs(l,m) theta_t(n+1,m) XtX(n+1,n+1) XtY(n+1,m) The n+1 is due to the inclusion of the bias terms in the matrices (first row of theta_t) If use_precomputed_XtX_XtY is false, then they are computed. Otherwise they are used as they are (typically passed precomputed from a previous call made with a possibly different weight_decay). Returns average of squared loss. Definition at line 907 of file VMat_maths.cc. References PLearn::TMat< T >::clear(), dot(), externalProductAcc(), PLearn::TMat< T >::length(), PLearn::VMat::length(), PLERROR, product(), solveLinearSystem(), solveLinearSystemByCholesky(), PLearn::TMat< T >::width(), PLearn::VMat::width(), and x. |
|
Definition at line 5465 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 5393 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, solveLinearSystemByCholesky(), and PLearn::TMat< T >::width(). Referenced by linearRegression(), and PLearn::LinearRegressor::train(). |
|
Definition at line 5359 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLERROR, solveLinearSystemByCholesky(), transposeProduct(), and PLearn::TMat< T >::width(). |
|
Definition at line 1172 of file PStream.h. Referenced by PLearn::NearestNeighborPredictionCost::build_(), PLearn::CompactVMatrix::CompactVMatrix(), PLearn::LearnerCommand::compute_outputs(), PLearn::AutoSDBVMatrix::getMappings(), PLearn::VMatrix::getRanges(), PLearn::VMatrix::getStats(), PLearn::WordNetOntology::load(), PLearn::Object::load(), main(), PLearn::Learner::measure(), PLearn::RGBImageDB::RGBImageDB(), PLearn::RowMapSparseMatrix< real >::RowMapSparseMatrix(), PLearn::ReadAndWriteCommand::run(), PLearn::SparseVMatrix::SparseVMatrix(), PLearn::LearnerCommand::test(), PLearn::LearnerCommand::train(), PLearn::GaussianContinuum::train(), and PLearn::WordNetOntology::WordNetOntology(). |
|
Native AD format.
Definition at line 1011 of file MatIO.cc. References PLearn::TMat< T >::data(), fread_float(), fread_int(), and PLERROR. |
|
Definition at line 1031 of file MatIO.cc. References PLearn::TVec< T >::data(), fread_float(), fread_int(), and PLERROR. |
|
Definition at line 399 of file MatIO.h. References PLearn::TVec< T >::begin(), PLearn::TVec< T >::clear(), PLearn::TVec< T >::end(), MISSING_VALUE, PLERROR, and PLearn::TVec< T >::resize(). |
|
Definition at line 481 of file MatIO.h. References loadAscii(). |
|
WARNING: use only for float, double, and int types. Other type are not guaranteed to work intelligent functions that will load a file in almost all ascii formats that ever existed in this lab.
Definition at line 195 of file MatIO.h. References PLearn::TVec< T >::clear(), PLearn::TVec< T >::fill(), k, PLearn::TVec< T >::length(), map_sr, MISSING_VALUE, parseSizeFromRemainingLines(), pl_isnumber(), PLERROR, PLWARNING, removeblanks(), PLearn::TMat< T >::resize(), PLearn::TVec< T >::resize(), PLearn::TVec< T >::size(), skipBlanksAndComments(), split(), toint(), tostring(), val, and ws(). Referenced by cross_valid(), input2dSet(), loadAscii(), loadAsciiAsVMat(), loadATT800(), loadBreastCancer(), loadBreastCancerWisconsin(), loadCallxx(), loadDiabetes(), loadLetters(), loadMat(), and loadVec(). |
|
Load an ASCII file and return the corresponding VMat (this will be a MemoryVMatrix, since the entire file is loaded in memory).
Definition at line 124 of file VMat.cc. References loadAscii(), map_sr, mtime(), and PLearn::TVec< T >::size(). Referenced by getDataSet(), and loadUCIAMat(). |
|
Load an ASCII matrix whose format is: (entry_name, long_binary_dscriptor) with 'long_binary_dscriptor' being of the form '001100101011', each character being an entry of the matrix. (entry_name is ignored). Header must be: #size: length width Definition at line 341 of file MatIO.h. References PLERROR, removeblanks(), PLearn::TMat< T >::resize(), skipBlanksAndComments(), split(), toint(), and ws(). Referenced by getDataSet(). |
|
Definition at line 875 of file MatIO.cc. References PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Reads and writes an ascii file without the size header (assuming that the size(length() and width()) is set).
Definition at line 834 of file MatIO.cc. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::MatlabInterface::eigs_r11(), and matlabR11eigs(). |
|
Definition at line 303 of file databases.cc. References PLearn::TMat< T >::column(), dbdir_name, PLearn::TMat< T >::length(), loadAscii(), normalizeDataSets(), shuffleRows(), PLearn::TMat< T >::subMatColumns(), PLearn::TMat< T >::subMatRows(), sum(), and PLearn::TMat< T >::width(). |
|
These calls return the number of classes...
Definition at line 198 of file databases.cc. References dbdir_name, PLearn::TMat< T >::length(), loadAscii(), normalizeDataSets(), shuffleRows(), and PLearn::TMat< T >::subMatRows(). |
|
Definition at line 182 of file databases.cc. References dbdir_name, loadAscii(), normalize(), normalizeDataSet(), shuffleRows(), PLearn::TMat< T >::subMatColumns(), and PLearn::TMat< T >::width(). Referenced by loadClassificationDataset(). |
|
Definition at line 667 of file databases.cc. References c_str(), dbdir_name, and loadAscii(). |
|
Definition at line 746 of file databases.cc. References computeMeanAndStddev(), input2dSet(), PLearn::TVec< T >::length(), PLearn::TMat< T >::load(), loadBreastCancerWisconsin(), loadLetters(), loadMNIST(), loadUCI(), loadUSPS(), normalize(), PLERROR, remapLastColumn(), split(), PLearn::VMat::subMatRows(), PLearn::TVec< T >::subVec(), toint(), PLearn::TMat< T >::width(), and PLearn::VMat::width(). Referenced by getDataSet(). |
|
This will return a VMat with a target in the last column in {0,..,nclasses-1} (for binary classification possible values are 0 and 1 (not -1)). Possible dbname are: 2d letters breast usps mnist usps0 ... usps9 nist0 ... usps9 The dbname can optionally be followed by :size in which case only the 'size' first elements of trainset and testset will be kept. Definition at line 127 of file databases.h. Referenced by getDataSetHelp(). |
|
Definition at line 615 of file databases.cc. References PLearn::TMat< T >::fill(), PLearn::TMat< T >::length(), loadCorelDatamat(), PLearn::TMat< T >::resize(), shuffleRows(), smoothCorelHisto(), PLearn::TMat< T >::subMat(), and PLearn::TMat< T >::width(). |
|
Definition at line 514 of file databases.cc. References c_str(), PLearn::TMat< T >::data(), dbdir_name, PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::resize(), reverse_float(), and PLearn::TMat< T >::width(). Referenced by loadCorel(). |
|
Definition at line 281 of file databases.cc. References dbdir_name, PLearn::TMat< T >::length(), loadAscii(), normalizeDataSets(), shuffleRows(), and PLearn::TMat< T >::subMatRows(). |
|
Definition at line 267 of file databases.cc. References dbdir_name, loadAscii(), normalize(), normalizeDataSet(), shuffleRows(), PLearn::TMat< T >::subMatColumns(), and PLearn::TMat< T >::width(). |
|
Returns the whole content of the file as a string.
Definition at line 335 of file fileutils.cc. References filesize(), and PLERROR. Referenced by PLearn::VMatrix::lockMetaDataDir(), and PLearn::VMatrix::resolveFieldInfoLink(). |
|
Format readable by gnuplot.
Definition at line 613 of file MatIO.cc. References PLERROR, and PLearn::TMat< T >::resize(). Referenced by loadHousing(). |
|
Definition at line 235 of file databases.cc. References dbdir_name, loadGnuplot(), normalize(), normalizeDataSet(), and PLearn::TMat< T >::subMatColumns(). |
|
Definition at line 259 of file databases.cc. References dbdir_name, loadUCIMLDB(), and shuffleRows(). |
|
read a file in JPEG format (read the RGB components). this will be resized to a (npixels x 3) matrix, where the (R,G,B) pixels are ordered by rows of the original image. To figure the actual image dimensions, the row size is also returned (so the number of columns is length()/row_size). An optional subsampling factor can be given (1,2,4 or 8) The R,G,B components always range from 0 to 255. Definition at line 1484 of file MatIO.cc. References PLearn::TMat< T >::data(), k, PLERROR, and PLearn::TMat< T >::resize(). |
|
Definition at line 736 of file databases.cc. References dbdir_name, loadAscii(), PLearn::TMat< T >::subMatRows(), and PLearn::TMat< T >::width(). |
|
Definition at line 494 of file databases.cc. References PLearn::VMat::length(), loadLetters(), normalizeDataSets(), and PLearn::VMat::subMatRows(). |
|
Definition at line 455 of file databases.cc. References PLearn::TMat< T >::copy(), dbdir_name, k, PLearn::TMat< T >::length(), loadAscii(), Mat, PLERROR, PLearn::TMat< T >::resize(), shuffleRows(), and PLearn::TMat< T >::width(). |
|
Definition at line 406 of file databases.cc. References PLearn::TMat< T >::copy(), dbdir_name, k, PLearn::TMat< T >::length(), loadAscii(), Mat, normalizeDataSets(), PLearn::TMat< T >::resize(), shuffleRows(), strlen(), PLearn::TMat< T >::subMatRows(), and PLearn::TMat< T >::width(). |
|
Definition at line 366 of file databases.cc. References dbdir_name, PLearn::TMat< T >::length(), loadAscii(), normalize(), normalizeDataSet(), strlen(), PLearn::TMat< T >::subMatColumns(), and PLearn::TMat< T >::width(). |
|
Definition at line 351 of file databases.cc. References dbdir_name, loadAscii(), normalize(), normalizeDataSet(), PLearn::TMat< T >::subMatColumns(), and PLearn::TMat< T >::width(). Referenced by loadClassificationDataset(), and loadLetters(). |
|
Definition at line 110 of file MatIO.cc. References extract_extension(), loadAscii(), loadPMat(), and PLERROR. |
|
Tries to guess the format... (quite dumb right now) This is currently what the old constructor with string argument did Definition at line 88 of file MatIO.cc. References extract_extension(), loadAscii(), loadPMat(), and PLERROR. |
|
Definition at line 71 of file NistDB.h. Referenced by loadClassificationDataset(). |
|
Loads an object from the given file (no macro-preprocessing is performed).
Definition at line 340 of file Object.cc. References PLearn::Object::build(), PLERROR, and readObject(). Referenced by readObject(), train_and_test(), and use(). |
|
Definition at line 223 of file databases.cc. References dbdir_name, loadUCIMLDB(), normalize(), normalizeDataSet(), shuffleRows(), PLearn::TMat< T >::subMatColumns(), and PLearn::TMat< T >::width(). |
|
Definition at line 449 of file MatIO.cc. References DATAFILE_HEADERLENGTH, fread_double(), fread_float(), header, PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::resize(), and PLearn::TMat< T >::width(). |
|
Definition at line 393 of file MatIO.cc. References DATAFILE_HEADERLENGTH, fread_double(), fread_float(), header, PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::resize(), and PLearn::TMat< T >::width(). Referenced by PLearn::TMat< pair< real, real > >::load(), and loadMat(). |
|
Definition at line 276 of file MatIO.cc. References PLearn::TVec< T >::data(), DATAFILE_HEADERLENGTH, fread_double(), fread_float(), header, PLearn::TVec< T >::length(), PLERROR, and PLearn::TVec< T >::resize(). |
|
Definition at line 226 of file MatIO.cc. References PLearn::TVec< T >::data(), DATAFILE_HEADERLENGTH, fread_double(), fread_float(), header, PLearn::TVec< T >::length(), PLERROR, and PLearn::TVec< T >::resize(). Referenced by PLearn::TVec< pair< real, real > >::load(), and loadVec(). |
|
SN Format.
Definition at line 917 of file MatIO.cc. References fread_float(), fread_int(), and PLERROR. Referenced by loadUSPS(). |
|
Definition at line 972 of file MatIO.cc. References PLearn::TVec< T >::data(), fread_float(), fread_int(), and PLERROR. |
|
Definition at line 251 of file databases.cc. References dbdir_name, loadUCIMLDB(), and shuffleRows(). |
|
STATLOG machine-learning-database-format Format used for most of the STATLOG machine-learning-database. The missing value is represented with the '?' character in the source file, and with the MISSING_VALUE in the Mat. If some symbols are detected then integer codes are assigned to them (by sorting them for each symbolic column in lexicographic order). The *to_symbols table has one element per column, each of which is a table of strings. The number of strings (i.e., symbols) for each column is given in the table *to_n_symbols. Definition at line 1298 of file MatIO.cc. References compare_string_pointers(), convert_STATLOG_BUF_LEN, cp(), PLearn::TMat< T >::data(), MISSING_VALUE, PLERROR, strlen(), and PLearn::TMat< T >::width(). |
|
Definition at line 463 of file GraphicalBiText.cc. References PLearn::ShellProgressBar::done(), PLearn::ShellProgressBar::draw(), endl(), PLearn::TMat< T >::length(), PLearn::VMat::length(), PLearn::ShellProgressBar::update(), and PLearn::VMat::width(). Referenced by PLearn::GraphicalBiText::init(). |
|
Load the train, test and all datasets for a UCI database. The 'normalize' parameter can be changed: if it is set to true in input, it may be changed to false when the method returns (this is because the data will already be normalized, and no additional normalization is needed). Definition at line 875 of file databases.cc. References dbdir_name, PLearn::VMat::length(), loadUCIAMat(), loadUCISet(), macroLoadObject(), normalize(), PLERROR, PLearn::TMat< T >::subMatColumns(), PLearn::TMat< T >::subMatRows(), PLearn::VMat::toMat(), vconcat(), and PLearn::VMat::width(). Referenced by loadClassificationDataset(). |
|
Load a AMAT format UCI dataset in the given VMatrix.
Definition at line 945 of file databases.cc. References PLearn::VMat::length(), loadAsciiAsVMat(), PLERROR, PLearn::TVec< T >::resize(), PLearn::TVec< T >::subVec(), and PLearn::VMat::width(). Referenced by loadUCI(). |
|
UCI machine-learning-database format Format used for most of the UCI machine-learning-database. The missing value is represented with the '?' character in the source file, and with the MISSING_VALUE in the Mat. If some symbols are detected then integer codes are assigned to them (by sorting them for each symbolic column in lexicographic order). The *to_symbols table has one element per column, each of which is a table of strings. The number of strings (i.e., symbols) for each column is given in the table *to_n_symbols. Additionally, if provided, the 'max_in_col' vector will contain the (rounded to lowest integer) value of the maxium in each column (this will be -1 if there is no numerical value in the column). Also, if 'header_columns' vector is provided, the first line is considered to be the header and the vector will contain the column names. Definition at line 1057 of file MatIO.cc. References PLearn::TVec< T >::append(), compare_string_pointers(), convert_UCIMLDB_BUF_LEN, cp(), PLearn::TMat< T >::data(), PLearn::TVec< T >::fill(), MISSING_VALUE, pl_isnumber(), PLERROR, PLearn::TVec< T >::resize(), strlen(), and PLearn::TMat< T >::width(). Referenced by loadIonosphere(), loadPimaIndians(), loadSonar(), and loadUCISet(). |
|
Load a specific UCI dataset in the given VMatrix.
Definition at line 991 of file databases.cc. References k, PLearn::TMat< T >::length(), loadUCIMLDB(), PLERROR, PLearn::TVec< T >::resize(), PLearn::TVec< T >::size(), PLearn::TVec< T >::subVec(), PLearn::VMat::width(), and PLearn::TMat< T >::width(). Referenced by loadUCI(). |
|
Definition at line 713 of file databases.cc. References argmax(), dbdir_name, hconcat(), PLearn::TMat< T >::length(), and loadSNMat(). |
|
Definition at line 677 of file databases.cc. References argmax(), dbdir_name, hconcat(), PLearn::TMat< T >::length(), and loadSNMat(). Referenced by loadClassificationDataset(). |
|
Definition at line 145 of file MatIO.cc. References loadAscii(), loadPVec(), and PLERROR. |
|
Definition at line 133 of file MatIO.cc. References loadAscii(), loadPVec(), and PLERROR. |
|
Definition at line 121 of file LocalNeighborsDifferencesVMatrix.h. References PLearn::LocalNeighborsDifferencesVMatrix::append_indexes, PLearn::LocalNeighborsDifferencesVMatrix::build(), concat(), PLearn::LocalNeighborsDifferencesVMatrix::concat_neighbors, PLearn::LocalNeighborsDifferencesVMatrix::n_neighbors, and PLearn::SourceVMatrix::source. Referenced by PLearn::NearestNeighborPredictionCost::run(), PLearn::TangentLearner::train(), and PLearn::GaussianContinuum::train(). |
|
Looks for 'dataset.aliases' file in specified directory and its parent directories; Returns the directory containing dataset.aliases (returned string will be terminated by a slash) or an empty string if not found.
Definition at line 241 of file getDataSet.cc. References abspath(), dot(), extract_directory(), isfile(), pathexists(), PLERROR, remove_trailing_slash(), and slash. Referenced by getDatasetAliases(). |
|
Definition at line 72 of file LogVariable.h. |
|
natural logarithm function applied element-by-element
Definition at line 451 of file RandomVar.cc. References x. |
|
Definition at line 876 of file TMat_maths_impl.h. References compute_log(), and PLearn::TVec< T >::length(). |
|
Definition at line 96 of file pl_math.cc. Referenced by bnldev(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), PLearn::GaussMix::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::AsciiVMatrix::build_(), choleskyInvert(), PLearn::GraphicalBiText::compute_likelihood(), compute_log(), PLearn::GaussianContinuum::compute_train_and_validation_costs(), PLearn::GaussMix::computePosteriors(), PLearn::MixtureRandomVariable::ElogP(), PLearn::ExpRandomVariable::EMBprop(), entropy(), PLearn::SigmoidPrimitiveKernel::evaluate(), PLearn::LogOfGaussianDensityKernel::evaluate(), PLearn::GaussianDensityKernel::evaluate(), PLearn::ConvexBasisKernel::evaluate(), expdev(), PLearn::NllSemisphericalGaussianVariable::fprop(), PLearn::NegCrossEntropySigmoidVariable::fprop(), PLearn::CrossEntropyVariable::fprop(), gamdev(), gauss_log_density_stddev(), gauss_log_density_var(), gaussian_01(), geometric_mean(), PLearn::GaussianContinuum::get_image_matrix(), incomplete_beta(), PLearn::GraphicalBiText::init(), inverse_sigmoid(), inverse_softplus(), PLearn::ProductRandomVariable::invertible(), PLearn::ExpRandomVariable::invertible(), PLearn::HistogramDistribution::log_density(), PLearn::ConditionalDensityNet::log_density(), log_gamma(), logOfCompactGaussian(), logOfNormal(), PLearn::MultinomialRandomVariable::logP(), PLearn::MixtureRandomVariable::logP(), PLearn::DiagonalNormalRandomVariable::logP(), logtwo(), neg_log_pi(), normal(), pl_dgammlndz(), pl_gammln(), pl_gcf(), pl_gser(), poidev(), positive_dilogarithm(), PLearn::GaussMix::precomputeStuff(), PLearn::VMatLanguage::run(), safeflog(), PLearn::GaussMix::setInput(), PLearn::LogRandomVariable::setValueFromParentsValue(), sum_of_log(), PLearn::PowVariableVariable::symbolicBprop(), PLearn::PLogPVariable::symbolicBprop(), PLearn::GraphicalBiText::test_WSD(), PLearn::GaussianContinuum::train(), and PLearn::ClassifierFromDensity::train(). |
|
returns the natural logarithm of the beta function Definition at line 89 of file random.cc. References log_gamma(), and x. Referenced by incomplete_beta(). |
|
returns the natural logarithm of the gamma function Definition at line 69 of file random.cc. Referenced by bnldev(), log_beta(), and poidev(). |
|
Definition at line 72 of file LogSoftmaxVariable.h. |
|
Definition at line 96 of file TMat_maths_impl.h. References logadd(), max(), and x. Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), and PLearn::LogSoftmaxVariable::fprop(). |
|
Definition at line 73 of file LogSumVariable.h. |
|
Definition at line 77 of file LogAddVariable.h. |
|
Definition at line 1282 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), LOG_INIT, logadd(), and sum(). |
|
compute log(exp(log_a)+exp(log_b)) without losing too much precision
Definition at line 117 of file pl_math.cc. References exp(), and MINUS_LOG_THRESHOLD. Referenced by PLearn::ClassifierFromDensity::computeOutput(), PLearn::GaussMix::computePosteriors(), determine_density_integral_from_log_densities_on_grid(), DX_create_grid_outputs_file(), PLearn::MixtureRandomVariable::ElogP(), PLearn::LogSumVariable::fprop(), PLearn::LogAddVariable::fprop(), PLearn::GaussMix::log_density(), log_softmax(), logadd(), PLearn::MixtureRandomVariable::logP(), and PLearn::GaussMix::setInput(). |
|
returns log P(x|gaussian) with a gaussian represented compactly by the first few eigenvalues and eigenvectors of its covariance matrix. For numerical stability, you may consider adding some lambda to the diagonal of C Normal(x; mu,C) = 1/sqrt((2PI)^d * det(C)) exp( -0.5 (x-mu)'.inv(C).(x-mu) ) = exp [ -0.5( d*log(2PI) + log(det(D)) ) -0.5 (x-mu)'.inv(C).(x-mu) ] ____________/ ________/ \/ \/ logcoef q Let z = inv(C).(x-mu) ==> z is the solution of C.z = x-mu And then we have q = (x-mu)'.z So computing q is simply a matter of solving this linear equation in z, and then computing q. Definition at line 167 of file distr_maths.cc. References PLearn::TVec< T >::data(), dot(), PLearn::TVec< T >::length(), log(), PLearn::TVec< T >::resize(), square(), val, and x. Referenced by PLearn::GaussianDistribution::log_density(). |
|
Definition at line 211 of file distr_maths.cc. References choleskyDecomposition(), choleskySolve(), dot(), log(), PLearn::TVec< T >::resize(), substract(), and x. Referenced by logPFittedGaussian(). |
|
Construct a Var that computes logP(RandomVariable == value | RHS ) in terms of the value Var and the Vars in the RHS, where RHS is a list of the form (X1==x1 && X2==x2 && X3==x3) where Xi are RandomVar's and xi are Var's which represent the value that are given to the conditioning variables Xi. Normally the marks used to identify RVs which are deterministically determined from the RHS are cleared upon return (unless specified with the optional 2nd argument). Definition at line 616 of file RandomVar.cc. References PLearn::ConditionalExpression::LHS, PLearn::ConditionalExpression::RHS, PLearn::TVec< RVInstance >::size(), PLearn::RVInstance::v, and PLearn::RVInstance::V. Referenced by PLearn::MixtureRandomVariable::ElogP(), ElogP(), EM(), PLearn::MultinomialRandomVariable::logP(), PLearn::MixtureRandomVariable::logP(), PLearn::DiagonalNormalRandomVariable::logP(), PLearn::FunctionalRandomVariable::logP(), and PLearn::RandomVariable::P(). |
|
Fits a gaussian to the points in X (computing its mean and covariance matrix, and adding lambda to the diagonal of that covariance matrix) Then calls logOfNormal to return log(p(x | the_gaussian)).
Definition at line 242 of file distr_maths.cc. References addToDiagonal(), computeMeanAndCovar(), logOfNormal(), and x. |
|
compute log(exp(log_a)-exp(log_b)) without losing too much precision
Definition at line 135 of file pl_math.cc. References exp(), FEQUAL, MINUS_LOG_THRESHOLD, and PLERROR. |
|
Definition at line 101 of file pl_math.cc. |
|
tells wether this string looks like a numeric entity
Definition at line 107 of file TypesNumeriques.cc. References containsChar(), and DIGITsymbols. Referenced by PLearn::MatlabInterface::eigs_r11(), main(), matlabR11eigs(), and numericType(). |
|
convert a string to all lowercase
Definition at line 263 of file stringutils.cc. Referenced by PLearn::SimpleDB< KeyType, QueryResult >::loadSchema(), and main(). |
|
Returns a list of all entries in the given directory (omitting entries "." and "..") If the direcotry cannot be opened an error is issued. The returned entries are not full paths. Definition at line 175 of file fileutils.cc. References PLERROR. Referenced by lsdir_fullpath(), and train_and_test(). |
|
Same as lsdir, except dirpath is prepended to the entries' names.
Definition at line 244 of file fileutils.cc. References addprefix(), lsdir(), remove_trailing_slash(), and slash. Referenced by force_rmdir(). |
|
Definition at line 5173 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), k, PLearn::TMat< T >::length(), maxabs(), PLearn::TMat< T >::mod(), PLERROR, PLearn::TMat< T >::swapRows(), and PLearn::TMat< T >::width(). Referenced by det(). |
|
same as previous, but no need to pass a variables map
Definition at line 361 of file Object.cc. References macroLoadObject(). |
|
Same as loadObject but first performs macro-processing on the file vars may be initialised with the values of some variables and upon return it will also contain newly $DEFINED variables.
Definition at line 352 of file Object.cc. References PLearn::Object::build(), readFileAndMacroProcess(), and readObject(). Referenced by loadUCI(), and macroLoadObject(). |
|
Definition at line 4282 of file TMat_maths_impl.h. |
|
returns "./"+filename if filename is relative to current dir
Definition at line 573 of file fileutils.cc. References dot(), removeblanks(), slash, and slash_char. Referenced by PLearn::VVMatrix::build_(). |
|
Definition at line 525 of file fileutils.cc. References extract_directory(), extract_extension(), extract_filename_without_extension(), pathexists(), PLWARNING, and tostring(). Referenced by PLearn::VMatrix::getSFIFFilename(), PLearn::VMatrix::isSFIFDirect(), and PLearn::VMatrix::setSFIFFilename(). |
|
Definition at line 2820 of file TMat_maths_impl.h. References PLearn::TMat< T >::isSquare(), PLearn::TMat< T >::length(), PLERROR, PLWARNING, and PLearn::TMat< T >::width(). |
|
convenience construction from string allows to write things such as Mat m = newMat(2,2, "1 2 3 4")
|
|
Definition at line 3450 of file TMat_maths_impl.h. References divide(), PLearn::TMat< T >::length(), and sum(). |
|
|
|
initialzes the random number generator with the given long "x" Definition at line 185 of file random.cc. References iset, the_seed, and x. Referenced by PLearn::RepeatSplitter::build_(), PLearn::AdaBoost::forget(), PLearn::VVMatrix::generateVMatIndex(), PLearn::TangentLearner::initializeParams(), PLearn::NNet::initializeParams(), PLearn::NeuralNet::initializeParams(), PLearn::NeighborhoodSmoothnessNNet::initializeParams(), PLearn::MultiInstanceNNet::initializeParams(), PLearn::GaussianContinuum::initializeParams(), PLearn::ConditionalDensityNet::initializeParams(), PLearn::UniformDistribution::resetGenerator(), PLearn::SpiralDistribution::resetGenerator(), PLearn::GaussMix::resetGenerator(), PLearn::GaussianDistribution::resetGenerator(), PLearn::ConditionalDensityNet::resetGenerator(), seed(), and PLearn::EntropyContrast::train(). |
|
Definition at line 83 of file MarginPerceptronCostVariable.h. Referenced by PLearn::NNet::build_(). |
|
integrate the RV over the given hiddenRV and return the resulting new RandomVariable. This may be difficult to do in general... Definition at line 653 of file RandomVar.cc. References PLERROR. Referenced by PLearn::MixtureRandomVariable::ElogP(), PLearn::MultinomialRandomVariable::logP(), PLearn::MixtureRandomVariable::logP(), PLearn::DiagonalNormalRandomVariable::logP(), and PLearn::FunctionalRandomVariable::logP(). |
|
return dot product of j-th column with vector v
Definition at line 2731 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLearn::TMat< T >::mod(), and PLERROR. |
|
This function compute the inverse of a matrix. WARNING: the input matrix 'in' is overwritten in the process. Definition at line 219 of file plapack.cc. References PLearn::TMat< T >::data(), dgetrf_(), dgetri_(), endl(), inverse(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, sgetrf_(), sgetri_(), and PLearn::TMat< T >::width(). Referenced by PLearn::PCA::train(). |
|
Compute k eigen-values / eigen-vectors of a sparse symmetric matrix using the eigs program of matlab-r11 (see PLearn/Contrib/matlab/eigs_r11.m). The 'which_eigenvalues' argument specifies which eigenvalues are desired: a number the k eigen-values closest to that number "LM" Largest Magnitude (the default) "SM" Smallest Magnitude "LR" Largest Real part "SR" Smallest Real part "BE" Both Ends. Computes k/2 eigenvalues from each end of the spectrum (one more from the high end if k is odd.) where k is the length of the eigen_values vector. If eigen_vectors.length()==0 then only the eigen_values are computed. N.B. in comparison with other methods available in PLearn or elsewhere, this function is particularly useful when dealing with symmetric sparse matrices whose smallest eigen-pairs are sought. |
|
Definition at line 144 of file MatlabInterface.cc. References PLearn::TmpFilenames::addFilename(), PLearn::RowMapSparseMatrix< T >::exportToMatlabReadableFormat(), extract_filename(), header, PLearn::Popen::in, PLearn::MatlabInterface::launchAndWaitFor(), PLearn::RowMapSparseMatrix< T >::length(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), loadAsciiWithoutSize(), looksNumeric(), PLearn::MatlabInterface::matlab, PLearn::MatlabInterface::matlab_file_header, PLERROR, PLWARNING, remove_extension(), PLearn::TMat< T >::resize(), PLearn::TVec< T >::resize(), toint(), and tostring(). |
|
This is the *real* matlabSave function. 1) If xValues is empty, the yValues are plotted against the row indices. 2) If xValues is not empty and its length is not equal to the length of yValues, then its length must be one and the value xValues[0] will be the start index for the xValues. Definition at line 710 of file MatIO.cc. References abspath(), add(), append_slash(), endl(), force_mkdir(), is_missing(), PLearn::TVec< T >::isNotEmpty(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), MISSING_VALUE, PLERROR, PLearn::TVec< T >::resize(), tostring(), underscore_to_space(), and PLearn::TMat< T >::width(). |
|
Simply calls the coming matlabSave function with an empty xValues Vec. See below.
Definition at line 695 of file MatIO.cc. References matlabSave(). |
|
Definition at line 681 of file MatIO.cc. References PLearn::TVec< T >::append(), PLearn::TVec< T >::length(), and matlabSave(). |
|
The following two are simply calling the matrix version after transforming the Vec in a one column Mat. See below. Definition at line 667 of file MatIO.cc. References PLearn::TVec< T >::append(), and PLearn::TVec< T >::length(). Referenced by PLearn::SequentialModelSelector::matlabSave(), PLearn::SequentialLearner::matlabSave(), and matlabSave(). |
|
Definition at line 94 of file MatrixElementsVariable.h. |
|
Definition at line 77 of file ColumnIndexVariable.h. References PLERROR, and PLearn::Var::width(). Referenced by neg_log_pi(). |
|
Definition at line 73 of file MatrixInverseVariable.h. |
|
return dot product of i-th row with vector v
Definition at line 2714 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, PLearn::TMat< T >::rowdata(), and PLearn::TMat< T >::width(). |
|
return dot products of i-th row of A with i-th row of B in vector v
Definition at line 2748 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
return dot products of i-th row of A with i-th row of B in vector v
Definition at line 2776 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 73 of file MaxVariable.h. |
|
Definition at line 81 of file Max2Variable.h. |
|
Definition at line 3930 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 1569 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), MAX, and PLearn::TVec< T >::resize(). |
|
Definition at line 1552 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), MAX, PLERROR, and PLearn::TVec< T >::resize(). |
|
Definition at line 56 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::UniformizeVMatrix::build_(), PLearn::MovingAverageVMatrix::build_(), PLearn::FinancePreprocVMatrix::build_(), PLearn::CumVMatrix::build_(), PLearn::AddCostToLearner::build_(), PLearn::RealMapping::checkConsistency(), columnMax(), PLearn::AddCostToLearner::computeCostsFromOutputs(), PLearn::GaussMix::computeLogLikelihood(), computeRange(), displayDecisionSurface(), PLearn::DiagonalNormalRandomVariable::EMUpdate(), PLearn::ConcatRowsVMatrix::ensureMappingsConsistency(), PLearn::ClassMarginCostFunction::evaluate(), PLearn::ClassDistanceProportionCostFunction::evaluate(), PLearn::Gnuplot::featureplot(), PLearn::ConcatRowsVMatrix::fullyCheckMappings(), PLearn::GeneralizedOneHotVMatrix::GeneralizedOneHotVMatrix(), PLearn::GaussMix::generateFromGaussian(), PLearn::JoinVMatrix::getNewRow(), PLearn::Gnuplot::histoplot(), log_softmax(), PLearn::RealMapping::maxMappedToValue(), PLearn::ScaledGradientOptimizer::optimize(), PLearn::ConjGradientOptimizer::optimize(), PLearn::ConjGradientOptimizer::optimizeN(), PLearn::GaussMix::precomputeStuff(), PLearn::ArrayAllocatorTrivial< T, SizeBits >::resize(), PLearn::ArrayAllocator< T, SizeBits >::resize(), PLearn::RGBImageVMatrix::RGBImageVMatrix(), rowMax(), PLearn::TestDependenciesCommand::run(), PLearn::ShellProgressBar::set(), PLearn::PDistribution::setConditionalFlagsWithoutUpdate(), PLearn::SourceVMatrix::setMetaInfoFromSource(), PLearn::ShellProgressBar::ShellProgressBar(), softmax(), PLearn::GraphicalBiText::test_WSD(), PLearn::TestDependenciesCommand::TestDependenciesCommand(), PLearn::EmbeddedSequentialLearner::train(), PLearn::GaussMix::updateFromConditionalSorting(), PLearn::Function::verifyGradient(), PLearn::Function::verifyHessian(), PLearn::Function::verifyrfprop(), viewVMat(), and vmatmain(). |
|
Returns the max of the difference between the empirical cdf of 2 series of values Side-effect: the call sorts v1 and v2.
Definition at line 140 of file stats_utils.cc. References PLearn::TVec< T >::length(), and sortElements(). Referenced by KS_test(). |
|
Definition at line 412 of file StatsIterator.h. |
|
Definition at line 497 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by det(), and LU_decomposition(). |
|
******************************* user-friendly Var interface * Definition at line 57 of file Var_utils.cc. References sum(). |
|
Definition at line 3808 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
if ignore_missing==true, then the mean is computed by ignoring the possible MISSING_VALUE in the Vec. if ignore_missing==false, then MISSING_VALUE is returned if one element of the Vec is MISSING_VALUE. Definition at line 301 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), is_missing(), PLearn::TVec< T >::length(), MISSING_VALUE, and PLERROR. Referenced by columnWeightedVariance(), computeConditionalMeans(), computeLocalPrincipalComponents(), PLearn::GaussMix::computeMeansAndCovariances(), computeRowMean(), PLearn::DiagonalNormalRandomVariable::DiagonalNormalRandomVariable(), PLearn::DiagonalNormalRandomVariable::EMUpdate(), PLearn::EmpiricalDistribution::expectation(), fill_random_normal(), PLearn::StddevStatsIterator::finish(), PLearn::StatsCollector::getAllValuesMapping(), PLearn::FinancePreprocVMatrix::getNewRow(), normal(), PLearn::ScaledGradientOptimizer::optimize(), paired_t_test(), PLearn::SequentialModelSelector::paired_t_test(), rowMean(), PLearn::TestDependenciesCommand::run(), PLearn::SequentialModelSelector::sequenceCost(), PLearn::GaussianProcessRegressor::setInput_const(), PLearn::TestDependenciesCommand::TestDependenciesCommand(), PLearn::GaussianProcessRegressor::train(), PLearn::EmpiricalDistribution::variance(), and vmatmain(). |
|
Definition at line 408 of file StatsIterator.h. Referenced by PLearn::Learner::Learner(). |
|
deprecated old version do not use!
Definition at line 107 of file SumOfVariable.h. References meanOf(). |
|
meanOf
Definition at line 103 of file SumOfVariable.h. |
|
Definition at line 100 of file MatrixSumOfVariable.h. Referenced by EM(), meanOf(), PLearn::TangentLearner::train(), PLearn::NNet::train(), PLearn::NeuralNet::train(), PLearn::GaussianContinuum::train(), and PLearn::ConditionalDensityNet::train(). |
|
returns the median value of vec
Definition at line 1880 of file TMat_maths_impl.h. References kthOrderedElement(), and PLearn::TVec< T >::length(). |
|
returns a pointer to the memory-mapped file or 0 if it fails for some reason.
Definition at line 116 of file MemoryMap.cc. References filesize(), open, PLERROR, and tFileHandle. Referenced by PLearn::Storage< pair< real, real > >::Storage(). |
|
Definition at line 141 of file MemoryMap.cc. Referenced by PLearn::Storage< pair< real, real > >::pointTo(), and PLearn::Storage< pair< real, real > >::~Storage(). |
|
Definition at line 86 of file Set.h. References PLearn::Set::begin(), and PLearn::Set::end(). |
|
Definition at line 71 of file MinVariable.h. |
|
Definition at line 3914 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 1600 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), MIN, and PLearn::TVec< T >::resize(). |
|
Definition at line 1583 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), MIN, PLERROR, and PLearn::TVec< T >::resize(). |
|
Definition at line 482 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::UniformizeVMatrix::build_(), PLearn::AddCostToLearner::build_(), columnMin(), PLearn::GeodesicDistanceKernel::computeNearestGeodesicNeighbour(), computeRange(), displayDecisionSurface(), PLearn::GeodesicDistanceKernel::evaluate(), PLearn::ConjGradientOptimizer::fletcherSearchMain(), PLearn::GeneralizedOneHotVMatrix::GeneralizedOneHotVMatrix(), PLearn::MovingAverageVMatrix::getNewRow(), PLearn::JoinVMatrix::getNewRow(), lapackSVD(), PLearn::ConjGradientOptimizer::optimize(), PLearn::ConjGradientOptimizer::optimizeN(), PLearn::PDateTime::PDateTime(), PLearn::ArrayAllocatorTrivial< T, SizeBits >::resize(), PLearn::ArrayAllocator< T, SizeBits >::resize(), PLearn::RGBImageVMatrix::RGBImageVMatrix(), rowMin(), PLearn::TestDependenciesCommand::run(), PLearn::NearestNeighborPredictionCost::run(), PLearn::ShellProgressBar::set(), PLearn::GeodesicDistanceKernel::setDataForKernelMatrix(), PLearn::ShellProgressBar::ShellProgressBar(), sortColumns(), PLearn::TestDependenciesCommand::TestDependenciesCommand(), PLearn::GaussianDistribution::train(), PLearn::ConditionalDensityNet::train(), viewVMat(), and vmatmain(). |
|
Definition at line 411 of file StatsIterator.h. |
|
Definition at line 533 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 77 of file MinusVariable.h. Referenced by PLearn::NeighborhoodSmoothnessNNet::build_(), and PLearn::FieldConvertCommand::FieldConvertCommand(). |
|
A mixture of distributions, with the given components and the convex weights given by weights = softmax(log_weights). Note that the log_weights argument represents unnormalized log-probabilities (i.e normalization is automatically done inside the mixture). Definition at line 736 of file RandomVar.cc. Referenced by PLearn::RVArrayRandomElementRandomVariable::logP(). |
|
returns the time of last modification of file (or 0 if file does not exist).
Definition at line 162 of file fileutils.cc. Referenced by PLearn::MultiInstanceVMatrix::build_(), PLearn::FileVMatrix::build_(), PLearn::DiskVMatrix::build_(), PLearn::VVMatrix::buildFilteredVMatFromVPL(), PLearn::VVMatrix::createPreproVMat(), getDataSetDate(), getDateOfCode(), PLearn::VVMatrix::getDateOfVMat(), PLearn::VMatrix::getStats(), PLearn::VVMatrix::isPrecomputedAndUpToDate(), loadAsciiAsVMat(), PLearn::FilteredVMatrix::openIndex(), PLearn::VMatLanguage::preprocess(), and PLearn::AutoRunCommand::run(). |
|
Definition at line 81 of file MulticlassLossVariable.h. Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), and PLearn::NeighborhoodSmoothnessNNet::build_(). |
|
A discrete probability distribution which assigns probabilities[i] = softmax(log_probabilities)[i] to each of the discrete values i=0, 1, ... N-1. Note that the argument represents unnormalized log-probabilities (i.e normalization is automatically done inside the multinomial). Definition at line 741 of file RandomVar.cc. |
|
returns a random deviate from a discrete distribution given explicitely by 'distribution' Definition at line 536 of file random.cc. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and uniform_sample(). Referenced by PLearn::MultinomialSampleVariable::fprop(), PLearn::GaussMix::generateFromGaussian(), and PLearn::CompactVMatrix::perturb(). |
|
Definition at line 3462 of file TMat_maths_impl.h. References PLearn::TMat< T >::begin(), PLearn::TMat< T >::compact_begin(), PLearn::TMat< T >::compact_end(), PLearn::TMat< T >::end(), PLearn::TMat< T >::isCompact(), PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::width(), and x. |
|
Definition at line 1418 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TVec< T >::resize(). |
|
destination = source1*source2
Definition at line 230 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLearn::TVec< T >::resize(). Referenced by computeMeanAndVariance(), divide(), PLearn::MultinomialRandomVariable::EMUpdate(), PLearn::MixtureRandomVariable::EMUpdate(), PLearn::DiagonalNormalRandomVariable::EMUpdate(), PLearn::MinusRandomVariable::EMUpdate(), PLearn::PlusRandomVariable::EMUpdate(), PLearn::ProjectionErrorVariable::fprop(), PLearn::GaussianProcessRegressor::inverseCovTimesVec(), operator *(), operator/(), and PLearn::ConstantRegressor::train(). |
|
Definition at line 3533 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::width(), and x. |
|
Definition at line 3506 of file TMat_maths_impl.h. References PLearn::TMat< T >::begin(), PLearn::TMat< T >::compact_begin(), PLearn::TMat< T >::compact_end(), PLearn::TMat< T >::end(), PLearn::TMat< T >::isCompact(), PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::width(), and x. |
|
vec[i] += x[i]*y[i];
Definition at line 2110 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. |
|
vec[i] += x[i]*scale;
Definition at line 2043 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. Referenced by PLearn::ProjectionErrorVariable::bprop(), PLearn::LogSumVariable::bprop(), PLearn::AffineTransformWeightPenalty::bprop(), computeInputMean(), computeInputMeanAndCovar(), computeInputMeanAndVariance(), computeWeightedMeanAndCovar(), diagonalizeSubspace(), PLearn::DiagonalNormalRandomVariable::EMBprop(), PLearn::ProductRandomVariable::EMBprop(), PLearn::MinusRandomVariable::EMBprop(), PLearn::PlusRandomVariable::EMBprop(), PLearn::VMatrix::evaluateKernelWeightedTargetSum(), projectOnOrthogonalSubspace(), and PLearn::PCA::reconstruct(). |
|
Definition at line 1435 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TVec< T >::resize(). Referenced by PLearn::GaussianProcessRegressor::inverseCovTimesVec(), and PLearn::ConstantRegressor::train(). |
|
Definition at line 1453 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. |
|
generate a vector x sampled from the normal with mean mu and covariance matrix A = evectors * diagonal(e_values) * evectors' (the normal(0,I) originally sampled to obtain x is stored in z). Unlike the other variants of this function, this one does not allocate anything. Definition at line 444 of file plapack.cc. References gaussian_01(), PLearn::TVec< T >::length(), PLearn::TVec< T >::resize(), sqrt(), and x. |
|
generate 1 vector sampled from the normal with mean mu and covariance matrix A = evectors * diagonal(e_values) * evectors'
Definition at line 429 of file plapack.cc. References gaussian_01(), PLearn::TVec< T >::length(), sqrt(), and x. |
|
generate a vector sampled from the normal with mean vector mu and covariance matrix A
Definition at line 424 of file plapack.cc. References multivariate_normal(), and PLearn::TMat< T >::toVec(). |
|
generate N vectors sampled from the normal with mean vector mu and covariance matrix A
Definition at line 411 of file plapack.cc. References PLearn::TMat< T >::appendRow(), PLearn::TMat< T >::copy(), eigen_SymmMat(), and PLearn::TVec< T >::length(). Referenced by PLearn::ConditionalGaussianDistribution::generate(), and multivariate_normal(). |
|
calls system mv command with string file as parameters
Definition at line 390 of file fileutils.cc. Referenced by PLearn::DiagonalNormalRandomVariable::EMUpdate(), and PLearn::VVMatrix::generateVMatIndex(). |
|
calls system mv command with string file as parameters will not prompt before overwriting
Definition at line 396 of file fileutils.cc. Referenced by PLearn::VVMatrix::createPreproVMat(). |
|
Definition at line 258 of file pl_math.h. Referenced by PLearn::PowVariable::bprop(), PLearn::SDBVMFieldSignedPower::convertField(), dist(), PLearn::PowVariable::fprop(), norm(), powdistance(), pownorm(), weighted_distance(), and weighted_powdistance(). |
|
Return M choose N, i.e., M! / ( N! (M-N)! ).
Definition at line 375 of file pl_math.h. References k. |
|
Definition at line 60 of file Var_utils.cc. References log(), and matrixIndex(). Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), and PLearn::NeighborhoodSmoothnessNNet::build_(). |
|
returns -output[0]. This is for density estimators whose use(x) method typically computes log(p(x))
Definition at line 70 of file NegOutputCostFunction.h. Referenced by PLearn::Distribution::Distribution(). |
|
Definition at line 76 of file NegateElementsVariable.h. |
|
x'_ij = -x_ij;
Definition at line 4632 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). |
|
Definition at line 1037 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). Referenced by PLearn::ShiftAndRescaleVMatrix::build_(), normalize(), PLearn::PLS::train(), and PLearn::PCA::train(). |
|
Definition at line 79 of file CutAboveThresholdVariable.h. References cutAboveThreshold(). |
|
|
|
Definition at line 733 of file pl_io.cc. References is_missing(), and x. |
|
Definition at line 720 of file pl_io.cc. References is_missing(), and x. Referenced by new_write_compressed(). |
|
Reads the l doubles in the new compressed formtat from in Returns the number of bytes read. Set swap_endians to true if the data was written on a machine with a different endianness than the current one, so that the endians get swapped. Definition at line 623 of file pl_io.cc. References endianswap(), MISSING_VALUE, mode, and val. Referenced by PLearn::DiskVMatrix::getNewRow(). |
|
Writes the l doubles in new compressed format to out. Returns the number of bytes written tolerance is the maximum allowed error tolerance to store doubles as floats. Set swap_endians to true if the data is to be written in the different byte-order from this machine's Definition at line 819 of file pl_io.cc. References new_get_compr_data_type(), new_write_mode_and_size(), new_write_raw_data_as(), and PLERROR. Referenced by PLearn::DiskVMatrix::appendRow(). |
|
returns number of bytes written
Definition at line 745 of file pl_io.cc. References mode. Referenced by new_write_compressed(). |
|
Definition at line 782 of file pl_io.cc. References is_missing(), and val. Referenced by new_write_compressed(). |
|
Returns a temporary file (or directory) name suitable for a unique (one time) use. < save in current dir Definition at line 498 of file fileutils.cc. References mode, PLERROR, and remove_trailing_slash(). Referenced by PLearn::TmpFilenames::addFilename(), PLearn::MatlabInterface::eigs_r11(), PLearn::FilterSplitter::getSplit(), PLearn::MatlabInterface::launch(), and PLearn::MatlabInterface::launchAndWaitFor(). |
|
Returns an array of n matrices, that are submatrices of m Such that marray[i] contains all the rows of m that had value i in their indexcolumn. The matrices of the returned array do not contain the indexcolumn Side effect: rows of m are sorted according to indexcolumn Definition at line 100 of file Mat.cc. References PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLERROR, sortRows(), PLearn::TMat< T >::subMatColumns(), PLearn::TMat< T >::subMatRows(), and PLearn::TMat< T >::width(). |
|
Definition at line 92 of file Mat.cc. References PLearn::TMat< T >::resize(). |
|
|
|
Creates a new object according to the given representation. This actually calls readObject on an istrstream, so anything understandable by readObject can be used here Definition at line 609 of file Object.h. References readObject(). Referenced by PLearn::VVMatrix::build_(), PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::VVMatrix::createPreproVMat(), and getDataSet(). |
|
|
|
Definition at line 70 of file Mat.cc. References PLearn::TVec< T >::resize(). |
|
|
|
Definition at line 91 of file NllSemisphericalGaussianVariable.h. Referenced by PLearn::GaussianContinuum::build_(). |
|
Isn't this useless? as we have a constructor of VarArray from Var that should be called automatically !!!???? (Pascal). returns the set of all the direct parents of the vars on the path from inputs to outputs. (inputs are not included, neither are the direct parents of inputs unless they are also direct parents of other Vars in the path) Definition at line 1082 of file VarArray.cc. References PLearn::VarArray::clearMark(), PLearn::VarArray::parents(), propagationPath(), and PLearn::VarArray::setMark(). Referenced by PLearn::ConcatOfVariable::ConcatOfVariable(), PLearn::MatrixSumOfVariable::MatrixSumOfVariable(), PLearn::Function::operator()(), propagationPathToParentsOfPath(), PLearn::SumOfVariable::SumOfVariable(), PLearn::SumOverBagsVariable::SumOverBagsVariable(), PLearn::UnfoldedFuncVariable::UnfoldedFuncVariable(), and PLearn::UnfoldedSumOfVariable::UnfoldedSumOfVariable(). |
|
returns all sources that influence outputs except those that influence it only through inputs
Definition at line 1121 of file VarArray.cc. References PLearn::VarArray::setMark(), PLearn::VarArray::sources(), and PLearn::VarArray::unmarkAncestors(). Referenced by PLearn::Function::build_(). |
|
returns a vector composed of the values of v that are different from 0;
Definition at line 1942 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 1659 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLearn::TVec< T >::resize(), and val. |
|
Definition at line 1643 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLearn::TVec< T >::resize(), and val. |
|
Definition at line 81 of file Var_utils.cc. |
|
Definition at line 705 of file TMat_maths_impl.h. References norm(). |
|
Definition at line 694 of file TMat_maths_impl.h. References mypow(), pownorm(), and sqrt(). Referenced by PLearn::SubsampleVariable::bprop(), PLearn::IsomapTangentLearner::computeOutput(), PLearn::GaussianContinuum::computeOutput(), diagonalizeSubspace(), distance(), PLearn::NormalizedDotProductKernel::evaluate(), PLearn::ProjectionErrorVariable::fprop(), PLearn::GaussMix::generateFromGaussian(), PLearn::VecStatsCollector::getCorrelation(), GramSchmidtOrthogonalization(), norm(), normalize(), PLearn::ScaledGradientOptimizer::optimize(), PLearn::GaussianProcessRegressor::QFormInverse(), subsample(), and PLearn::Function::verifyGradient(). |
|
diagonal normal with general parameters given by the provided RandomVar's. Actual variance is variance = minimum_variance + exp(log_variance) Definition at line 729 of file RandomVar.cc. References mean(). |
|
Functions to build a normal distribution. multivariate d-dimensional diagonal normal with NON-RANDOM and CONSTANT parameters (default means = 0, default standard deviations = 1) Actual variance is variance = minimum_variance + exp(log_variance) Definition at line 712 of file RandomVar.cc. References log(), mean(), PLERROR, and variance(). Referenced by PLearn::FieldConvertCommand::FieldConvertCommand(). |
|
Definition at line 72 of file pl_erf.h. References gauss_01_cum(), and x. |
|
Definition at line 89 of file random.h. References gaussian_01(). Referenced by PLearn::GaussianContinuum::make_random_walk(), and PLearn::CompactVMatrix::perturb(). |
|
Definition at line 143 of file VMat_maths.h. References PLearn::VMat::length(), and normalize(). |
|
Here, mean and stddev are estimated on d.subMat(0,0,ntrain,inputsize).
Definition at line 681 of file VMat_maths.cc. References computeMeanAndStddev(), normalize(), and PLearn::VMat::subMat(). |
|
subtracts mean and divide by stddev meanvec and stddevvec can be shorter than d.width() (as we probably only want to 'normalize' the 'input' part of the sample, and not the 'output' that is typically present in the last columns) Definition at line 666 of file VMat_maths.cc. References invertElements(), PLearn::TVec< T >::length(), negateElements(), PLearn::TVec< T >::subVec(), and PLearn::VMat::width(). |
|
divide each row by its n norm
Definition at line 4390 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and normalize(). |
|
substract mean, and divide by stddev (these are estimated globally)
Definition at line 4355 of file TMat_maths_impl.h. References computeMeanAndStddev(), and PLearn::TMat< T >::width(). |
|
Definition at line 708 of file TMat_maths_impl.h. References norm(). Referenced by condprob_cost(), entropy(), PLearn::Gnuplot::histoplot(), PLearn::KernelProjection::KernelProjection(), loadBreastCancerWisconsin(), loadClassificationDataset(), loadDiabetes(), loadHousing(), loadLetters(), loadPimaIndians(), loadUCI(), PLearn::PLS::NIPALSEigenvector(), normalize(), PLearn::PCA::PCA(), splitTrainValidTest(), PLearn::PLS::train(), and PLearn::PCA::train(). |
|
Divides each column by the sum of its elements.
Definition at line 4378 of file TMat_maths_impl.h. References PLearn::TMat< T >::column(), sum(), and PLearn::TMat< T >::width(). |
|
Definition at line 122 of file databases.cc. References computeMeanAndStddev(), and PLearn::TMat< T >::width(). Referenced by loadBreastCancerWisconsin(), loadDiabetes(), loadHousing(), loadLetters(), and loadPimaIndians(). |
|
normalize both training_set and test_set according to mean and stddev computed on training_set
Definition at line 108 of file databases.cc. References computeMeanAndStddev(), PLearn::TMat< T >::subMatColumns(), and PLearn::TMat< T >::width(). |
|
Definition at line 90 of file databases.cc. References computeMeanAndStddev(), PLearn::VMat::subMatColumns(), and PLearn::VMat::width(). |
|
Definition at line 73 of file databases.cc. References computeMeanAndStddev(), PLearn::TMat< T >::subMatColumns(), and PLearn::TMat< T >::width(). Referenced by loadATT800(), loadBreastCancer(), loadDiabetes(), loadLetters(), and splitTrainValidTest(). |
|
Divides each row by the sum of its elements.
Definition at line 4366 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and sum(). |
|
|
|
|
|
|
|
assigns a code to a "word"
Definition at line 244 of file TypesNumeriques.cc. References PLearn::tRule::attributs, compactRepresentation(), looksNumeric(), NT_NOT_NUMERIC, NT_PERCENT, NT_UNKNOWN_NUMERIC_TYPE, PLearn::tRule::pattern, and rules. |
|
|
|
|
|
Definition at line 502 of file old_plearn_main.cc. References cross_valid(), displayObjectHelp(), endl(), exitmsg(), getDataSetHelp(), getMultipleModelAliases(), isfile(), seed(), stringvector(), toint(), train_and_test(), usage(), and use(). |
|
Definition at line 414 of file DisplayUtils.cc. References PLearn::TmpFilenames::addFilename(), PLearn::TVec< Var >::append(), center(), PLearn::GhostScript::centerShow(), PLearn::VarArray::clearMark(), PLearn::TVec< Var >::contains(), PLearn::GhostScript::drawArrow(), PLearn::GhostScript::drawBox(), PLearn::Var::length(), PLearn::VarArray::parents(), PLearn::VarArray::setMark(), PLearn::TVec< Var >::size(), PLearn::VarArray::sources(), PLearn::VarArray::unmarkAncestors(), PLearn::GhostScript::usefont(), PLearn::Var::width(), and x. |
|
Definition at line 1326 of file TMat_maths_impl.h. References fill_one_hot(). |
|
Definition at line 107 of file OneHotVMatrix.h. |
|
Definition at line 86 of file OneHotVariable.h. Referenced by PLearn::FieldConvertCommand::FieldConvertCommand(). |
|
Definition at line 88 of file OneHotSquaredLoss.h. Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), and PLearn::NeighborhoodSmoothnessNNet::build_(). |
|
Definition at line 63 of file PExperiment.cc. References PLearn::TVec< T >::size(), PLearn::TVec< T >::subVec(), and x. |
|
******************************** User-friendly VMat interface * |
|
* To allow for easy building of VarArray * Definition at line 296 of file VarArray.h. |
|
Definition at line 405 of file StatsIterator.h. |
|
******************** inline Ker operators
|
|
This will allow a convenient way of building arrays of Matrices by writing ex: m1&m2&m3.
Definition at line 218 of file Array_impl.h. |
|
This will allow a convenient way of building arrays of Matrices by writing ex: m1&m2&m3.
Definition at line 146 of file Array_impl.h. |
|
Definition at line 124 of file Array_impl.h. References PLearn::TVec< T >::append(), and PLearn::TVec< T >::size(). |
|
Definition at line 115 of file Array_impl.h. References PLearn::TVec< T >::append(), and PLearn::TVec< T >::size(). |
|
Definition at line 106 of file Array_impl.h. References PLearn::TVec< T >::append(), and PLearn::TVec< T >::size(). |
|
Definition at line 90 of file Array_impl.h. Referenced by PLearn::VarArray::operator &(), PLearn::StatsItArray::operator &(), and PLearn::RVInstanceArray::operator &&(). |
|
Definition at line 102 of file Array_impl.h. References PLearn::TVec< T >::append(). |
|
Definition at line 98 of file Array_impl.h. References PLearn::TVec< T >::append(). |
|
Definition at line 94 of file Array_impl.h. References PLearn::TVec< T >::append(). Referenced by PLearn::VarArray::operator &=(), and PLearn::StatsItArray::operator &=(). |
|
element-wise multiplications < v1 and v2 must have the same dimensions (it is checked by the constructor of TimesVariable) Definition at line 155 of file Var_operators.cc. |
|
Definition at line 150 of file Var_operators.cc. |
|
Definition at line 147 of file Var_operators.cc. |
|
********************** GLOBAL FUNCTIONS ********************** //!< Return a RandomVar that is the product of two RandomVar's. If a and b are matrices, this is a matrix product. If one of them is a vector it is interpreted as a column vector (nx1), but if both are vectors, this is a dot product (a is interpreted as a 1xn). The result contains a ProductRandomVariable, which can be "trained" by EM: if one of the two arguments is non-random and is considered to be a parameter, it can be learned (e.g. for implementing a linear regression). Definition at line 408 of file RandomVar.cc. References PLERROR. |
|
does an elementwise multiplication of every row by v
Definition at line 5719 of file TMat_maths_impl.h. References PLearn::TMat< T >::copy(). |
|
Definition at line 3496 of file TMat_maths_impl.h. |
|
Definition at line 3488 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), multiply(), and PLearn::TMat< T >::width(). |
|
Definition at line 1225 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and multiply(). |
|
Definition at line 1217 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and multiply(). |
|
does an elementwise division of every row by v
Definition at line 4474 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
does an elementwise multiplication of every row by v
Definition at line 4459 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4409 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). |
|
Definition at line 2021 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 845 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 195 of file Var_operators.cc. References isequal(). |
|
result[i] = 1 if v1[i]!=cte, 0 otherwise
Definition at line 85 of file UnequalConstantVariable.h. |
|
result[i] = 1 if v1[i]!=cte, 0 otherwise
Definition at line 81 of file UnequalConstantVariable.h. |
|
Other operators (should be defined in std::rel_ops, but does not work properly with gcc yet).
Definition at line 168 of file TinyVector.h. References x. |
|
const SmallVector<T,SizeBits,Allocator>& y) { return !(x==y); }
Definition at line 182 of file SmallVector.h. References x. |
|
Definition at line 1205 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 81 of file Var_operators.cc. |
|
Definition at line 75 of file Var_operators.cc. |
|
Definition at line 72 of file Var_operators.cc. |
|
Return a RandomVar that is the element-by-element sum of two RandomVar's. The result contains a PlusRandomVariable, which can be "trained" by EM: if one of the two arguments is non-random and is considered to be a parameter, it can be learned (e.g. for implementing a linear regression). Definition at line 432 of file RandomVar.cc. |
|
Definition at line 57 of file TMatRowsIterator_impl.h. |
|
Definition at line 57 of file TMatRowsAsArraysIterator_impl.h. |
|
Definition at line 58 of file TMatColRowsIterator_impl.h. |
|
return m + v (added to every ROW of m)
Definition at line 5709 of file TMat_maths_impl.h. References PLearn::TMat< T >::copy(). |
|
Definition at line 4566 of file TMat_maths_impl.h. References add(), PLearn::TMat< T >::length(), and PLearn::TMat< T >::width(). |
|
Definition at line 1197 of file TMat_maths_impl.h. References add(), and PLearn::TVec< T >::length(). |
|
Definition at line 1189 of file TMat_maths_impl.h. References add(), and PLearn::TVec< T >::length(). |
|
Definition at line 1177 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and PLERROR. |
|
add two sparse matrices (of same dimensions but with values in possibly different places)
Definition at line 259 of file SparseMatrix.cc. References PLearn::SparseMatrix::beginRow, PLearn::TVec< T >::clear(), PLearn::TVec< T >::data(), PLearn::SparseMatrix::endRow, PLearn::TVec< T >::length(), PLearn::SparseMatrix::n_rows, PLERROR, PLearn::TVec< T >::resize(), PLearn::SparseMatrix::row, and PLearn::SparseMatrix::values. |
|
add a number of days
Definition at line 145 of file PDate.h. References PLearn::PDate::toJulianDay(). |
|
Definition at line 99 of file Var_operators.cc. References PLearn::PP< Variable >::isNull(). |
|
Definition at line 4524 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
adds v to every row
Definition at line 4429 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4400 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). |
|
element-wise +
Definition at line 2031 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 1064 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
returns all variables of a that are not in b
Definition at line 1104 of file VarArray.cc. References PLearn::TVec< Var >::append(), and PLearn::TVec< Var >::size(). |
|
Definition at line 142 of file Var_operators.cc. |
|
Definition at line 128 of file Var_operators.cc. |
|
Definition at line 110 of file Var_operators.cc. |
|
Definition at line 78 of file Var_operators.cc. |
|
Return a MatRandomVar that is the element-by-element difference of two RandomVar's. The result contains a MinusRandomVariable. Definition at line 437 of file RandomVar.cc. |
|
return m - v (subtracted from every ROW of m)
Definition at line 5714 of file TMat_maths_impl.h. References PLearn::TMat< T >::copy(). |
|
return a negated copy of m
Definition at line 4619 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). |
|
Definition at line 4558 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), substract(), and PLearn::TMat< T >::width(). |
|
Definition at line 1169 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and substract(). |
|
Definition at line 1160 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(). |
|
Definition at line 1148 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 1076 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 76 of file NegKernel.h. References k. |
|
subtract two dates, the result being counted in days (+ fractions)
Definition at line 145 of file PDateTime.h. |
|
subtract a number of days add a number of days
Definition at line 152 of file PDate.h. References PLearn::PDate::toJulianDay(). |
|
substract two dates, the result being counted in days.
Definition at line 139 of file PDate.h. References PLearn::PDate::toJulianDay(). |
|
Definition at line 131 of file Var_operators.cc. References PLearn::PP< Variable >::isNull(). |
|
Definition at line 4541 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
subtracts v from every row
Definition at line 4444 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4418 of file TMat_maths_impl.h. |
|
Definition at line 1072 of file TMat_maths_impl.h. |
|
Definition at line 836 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 184 of file Var_operators.cc. References invertElements(), PLearn::Var::length(), and PLearn::Var::width(). |
|
Definition at line 176 of file Var_operators.cc. References invertElements(). |
|
Definition at line 173 of file Var_operators.cc. |
|
|
|
Return a MatRandomVar that is the element-by-element ratio of two RandomVar's. The result contains a RandomVariable. Definition at line 442 of file RandomVar.cc. |
|
elementwise division of every row by v
Definition at line 5729 of file TMat_maths_impl.h. References PLearn::TMat< T >::copy(). |
|
elementwise division of every row by v
Definition at line 5724 of file TMat_maths_impl.h. References PLearn::TMat< T >::copy(). |
|
Definition at line 3501 of file TMat_maths_impl.h. |
|
Definition at line 1258 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and multiply(). |
|
Definition at line 1245 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 1233 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(), and PLERROR. |
|
does an elementwise division
Definition at line 4507 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4492 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4424 of file TMat_maths_impl.h. |
|
Definition at line 4421 of file TMat_maths_impl.h. |
|
Definition at line 916 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 858 of file TMat_maths_impl.h. |
|
Definition at line 854 of file TMat_maths_impl.h. |
|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Definition at line 78 of file IsSmallerVariable.h. |
|
Definition at line 270 of file TVec_impl.h. |
|
Lexicographical Ordering.
Definition at line 458 of file TinyVector.h. References x. |
|
Definition at line 491 of file SmallVector.h. References x. |
|
const SmallVector<T,SizeBits,Allocator>&);
|
|
Definition at line 122 of file RealMapping.cc. References PLearn::RealMapping::single_mapping_t. |
|
Definition at line 107 of file Set.h. References PLearn::Set::begin(), PLearn::Set::end(), and SetIterator. |
|
|
|
Definition at line 545 of file ProbabilitySparseMatrix.h. References endl(), NUMWIDTH, PLearn::ProbabilitySparseMatrix::nx(), PLearn::ProbabilitySparseMatrix::ny(), PLearn::ProbabilitySparseMatrix::raise_error, and x. |
|
Definition at line 133 of file VVec.h. References PLearn::VVec::toVec(). |
|
Definition at line 130 of file VVec.h. References PLearn::VVec::copyFrom(). |
|
Definition at line 166 of file VMat.h. References PLearn::VMat::print(). |
|
|
|
Definition at line 140 of file VMat.h. References PLearn::VMatrix::getMat(), PLearn::VMatrix::length(), PLearn::TMat< T >::length(), PLERROR, PLearn::VMatrix::width(), and PLearn::TMat< T >::width(). |
|
Definition at line 304 of file VarArray.h. |
|
Definition at line 240 of file VarArray.h. References PLearn::VarArray::copyFrom(). |
|
Definition at line 1131 of file VarArray.cc. References k, PLERROR, PLearn::TVec< T >::size(), and PLearn::TVec< Var >::size(). |
|
Definition at line 56 of file Var.h. References endl(), and PLearn::Var::width(). |
|
Definition at line 208 of file TVec_impl.h. |
|
Read and Write from C++ stream: write saves length and read resizes accordingly (the raw modes don't write any size information).
Definition at line 146 of file TVec_impl.h. |
|
copy TVec << TVec (different types)
Definition at line 117 of file TVec_impl.h. References copy_cast(), and PLERROR. |
|
Definition at line 106 of file TVec_impl.h. References std::copy(), and PLERROR. |
|
Same as fill(f) (will only work with Vec, because of a potential conflict with T == string if we wanted to make it generic).
Definition at line 778 of file TVec_decl.h. References PLearn::TVec< T >::fill(). |
|
Read and Write from C++ stream: write saves length and read resizes accordingly (the raw modes don't write any size information).
Definition at line 819 of file TMat_impl.h. |
|
printing a TMat
Definition at line 717 of file TMat_impl.h. References PLearn::TMat< T >::print(). |
|
copy TVec << TMat (different types)
Definition at line 689 of file TMat_impl.h. References copy_cast(), and PLERROR. |
|
Definition at line 678 of file TMat_impl.h. References std::copy(), and PLERROR. |
|
copy TMat << Tvec (different types)
Definition at line 667 of file TMat_impl.h. References copy_cast(), and PLERROR. |
|
copy TMat << Tvec
Definition at line 656 of file TMat_impl.h. References std::copy(), and PLERROR. |
|
copy TMat << TMat (different types)
Definition at line 645 of file TMat_impl.h. References copy_cast(), and PLERROR. |
|
Definition at line 633 of file TMat_impl.h. References std::copy(), and PLERROR. |
|
Definition at line 397 of file StatsIterator.h. |
|
Definition at line 72 of file StatsCollector.h. References PLearn::StatsCollectorCounts::id, PLearn::StatsCollectorCounts::n, PLearn::StatsCollectorCounts::nbelow, PLearn::StatsCollectorCounts::sum, and PLearn::StatsCollectorCounts::sumsquare. |
|
Definition at line 73 of file ProbSparseMatrix.h. References PLearn::DoubleAccessSparseMatrix< real >::write(). |
|
Definition at line 56 of file Mat.h. References PLearn::TVec< T >::print(). |
|
Definition at line 181 of file DoubleAccessSparseMatrix.h. |
|
Definition at line 1162 of file PStream.h. References writeSet(). |
|
Definition at line 1114 of file PStream.h. References writeSequence(). |
|
Definition at line 752 of file PStream.h. References writeMap(). |
|
Definition at line 744 of file PStream.h. References writeMap(). |
|
Definition at line 735 of file PStream.h. References writeMap(). |
|
Definition at line 727 of file PStream.h. References writeMap(). |
|
Definition at line 648 of file PStream.h. References x. |
|
Definition at line 608 of file PStream.h. References PLearn::PStream::outmode, PLERROR, PLearn::PStream::put(), and x. |
|
|
|
|
|
Definition at line 553 of file PStream.h. References PLearn::PStream::copies_map_out, PLearn::PStream::put(), PLearn::PStream::write(), and x. |
|
outputs all fields in a row, separated by " | "
Definition at line 916 of file SimpleDB.cc. References PLearn::Row::begin(), PLearn::Row::end(), and endl(). |
|
outputs a single field flushed right in a cell of apropriate width (as given by field.char_width())
Definition at line 856 of file SimpleDB.cc. References PLearn::RowIterator::asCharacter(), PLearn::RowIterator::asDate(), PLearn::RowIterator::asDouble(), PLearn::RowIterator::asFloat(), PLearn::RowIterator::asInt(), PLearn::RowIterator::asShort(), PLearn::RowIterator::asSignedChar(), PLearn::RowIterator::asString(), center(), PLearn::RowIterator::char_width(), PLearn::RowIterator::isMissing(), PLERROR, and x. |
|
Definition at line 551 of file SimpleDB.cc. References PLearn::FieldValue::toString(). |
|
Formatted printing of a pair<U,V> as U:V.
Definition at line 263 of file stringutils.h. |
|
formatted printing of vector<string> prints strings separated by a ", "
Definition at line 608 of file stringutils.cc. |
|
Definition at line 42 of file StringTable.cc. References PLearn::StringTable::data, PLearn::StringTable::fieldnames, left(), PLearn::TVec< T >::length(), PLearn::StringTable::length(), and PLearn::StringTable::width(). |
|
Definition at line 327 of file Storage.h. References writeSequence(). |
|
Definition at line 113 of file SetOption.h. |
|
Definition at line 237 of file RealMapping.h. |
|
Definition at line 117 of file RealMapping.h. References PLearn::RealRange::print(). |
|
Definition at line 54 of file RealMapping.cc. References PLearn::PStream::put(), and x. |
|
Definition at line 77 of file Range.h. References PLearn::Range::length, and PLearn::Range::start. |
|
Definition at line 150 of file PDateTime.h. References PLearn::PDateTime::info(). |
|
Definition at line 158 of file PDate.h. References PLearn::PDate::info(). |
|
Definition at line 617 of file Object.h. References PLearn::Object::newwrite(). |
|
Definition at line 612 of file Object.h. References PLearn::Object::print(). |
|
Definition at line 82 of file Array_impl.h. |
|
Definition at line 78 of file Array_impl.h. References writeSequence(). Referenced by PLearn::PStream::operator<<(). |
|
Definition at line 80 of file IsLargerVariable.h. |
|
Definition at line 86 of file IsAboveThresholdVariable.h. |
|
A simple family of relational operators for TVec.
Definition at line 249 of file TVec_impl.h. |
|
Definition at line 182 of file TinyVector.h. References x. |
|
Definition at line 192 of file Var_operators.cc. References isequal(). |
|
result[i] = 1 if v1[i]==cte, 0 otherwise
Definition at line 85 of file EqualConstantVariable.h. |
|
result[i] = 1 if v1[i]==cte, 0 otherwise
Definition at line 81 of file EqualConstantVariable.h. |
|
Equality operator.
Definition at line 444 of file TinyVector.h. References PLearn::TinyVector< T, N, TTrait >::begin(), PLearn::TinyVector< T, N, TTrait >::end(), and x. |
|
Equality operator.
Definition at line 476 of file SmallVector.h. References PLearn::SmallVector< T, SizeBits, Allocator >::begin(), PLearn::SmallVector< T, SizeBits, Allocator >::end(), and x. Referenced by PLearn::TMatRowsIterator< T >::operator!=(), and PLearn::TMatRowsAsArraysIterator< T >::operator!=(). |
|
Definition at line 77 of file IsLargerVariable.h. |
|
Definition at line 290 of file TVec_impl.h. |
|
Definition at line 175 of file TinyVector.h. References x. |
|
Definition at line 81 of file IsSmallerVariable.h. |
|
Definition at line 83 of file IsAboveThresholdVariable.h. |
|
Definition at line 259 of file TVec_impl.h. |
|
Definition at line 189 of file TinyVector.h. References x. |
|
|
|
Definition at line 136 of file VVec.h. References PLearn::VVec::copyFrom(). |
|
Definition at line 127 of file VVec.h. References PLearn::VVec::toVec(). |
|
|
|
|
|
Definition at line 301 of file VarArray.h. |
|
Definition at line 243 of file VarArray.h. References PLearn::VarArray::copyTo(). |
|
Definition at line 1146 of file VarArray.cc. References k, PLERROR, PLearn::TVec< T >::size(), and PLearn::TVec< Var >::size(). |
|
Definition at line 215 of file TVec_impl.h. References PLearn::TVec< T >::input(). |
|
Definition at line 153 of file TVec_impl.h. References PLearn::TVec< T >::read(). |
|
Definition at line 128 of file TVec_impl.h. |
|
Definition at line 826 of file TMat_impl.h. References PLearn::TMat< T >::read(). |
|
inputing a TMat
Definition at line 726 of file TMat_impl.h. References PLearn::TMat< T >::input(). |
|
copy TMat >> Tvec
Definition at line 710 of file TMat_impl.h. |
|
Definition at line 705 of file TMat_impl.h. |
|
Definition at line 700 of file TMat_impl.h. |
|
Definition at line 394 of file StatsIterator.h. |
|
this class holds simple statistics about a field
Definition at line 69 of file StatsCollector.h. References PLearn::StatsCollectorCounts::id, PLearn::StatsCollectorCounts::n, PLearn::StatsCollectorCounts::nbelow, PLearn::StatsCollectorCounts::sum, and PLearn::StatsCollectorCounts::sumsquare. |
|
Definition at line 80 of file ProbSparseMatrix.h. References PLearn::DoubleAccessSparseMatrix< real >::read(). |
|
Definition at line 188 of file DoubleAccessSparseMatrix.h. References PLearn::DoubleAccessSparseMatrix< T >::read(). |
|
Definition at line 1158 of file PStream.h. References readSet(). |
|
Definition at line 1110 of file PStream.h. References readSequence(). |
|
Definition at line 756 of file PStream.h. References readMap(). |
|
Definition at line 748 of file PStream.h. References readMap(). |
|
Definition at line 739 of file PStream.h. References readMap(). |
|
Definition at line 731 of file PStream.h. References readMap(). |
|
Definition at line 658 of file PStream.h. References PLearn::PStream::get(), PLERROR, PLearn::PStream::skipBlanksAndComments(), PLearn::PStream::skipBlanksAndCommentsAndSeparators(), and x. |
|
Definition at line 581 of file PStream.h. References PLearn::PP< T >::isNull(). |
|
Definition at line 509 of file PStream.h. References PLearn::PStream::copies_map_in, PLearn::PStream::get(), PLearn::PStream::peek(), PLERROR, PLearn::PStream::skipBlanksAndCommentsAndSeparators(), and x. |
|
Definition at line 334 of file Storage.h. References readSequence(). |
|
Definition at line 113 of file SetOption.h. |
|
Definition at line 113 of file SetOption.h. |
|
Definition at line 113 of file SetOption.h. |
|
Definition at line 237 of file RealMapping.h. |
|
Definition at line 237 of file RealMapping.h. |
|
Definition at line 237 of file RealMapping.h. |
|
Definition at line 62 of file RealMapping.cc. References PLearn::PStream::get(), PLearn::PStream::skipBlanksAndComments(), PLearn::PStream::skipBlanksAndCommentsAndSeparators(), and x. |
|
Definition at line 615 of file Object.h. References PLearn::Object::newread(). |
|
Definition at line 428 of file Object.cc. References PLearn::PStream::copies_map_in, PLearn::PStream::get(), PLearn::PStream::peek(), PLERROR, readObject(), PLearn::PStream::skipBlanksAndCommentsAndSeparators(), and x. |
|
Definition at line 74 of file Array_impl.h. References readSequence(). Referenced by PLearn::PStream::operator>>(). |
|
"cross" product of two sets. Matrices m1 and m2 are regarded as two sets of vectors (their rows) m1^m2 returns the set of all possible concatenations of a vector from m1 and a vector from m2 ex: Mat(2,1,"1 2 3 4") ^ Mat(2,2,"10 20 30 40") ==> 1 2 10 20 1 2 30 40 3 4 10 20 3 4 30 40 Definition at line 132 of file Mat.cc. References PLearn::TMat< T >::length(), PLearn::TMat< T >::subMatColumns(), and PLearn::TMat< T >::width(). |
|
Definition at line 1296 of file TMat_maths_impl.h. References PLearn::TVec< T >::length(). |
|
Definition at line 59 of file DifferenceKernel.cc. |
|
Construct a Var that computes P(LHS == observation | RHS == values ) in terms of the Var observation and the Vars in the RHS, where RHS is a RVArray such as (X1==x1 && X2==x2 && X3==x3) where Xi are RandomVar's and xi are Var's which represent the value that are given to the conditioning variables Xi. Normally the marks used to identify RVs which are deterministically determined from the RHS are cleared upon return (unless specified with the optional 2nd argument). Definition at line 593 of file RandomVar.cc. References PLearn::ConditionalExpression::LHS, PLearn::ConditionalExpression::RHS, PLearn::RVInstance::v, and PLearn::RVInstance::V. Referenced by PLearn::PLS::train(). |
|
Definition at line 219 of file pl_erf.cc. References gauss_01_cum(), and sqrt(). Referenced by KS_test(). |
|
Given two paired sets u and v of n measured values, the paired t-test determines whether they differ from each other in a significant way under the assumptions that the paired differences are independent and identically normally distributed.
Definition at line 254 of file stats_utils.cc. References PLearn::TVec< T >::length(), mean(), MISSING_VALUE, PLWARNING, sqrt(), and sumsquare(). Referenced by PLearn::SequentialModelSelector::test(). |
|
Definition at line 1510 of file MatIO.cc. References countNonBlankLinesOfFile(), getNextNonBlankLine(), and split(). Referenced by loadAscii(). |
|
Uses partial_sort. Sorts only the first k smallests rows and put it in the k first rows. The other rows are in an arbitrary order. If sortk is 0, the k smallest rows are put in the k first rows but in an arbitrary order. This implementation should be very efficient, but it does two memory allocation: a first one of mat.length()*(sizeof(real)+sizeof(int)) and a second one of mat.length()*sizeof(int). Definition at line 126 of file TMat_sort.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::swapRows(). Referenced by PLearn::Kernel::computeKNNeighbourMatrixFromDistanceMatrix(), and PLearn::Kernel::computeNearestNeighbors(). |
|
returns true if the given path points to an existing regular file or directory
Definition at line 129 of file fileutils.cc. Referenced by PLearn::SequentialValidation::build_(), PLearn::PTester::build_(), PLearn::VVMatrix::createPreproVMat(), getDataSet(), getDataSetDate(), PLearn::VVMatrix::getPrecomputedDataName(), PLearn::VVMatrix::isPrecomputedAndUpToDate(), locateDatasetAliasesDir(), PLearn::VMatrix::lockMetaDataDir(), makeFileNameValid(), and PLearn::Experiment::run(). |
|
peeks the first char after removal of blanks
Definition at line 158 of file fileutils.h. Referenced by PLearn::VMatLanguage::generateCode(), and PLearn::RealMapping::read(). |
|
peeks the first char after removal of blanks and comments
Definition at line 161 of file fileutils.h. References skipBlanksAndComments(). Referenced by readAndMacroProcess(). |
|
returns the next line read from the stream, after removing any trailing '' and/or '
Definition at line 293 of file stringutils.cc. References removenewline(). Referenced by extractWordSet(), PLearn::ShellProgressBar::getAsciiFileLineCount(), interactiveDisplayCDF(), PLearn::VMatrix::loadFieldInfos(), PLearn::WordNetOntology::loadPredominentSyntacticClasses(), PLearn::GraphicalBiText::loadSensemap(), main(), and PLearn::Grapher::plot_1D_regression(). |
|
d(pl_gammln(z))/dz derivate of pl_gammln(z)
Definition at line 74 of file pl_erf.cc. References log(), and pl_gammln_cof. |
|
The error function.
Definition at line 151 of file pl_erf.cc. References pl_gammq(), and x. Referenced by PLearn::ErfVariable::fprop(), and gauss_01_cum(). |
|
function gamma returns log(Gamma(z)), where Gamma(z) = ^infty t^{z-1}*e^{-t} dt
Definition at line 60 of file pl_erf.cc. References log(), Pi, and pl_gammln_cof. |
|
returns the incomplete gamma function Q(a,x) = 1 - P(a,x) it either uses the series or the continued fraction formula
Definition at line 141 of file pl_erf.cc. References pl_gcf(), pl_gser(), PLERROR, and x. Referenced by pl_erf(). |
|
returns the continued fraction representation of the incomplete gamma function
Definition at line 110 of file pl_erf.cc. References EPS, exp(), FPMIN, ITMAX, log(), pl_gammln(), PLERROR, and x. Referenced by pl_gammq(). |
|
returns the series value of the incomplete gamma function
Definition at line 89 of file pl_erf.cc. References exp(), ITMAX, log(), pl_gammln(), PLERROR, sum(), and x. Referenced by pl_gammq(). |
|
Definition at line 96 of file stringutils.cc. References MISSING_VALUE, and removeblanks(). |
|
Definition at line 83 of file stringutils.cc. References MISSING_VALUE, and removeblanks(). Referenced by PLearn::VMatLanguage::generateCode(), PLearn::VecStatsCollector::getFieldNum(), getList(), loadAscii(), loadUCIMLDB(), PLearn::PDate::PDate(), PLearn::VMatLanguage::preprocess(), readAndMacroProcess(), PLearn::StrTableVMatrix::StrTableVMatrix(), and viewVMat(). |
|
|
|
|
|
|
|
|
|
VMatrix *.
|
|
|
|
|
|
DatedVMatrix *.
|
|
|
|
|
|
NaryVariable *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Uniform VMatrix *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SubVMatrix *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PairsVMatrix *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FileVMatrix *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TanhVariable *.
|
|
SumVariable *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SignVariable *.
|
|
|
|
SemiSupervisedProbClassVariable *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PowVariable *.
|
|
PlusVariable *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NllSemisphericalGaussianVariable *.
|
|
NegCrossEntropySigmoidVariable *.
|
|
|
|
|
|
MinVariable *.
|
|
|
|
MinusTransposedColumnVariable *.
|
|
|
|
|
|
|
|
MiniBatchClassificationLossVariable *.
|
|
MaxVariable *.
|
|
Max2Variable *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MarginPerceptronCostVariable *.
|
|
LogVariable *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ExpVariable *.
|
|
ErfVariable *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DivVariable *.
|
|
|
|
DiagonalizedFactorsProductVariable *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BinaryClassificationLossVariable *.
|
|
|
|
|
|
|
|
|
|
|
|
AbsVariable *.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Definition at line 51 of file plearn_main.cc. References endl(), file_exists(), PLERROR, prgname(), seed(), and stringvector(). Referenced by main(). |
|
Definition at line 73 of file PLogPVariable.h. Referenced by entropy(). |
|
Definition at line 1236 of file vmatmain.cc. References c_str(), endl(), PLearn::PStream::get(), getDataSet(), PLearn::TVec< T >::length(), PLERROR, PLearn::TVec< T >::resize(), saveGnuplot(), split(), toint(), and tostring(). Referenced by vmatmain(). |
|
returns a poisson random number with lambda = "xm" Definition at line 426 of file random.cc. References exp(), log(), log_gamma(), Pi, sqrt(), and uniform_sample(). |
|
returns the position of the element in the vector that is closest to value If is_sorted_vec is true the procedure assumes the vector's elements are sorted in ascending order and uses a dichotomy search. Definition at line 1972 of file TMat_maths_impl.h. References binary_search(), PLearn::TVec< T >::data(), dist(), and PLearn::TVec< T >::length(). |
|
Definition at line 1834 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), k, PLearn::TVec< T >::length(), and PLERROR. Referenced by kthOrderedElement(). |
|
Definition at line 79 of file CutBelowThresholdVariable.h. References cutBelowThreshold(). |
|
Definition at line 97 of file pl_math.h. Referenced by PLearn::ConditionalDensityNet::build_(). |
|
Definition at line 171 of file pl_math.cc. References log(), Pi, small_dilogarithm(), and x. Referenced by dilogarithm(). |
|
returns a vector composed of the values of v that are greater than 0;
Definition at line 1956 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 90 of file PowVariableVariable.h. |
|
Definition at line 77 of file PowVariable.h. Referenced by PLearn::VMatrixFromDistribution::build_(), PLearn::AsciiVMatrix::build_(), PLearn::EntropyContrast::compute_diversity_cost(), PLearn::ScaledGeneralizedDistanceRBFKernel::evaluate(), PLearn::GeneralizedDistanceRBFKernel::evaluate(), PLearn::SemiSupervisedProbClassCostVariable::fprop(), PLearn::PowVariableVariable::fprop(), PLearn::SpiralDistribution::generate(), mypow(), norm(), pownorm(), PLearn::VMatLanguage::run(), sqrt(), and PLearn::PowVariable::symbolicBprop(). |
|
Definition at line 106 of file Var_utils.cc. References pownorm(). |
|
Definition at line 756 of file TMat_maths_impl.h. References powdistance(). |
|
Definition at line 712 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), mypow(), and PLERROR. Referenced by PLearn::PCA::computeCostsFromOutputs(), PLearn::LinearRegressor::computeCostsFromOutputs(), PLearn::ConstantRegressor::computeCostsFromOutputs(), PLearn::AddCostToLearner::computeCostsFromOutputs(), computeNearestNeighbors(), dist(), PLearn::DiagonalNormalRandomVariable::EMBprop(), PLearn::PowDistanceKernel::evaluate(), PLearn::LogOfGaussianDensityKernel::evaluate(), PLearn::GaussianDensityKernel::evaluate(), PLearn::DistanceKernel::evaluate(), PLearn::CompactVMatrixGaussianKernel::evaluate(), PLearn::VMatrix::find(), powdistance(), and PLearn::ConstantRegressor::train(). |
|
Definition at line 71 of file Var_utils.cc. |
|
Definition at line 691 of file TMat_maths_impl.h. References pownorm(). |
|
Definition at line 657 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), mypow(), and val. Referenced by PLearn::GaussianKernel::addDataForKernelMatrix(), PLearn::NllSemisphericalGaussianVariable::bprop(), PLearn::GaussianContinuum::compute_train_and_validation_costs(), PLearn::KernelProjection::computeCostsFromOutputs(), PLearn::AddCostToLearner::computeCostsFromOutputs(), PLearn::GaussMix::computeLogLikelihood(), PLearn::GaussianContinuum::computeOutput(), PLearn::ConjGradientOptimizer::conjpomdp(), PLearn::ConjGradientOptimizer::daiYuan(), diagonalOfSquare(), PLearn::RowBufferedVMatrix::dot(), PLearn::DiagonalNormalRandomVariable::EMBprop(), PLearn::GaussianKernel::evaluate_i_j(), PLearn::GaussianKernel::evaluate_i_x(), PLearn::GaussianKernel::evaluate_x_i(), PLearn::ConjGradientOptimizer::findDirection(), PLearn::ConjGradientOptimizer::fletcherReeves(), PLearn::ProjectionErrorVariable::fprop(), PLearn::NllSemisphericalGaussianVariable::fprop(), PLearn::GaussianContinuum::get_image_matrix(), PLearn::GaussMix::kmeans(), norm(), PLearn::ConjGradientOptimizer::polakRibiere(), powdistance(), pownorm(), and PLearn::GaussianContinuum::train(). |
|
print a number without unnecessary trailing zero's, into buffer
Definition at line 96 of file general.cc. Referenced by saveAsciiWithoutSize(). |
|
Definition at line 569 of file Learner.h. References endl(), PLearn::TVec< T >::size(), and PLearn::Learner::testResultsNames(). |
|
Definition at line 149 of file general.cc. Referenced by PLearn::HelpCommand::helpCommands(), PLearn::HelpCommand::helpOverview(), PLearn::HelpCommand::helpScripts(), and plearn_main(). |
|
Definition at line 609 of file ProbabilitySparseMatrix.h. References PLearn::Set::begin(), PLearn::Set::end(), endl(), NUMWIDTH, and SetIterator. |
|
Definition at line 600 of file ProbabilitySparseMatrix.h. |
|
Definition at line 587 of file ProbabilitySparseMatrix.h. |
|
Definition at line 575 of file ProbabilitySparseMatrix.h. References endl(), PLearn::RowMapSparseMatrix< T >::length(), NUMWIDTH, and PLearn::RowMapSparseMatrix< T >::width(). |
|
Definition at line 561 of file ProbabilitySparseMatrix.h. References PLearn::Set::begin(), PLearn::Set::end(), endl(), NUMWIDTH, SetIterator, and x. Referenced by PLearn::TVec< pair< real, real > >::debugPrint(), PLearn::TMat< pair< real, real > >::debugPrint(), main(), PLearn::TVec< pair< real, real > >::println(), and PLearn::RealMapping::write(). |
|
Prints where m1 and m2 differ by more than tolerance returns the number of such differences, or -1 if the sizes differ.
Definition at line 65 of file vmatmain.cc. References endl(), is_missing(), PLearn::VMat::length(), and PLearn::VMat::width(). Referenced by vmatmain(). |
|
Definition at line 196 of file vmatmain.cc. References endl(), L2distance(), PLearn::VMat::length(), PLearn::TVec< T >::subVec(), PLearn::StatsCollector::update(), and PLearn::VMat::width(). Referenced by vmatmain(). |
|
outputs the given field name in a cell of apropriate size
Definition at line 834 of file SimpleDB.cc. References PLearn::RowIterator::char_width(), PLearn::Row::iterator, and PLearn::RowIterator::name(). Referenced by printFieldNames(). |
|
outputs all field names, separated by " | "
Definition at line 842 of file SimpleDB.cc. References PLearn::Row::begin(), PLearn::Row::const_iterator, PLearn::Row::end(), endl(), and printFieldName(). |
|
Definition at line 1163 of file VarArray.cc. References PLearn::VarArray::fbprop(), PLearn::VarArray::fprop(), PLearn::VarArray::printInfo(), and PLearn::VarArray::setMark(). |
|
Definition at line 1161 of file VarArray.cc. References PLearn::VarArray::printInfo(). |
|
computes M1.M2
Definition at line 883 of file VMat_maths.cc. References PLearn::TMat< T >::clear(), PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLearn::VMat::length(), PLERROR, productAcc(), rowmatrix(), PLearn::VMat::width(), and PLearn::TMat< T >::width(). |
|
general matrix product
Definition at line 80 of file ProductVariable.h. |
|
return m1 x m2
Definition at line 5694 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), product(), and PLearn::TMat< T >::width(). |
|
products return m x v
Definition at line 5684 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and product(). |
|
Definition at line 3783 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). |
|
Definition at line 2867 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 2846 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::width(), and x. |
|
result[i] = sum_j m[i,j] * v[j]
Definition at line 2209 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 271 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 801 of file RowMapSparseMatrix.h. References PLearn::RowMapSparseMatrix< T >::product(), and x. Referenced by PLearn::TangentLearner::build_(), PLearn::RegularGridVMatrix::build_(), PLearn::GaussianContinuum::build_(), PLearn::EntropyContrast::compute_df_dx(), PLearn::GaussianContinuum::compute_train_and_validation_costs(), diagonalizeSubspace(), eigenSparseNonSymmMat(), eigenSparseSymmMat(), PLearn::ProjectionErrorVariable::fprop(), PLearn::ProductVariable::fprop(), PLearn::NllSemisphericalGaussianVariable::fprop(), PLearn::GaussianContinuum::get_image_matrix(), PLearn::ProductRandomVariable::invertible(), linearRegression(), mahalanobis_distance(), PLearn::PLS::NIPALSEigenvector(), product(), PLearn::ProductVariable::rfprop(), PLearn::EntropyContrast::set_NNcontinuous_gradient_from_extra_cost(), PLearn::GaussMix::setInput(), PLearn::TransposeProductVariable::symbolicBprop(), PLearn::ProductTransposeVariable::symbolicBprop(), PLearn::PLS::train(), PLearn::PCA::train(), PLearn::GaussianContinuum::train(), PLearn::EntropyContrast::train(), PLearn::GaussMix::updateFromConditionalSorting(), and weightedLinearRegression(). |
|
Definition at line 2921 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ProductTransposeVariable::bbprop(). |
|
Definition at line 3136 of file TMat_maths_impl.h. References k, PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 3193 of file TMat_maths_impl.h. References k, PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ProductVariable::bbprop(). |
|
Definition at line 2894 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
result[i] += sum_j m[i,j] * v[j]
Definition at line 2229 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::TransposeProductVariable::bprop(), PLearn::ProductTransposeVariable::bprop(), PLearn::MatrixAffineTransformVariable::bprop(), PLearn::AffineTransformVariable::bprop(), PLearn::ProjectionErrorVariable::fprop(), product(), PLearn::ProductVariable::rfprop(), and PLearn::PCA::train(). |
|
computes M1.M2'
Definition at line 858 of file VMat_maths.cc. References dot(), PLearn::VMat::length(), PLERROR, and PLearn::VMat::width(). |
|
Definition at line 79 of file ProductTransposeVariable.h. |
|
return m1 x m2'
Definition at line 5704 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and productTranspose(). |
|
Definition at line 3079 of file TMat_maths_impl.h. References k, PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ProductRandomVariable::EMBprop(), PLearn::ProjectionErrorVariable::fprop(), PLearn::ProductTransposeVariable::fprop(), productTranspose(), PLearn::ProductTransposeVariable::rfprop(), PLearn::EntropyContrast::set_NNcontinuous_gradient_from_extra_cost(), PLearn::TransposeProductVariable::symbolicBprop(), PLearn::ProductVariable::symbolicBprop(), PLearn::PLS::train(), PLearn::PCA::train(), and PLearn::GaussMix::updateFromConditionalSorting(). |
|
Definition at line 3166 of file TMat_maths_impl.h. References k, PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::TransposeProductVariable::bprop(), PLearn::ProductVariable::bprop(), PLearn::MatrixAffineTransformVariable::bprop(), PLearn::MatrixAffineTransformFeedbackVariable::fprop(), and PLearn::ProductTransposeVariable::rfprop(). |
|
Definition at line 98 of file ProjectionErrorVariable.h. Referenced by PLearn::TangentLearner::build_(), and PLearn::NearestNeighborPredictionCost::run(). |
|
Definition at line 3673 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and projectOnOrthogonalSubspace(). |
|
project the Vec x on the linear subspace ORTHOGONAL to the subspace defined by the rows of the orthonormal_subspace matrix, which are ASSUMED to be ORTHORNORMAL. The method is based on substracting for each row v of the matrix the quantity v * x . v. Definition at line 2010 of file TMat_maths_impl.h. References dot(), PLearn::TMat< T >::length(), and multiplyAcc(). Referenced by GramSchmidtOrthogonalization(), and projectOnOrthogonalSubspace(). |
|
returns the propagationpath going from all sources that influence the outputs to the outputs. The sources themselves are not included in the path. Definition at line 1054 of file VarArray.cc. References propagationPath(), PLearn::TVec< Var >::size(), PLearn::VarArray::sources(), and PLearn::VarArray::unmarkAncestors(). |
|
The function that computes a propagation path *. returns the array of all the variables on which fprop is to be called sequentially to do a full fprop (for bprop it is the reverse order). NOTE THAT THE INPUTS ARE NOT IN THE RETURNED PATH ! so that a clearGradient() call on the array won't erase their gradients but fprop and bprop will still take into account their values. Definition at line 1018 of file VarArray.cc. References PLearn::VarArray::buildPath(), PLearn::VarArray::clearMark(), PLearn::VarArray::markPath(), PLearn::VarArray::setMark(), and PLearn::TVec< Var >::size(). Referenced by PLearn::ArgminOfVariable::ArgminOfVariable(), PLearn::UnfoldedSumOfVariable::build_(), PLearn::UnfoldedFuncVariable::build_(), PLearn::Optimizer::build_(), PLearn::MatrixElementsVariable::build_(), PLearn::Function::build_(), PLearn::AddCostToLearner::build_(), PLearn::Function::differentiate(), EM(), PLearn::Variable::fprop_from_all_sources(), nonInputParentsOfPath(), propagationPath(), propagationPathToParentsOfPath(), and PLearn::Optimizer::setToOptimize(). |
|
from all sources to all direct non-inputs parents of the path inputs-->outputs
Definition at line 1064 of file VarArray.cc. References nonInputParentsOfPath(), propagationPath(), and PLearn::TVec< Var >::size(). Referenced by PLearn::Optimizer::build_(), PLearn::Function::build_(), and PLearn::Optimizer::setToOptimize(). |
|
Definition at line 85 of file QuadraticUtilityCostFunction.h. |
|
Definition at line 413 of file StatsIterator.h. |
|
Performs a random permutation of all the rows of the SDB (same algorithm as Mat::shuffle).
Definition at line 954 of file SimpleDB.cc. References endl(), PLearn::SimpleDB< KeyType, QueryResult >::getInRow(), PLearn::SimpleDB< KeyType, QueryResult >::getSchema(), PLearn::SimpleDB< KeyType, QueryResult >::length(), PLearn::SimpleDB< KeyType, QueryResult >::setRow(), and uniform_sample(). |
|
Splits the dataset d into 3 subsets (similar to above).
Definition at line 131 of file Splitter.cc. References split(). |
|
Splits the dataset d into a train and a test subset randomly picking which samples should be in each subset. (test_fraction has the same meaning a sabove). Return the permuted indices (the last ntest of which are the test indices and the remainder are the train indices). Definition at line 104 of file Splitter.cc. References PLearn::VMat::length(), PLearn::VMat::rows(), shuffleElements(), and PLearn::TVec< T >::subVec(). |
|
Definition at line 1099 of file PStream.h. References x. |
|
|
|
Definition at line 118 of file RealMapping.h. References PLearn::RealRange::read(). Referenced by cross_valid(), getDatasetAliases(), PLearn::RowMapSparseMatrix< real >::load(), PLearn::NumToStringMapping::load(), PLearn::Variable::oldread(), PLearn::StatsCollector::oldread(), PLearn::PStream::operator>>(), PLearn::RowMapSparseMatrix< real >::read(), PLearn::PStream::read(), PLearn::NumToStringMapping::read(), readField(), train_and_test(), and PLearn::pl_fdstreambuf::underflow(). |
|
|
|
|
|
Definition at line 104 of file pl_io.cc. References binread(), and mode. Referenced by binread_compressed(). |
|
DEPRECATED DO NOT USE! compressed vec to and from memory.
Definition at line 463 of file pl_io.cc. References mode. Referenced by compressedTransposeProductAcc(), and uncompress_vec(). |
|
Definition at line 164 of file pl_io_deprecated.h. References read_double(). |
|
Definition at line 429 of file pl_io_deprecated.cc. References reverse_double(). Referenced by read_double(). |
|
Definition at line 162 of file pl_io_deprecated.h. References read_float(). |
|
Definition at line 416 of file pl_io_deprecated.cc. References reverse_float(). Referenced by read_float(). |
|
The following calls read a single value from the file, assuming it is in the specified representation (either little or big endian) If necessary the representation is translated to the endianness used on the current architecture. Definition at line 158 of file pl_io_deprecated.h. References read_int(). |
|
Reads binary data from a file assuming it is in the specified representation (either little or big endian) If necessary the representation is translated to the endianness on the current architecture.
Definition at line 390 of file pl_io_deprecated.cc. References reverse_int(). Referenced by read_int(), and read_uint(). |
|
Definition at line 170 of file pl_io_deprecated.h. Referenced by PLearn::VecCompressor::readCompressedVec(). |
|
Definition at line 160 of file pl_io_deprecated.h. References read_short(). |
|
Definition at line 403 of file pl_io_deprecated.cc. References reverse_short(). Referenced by read_short(), and read_ushort(). |
|
Definition at line 176 of file pl_io_deprecated.h. |
|
Definition at line 166 of file pl_io_deprecated.h. References read_uint(). |
|
Definition at line 148 of file pl_io_deprecated.h. References read_int(). Referenced by read_uint(). |
|
Definition at line 168 of file pl_io_deprecated.h. References read_ushort(). |
|
Definition at line 150 of file pl_io_deprecated.h. References read_short(). Referenced by read_ushort(). |
|
Will return the text, macro processed, with each instance of ${varname} in the text that corresponds to a key in the given map replaced by its associated value. Also every $DEFINE{varname=... } in the text will add a new varname entry in the map. (The DEFINE macro will be discarded) Also every $INCLUDE{filepath} will be replaced in place by the text of the file it includes Definition at line 630 of file fileutils.cc. References c_str(), chdir(), endl(), extract_directory(), extract_filename(), getAfterSkipBlanksAndComments(), getcwd(), peekAfterSkipBlanksAndComments(), pl_isnumber(), PLERROR, readFileAndMacroProcess(), readWhileMatches(), removeblanks(), skipBlanksAndComments(), smartReadUntilNext(), toint(), tostring(), and val. Referenced by readFileAndMacroProcess(). |
|
readField with a default value when the field is not found
Definition at line 257 of file pl_io_deprecated.h. References read(), readFieldName(), and x. |
|
Definition at line 226 of file pl_io_deprecated.h. References read(), readFieldName(), and x. Referenced by PLearn::VMatrix::oldread(), PLearn::QuantilesStatsIterator::oldread(), PLearn::LiftStatsIterator::oldread(), PLearn::SharpeRatioStatsIterator::oldread(), PLearn::StderrStatsIterator::oldread(), PLearn::StddevStatsIterator::oldread(), PLearn::ExpMeanStatsIterator::oldread(), PLearn::MeanStatsIterator::oldread(), PLearn::StatsIterator::oldread(), PLearn::StatsCollector::oldread(), PLearn::Optimizer::oldread(), PLearn::Learner::oldread(), and PLearn::RowMapSparseMatrix< real >::read(). |
|
consumes "fieldname: " if possible, and return true if it does however if force=true and fieldname is not found then call error.
Definition at line 95 of file pl_io_deprecated.cc. References PLERROR, and PLearn::pl_streambuf::seekmark(). Referenced by binreadField(), binreadField_double(), PLearn::StatsCollector::oldread(), and readField(). |
|
Definition at line 203 of file fileutils.h. References readFileAndMacroProcess(). |
|
Same as readAndMacroProcess, but takes a filename instead of an istream The following variables are automatically set from the filepath: FILEPATH DIRPATH FILENAME FILEBASE FILEEXT. Ex: if the absolute path to filepath is /home/me/foo.plearn Then we'll get: FILEPATH = "/home/me/foo.plearn" DIRPATH = "/home/me" FILENAME = "foo.plearn" FILEBASE = "foo" FILEEXT = ".plearn" Definition at line 585 of file fileutils.cc. References abspath(), extract_directory(), extract_extension(), extract_filename(), PLERROR, readAndMacroProcess(), remove_extension(), and remove_trailing_slash(). Referenced by PLearn::VVMatrix::build_(), PLearn::VVMatrix::createPreproVMat(), getDataSet(), PLearn::VVMatrix::getDateOfVMat(), macroLoadObject(), readAndMacroProcess(), readFileAndMacroProcess(), PLearn::RunCommand::run(), and PLearn::ReadAndWriteCommand::run(). |
|
consumes "</ClassName>\n"
Definition at line 81 of file pl_io_deprecated.cc. References PLERROR. Referenced by PLearn::VMatrix::oldread(), PLearn::QuantilesStatsIterator::oldread(), PLearn::LiftStatsIterator::oldread(), PLearn::MaxStatsIterator::oldread(), PLearn::MinStatsIterator::oldread(), PLearn::SharpeRatioStatsIterator::oldread(), PLearn::StderrStatsIterator::oldread(), PLearn::StddevStatsIterator::oldread(), PLearn::ExpMeanStatsIterator::oldread(), PLearn::MeanStatsIterator::oldread(), PLearn::StatsIterator::oldread(), PLearn::StatsCollector::oldread(), PLearn::Optimizer::oldread(), PLearn::Learner::oldread(), PLearn::RowMapSparseMatrix< real >::read(), and PLearn::RealMapping::read(). |
|
consumes "<ClassName:version>\n and returns version"
Definition at line 61 of file pl_io_deprecated.cc. References header, PLERROR, and toint(). Referenced by PLearn::VMatrix::oldread(), PLearn::QuantilesStatsIterator::oldread(), PLearn::LiftStatsIterator::oldread(), PLearn::MaxStatsIterator::oldread(), PLearn::MinStatsIterator::oldread(), PLearn::SharpeRatioStatsIterator::oldread(), PLearn::StderrStatsIterator::oldread(), PLearn::StddevStatsIterator::oldread(), PLearn::ExpMeanStatsIterator::oldread(), PLearn::MeanStatsIterator::oldread(), PLearn::StatsIterator::oldread(), PLearn::StatsCollector::oldread(), PLearn::Optimizer::oldread(), PLearn::Learner::oldread(), PLearn::RowMapSparseMatrix< real >::read(), and PLearn::RealMapping::read(). |
|
Definition at line 700 of file PStream.h. References PLearn::PStream::get(), PLearn::PStream::peek(), PLERROR, PLearn::PStream::skipBlanksAndCommentsAndSeparators(), and val. Referenced by operator>>(). |
|
Reads next character and issues an error if it's not a newline.
Definition at line 200 of file pl_io_deprecated.h. References PLERROR. Referenced by PLearn::StatsCollector::oldread(). |
|
Definition at line 592 of file Object.h. References readObject(). |
|
This function builds an object from its representation in the stream. It understands several representations:
Definition at line 367 of file Object.cc. References PLearn::PStream::_do_not_use_this_method_rawin_(), PLearn::PStream::copies_map_in, fname, PLearn::PStream::get(), PLearn::PStream::getline(), loadObject(), PLearn::Object::newread(), PLearn::PStream::peek(), PLearn::PStream::pl_rdbuf(), PLERROR, PLearn::Object::read(), removeblanks(), PLearn::pl_streambuf::seekmark(), and PLearn::PStream::skipBlanksAndCommentsAndSeparators(). Referenced by loadObject(), macroLoadObject(), newObject(), operator>>(), readObject(), PLearn::RunCommand::run(), and PLearn::ReadAndWriteCommand::run(). |
|
This reads into a sequence. For this to work with the current implementation, the SequenceType must have:
Definition at line 977 of file PStream.h. References BIG_ENDIAN_ORDER, binread_(), byte_order(), endianswap(), PLearn::PStream::eof(), PLearn::PStream::get(), PLearn::PStream::inmode, LITTLE_ENDIAN_ORDER, PLearn::PStream::peek(), PLERROR, PLearn::PStream::read(), PLearn::PStream::skipBlanks(), PLearn::PStream::skipBlanksAndComments(), PLearn::PStream::skipBlanksAndCommentsAndSeparators(), and x. Referenced by operator>>(), and PLearn::TVec< pair< real, real > >::read(). |
|
Definition at line 1137 of file PStream.h. References PLearn::PStream::get(), PLearn::PStream::peek(), PLERROR, PLearn::PStream::skipBlanksAndCommentsAndSeparators(), and val. Referenced by operator>>(). |
|
Reads while the characters read exactly match those in s Will throw a PLERROR exception as soon as it doesn't match.
Definition at line 405 of file fileutils.cc. References PLERROR. Referenced by readAndMacroProcess(). |
|
Definition at line 67 of file GhostScript.cc. Referenced by PLearn::GhostScript::setcolor(), and PLearn::GhostScript::writeBitmapHexString24Bits(). |
|
Rebalance the input VMatrix so that each class has a probability 1/nclasses. Also, the return VMat class alternates between all classes cyclicly. The resulting VMat is a SelectRowsFileIndexVMatrix which has its IntVecFile load if filename already exist, or computed if not. Definition at line 1063 of file VMat_maths.cc. References binary_search(), PLearn::Array< T >::clear(), PLearn::TMat< T >::column(), PLearn::TVec< T >::data(), file_exists(), PLearn::VMat::lastColumn(), PLearn::TVec< T >::length(), PLERROR, PLearn::IntVecFile::put(), PLearn::TVec< T >::resize(), PLearn::VMat::rows(), sortRows(), PLearn::VMat::toMat(), and PLearn::TMat< T >::toVecCopy(). |
|
Allows one to redeclare an option differently (e.g. in a subclass, after calling inherited::declareOptions).
Definition at line 129 of file Option.h. References PLERROR. Referenced by PLearn::UnconditionalDistribution::declareOptions(), PLearn::SpectralClustering::declareOptions(), PLearn::RemoveDuplicateVMatrix::declareOptions(), PLearn::LLE::declareOptions(), PLearn::KernelPCA::declareOptions(), PLearn::Isomap::declareOptions(), PLearn::GramVMatrix::declareOptions(), PLearn::BootstrapVMatrix::declareOptions(), and PLearn::AutoVMatrix::declareOptions(). |
|
Definition at line 156 of file databases.cc. References PLearn::VMat::length(), and PLearn::VMat::subMatRows(). |
|
Definition at line 148 of file databases.cc. References endl(), PLearn::VMat::subMatColumns(), and PLearn::VMat::width(). |
|
Applies a regularizer : diag(A) += (tolerance * trace(A)).
Definition at line 3434 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and trace(). Referenced by PLearn::ReconstructionWeightsKernel::reconstruct(), and smartInitialization(). |
|
remaps classnums to {0,1} or to {-1,+1}
Definition at line 164 of file databases.cc. References PLearn::VMat::length(), and PLearn::VMat::width(). |
|
Definition at line 105 of file RemapLastColumnVMatrix.h. |
|
Definition at line 102 of file RemapLastColumnVMatrix.h. Referenced by loadClassificationDataset(). |
|
return vector with all instances of element removed
Definition at line 517 of file stringutils.cc. Referenced by PLearn::TVec< pair< real, real > >::removeSorted(), and PLearn::Set::replace(). |
|
In a multiline text, removes everything starting at commentstart pattern until the end of line.
Definition at line 484 of file stringutils.cc. Referenced by getModelAliases(). |
|
Return the filename withoug the extension (i.e. removing the last.
Definition at line 178 of file stringutils.cc. Referenced by PLearn::MatlabInterface::eigs_r11(), getDataSet(), matlabR11eigs(), readFileAndMacroProcess(), and use(). |
|
Definition at line 1358 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), is_missing(), PLearn::TVec< T >::length(), and PLearn::TVec< T >::resize(). Referenced by PLearn::SequentialModelSelector::paired_t_test(), and PLearn::SequentialModelSelector::train(). |
|
removes any trailing '/' from the path
Definition at line 246 of file stringutils.cc. References slash_char. Referenced by PLearn::VVMatrix::createPreproVMat(), PLearn::DiskVMatrix::DiskVMatrix(), force_mkdir(), PLearn::VVMatrix::getPrecomputedDataName(), PLearn::VVMatrix::isPrecomputedAndUpToDate(), locateDatasetAliasesDir(), lsdir_fullpath(), newFilename(), and readFileAndMacroProcess(). |
|
removes all blanks '
Definition at line 225 of file stringutils.cc. Referenced by PLearn::StatSpec::parseStatname(). |
|
removes starting and ending blanks '
Definition at line 204 of file stringutils.cc. Referenced by PLearn::VVMatrix::build_(), PLearn::AsciiVMatrix::build_(), PLearn::VVMatrix::createPreproVMat(), PLearn::VVMatrix::extractSourceMatrix(), PLearn::VVMatrix::generateVMatIndex(), getDataSet(), getDatasetAliases(), getModelAliases(), PLearn::Object::getOption(), loadAscii(), loadAsciiSingleBinaryDescriptor(), makeExplicitPath(), PLearn::Object::newread(), pl_isnumber(), PLearn::VMatLanguage::preprocess(), PLearn::VVMatrix::processJoinSection(), PLearn::RealMapping::read(), readAndMacroProcess(), readObject(), PLearn::VMatrix::resolveFieldInfoLink(), PLearn::StringTable::StringTable(), and viewVMat(). |
|
returns a new mat which is m with the given column removed if the column to remove is the first or the last one, then a submatrix (a view) of m will be returned (for efficiency) otherwise, it is a fresh copy with the column removed.
Definition at line 566 of file TMat_impl.h. References hconcat(), PLearn::TMat< T >::subMatColumns(), and PLearn::TMat< T >::width(). |
|
Definition at line 2889 of file WordNetOntology.cc. Referenced by PLearn::WordNetOntology::extractOntology(), and PLearn::WordNetOntology::getSynsetWords(). |
|
if the element to remove is the first or the last one, then a submatrix (a view) of m will be returned (for efficiency) otherwise, it is a fresh copy with the element removed.
Definition at line 238 of file TMat_impl.h. References concat(), PLearn::TVec< T >::length(), and PLearn::TVec< T >::subVec(). |
|
removes any trailing '
Definition at line 238 of file stringutils.cc. Referenced by addprepostfix(), PLearn::AsciiVMatrix::build_(), and pgetline(). |
|
Definition at line 105 of file RemoveRowsVMatrix.h. References Vec. |
|
returns a new mat which is m with the given row removed if the row to remove is the first or the last one, then a submatrix (a view) of m will be returned (for efficiency) otherwise, it is a fresh copy with the row removed.
Definition at line 554 of file TMat_impl.h. References PLearn::TMat< T >::length(), PLearn::TMat< T >::subMatRows(), and vconcat(). Referenced by PLearn::Learner::computeLeaveOneOutCosts(). |
|
Definition at line 102 of file RemoveRowsVMatrix.h. |
|
Definition at line 2907 of file WordNetOntology.cc. |
|
Definition at line 83 of file ReshapeVariable.h. |
|
Definition at line 72 of file pl_io_deprecated.h. References endianswap(). Referenced by fread_double(), fwrite_double(), PLearn::SimpleDB< KeyType, QueryResult >::memoryToDisk(), read_double(), and write_double(). |
|
Definition at line 71 of file pl_io_deprecated.h. References endianswap(). Referenced by fread_float(), fwrite_float(), loadCorelDatamat(), PLearn::SimpleDB< KeyType, QueryResult >::memoryToDisk(), read_float(), and write_float(). |
|
Definition at line 70 of file pl_io_deprecated.h. References endianswap(). Referenced by fread_int(), fwrite_int(), PLearn::SimpleDB< KeyType, QueryResult >::memoryToDisk(), PLearn::FilesIntStream::read_current(), read_int(), and write_int(). |
|
Definition at line 74 of file pl_io_deprecated.h. References endianswap(). Referenced by PLearn::SimpleDB< KeyType, QueryResult >::memoryToDisk(), read_short(), and write_short(). |
|
NOTE: these calls are deprecated, use directly endianswap from base/byte_order.h.
Definition at line 69 of file pl_io_deprecated.h. References endianswap(). |
|
Definition at line 73 of file pl_io_deprecated.h. References endianswap(). Referenced by fread_short(). |
|
These are used to pack and unpack r,g,b triplets to and from a single real. As usual in postscript, r,g and b are values between 0 and 1 indicating quantity of light. Definition at line 59 of file GhostScript.cc. Referenced by color(). |
|
Definition at line 64 of file stringutils.cc. Referenced by PLearn::SoftSlopeVariable::bprop(), PLearn::SoftSlopeIntegralVariable::bprop(), PLearn::HardSlopeVariable::bprop(), d_hard_slope(), d_soft_slope(), PLearn::SoftSlopeVariable::fprop(), PLearn::SoftSlopeIntegralVariable::fprop(), PLearn::HardSlopeVariable::fprop(), hard_slope(), PLearn::HardSlopeVariable::HardSlopeVariable(), PLearn::PDateTime::info(), PLearn::PDate::info(), operator<(), operator<=(), operator>(), operator>=(), soft_slope(), soft_slope_integral(), soft_slope_limit(), PLearn::SoftSlopeIntegralVariable::SoftSlopeIntegralVariable(), PLearn::SoftSlopeVariable::SoftSlopeVariable(), split_on_first(), tabulated_soft_slope(), tabulated_soft_slope_integral(), and PLearn::UnaryHardSlopeVariable::UnaryHardSlopeVariable(). |
|
Definition at line 76 of file RightPseudoInverseVariable.h. |
|
Definition at line 4686 of file TMat_maths_impl.h. References inverse(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4676 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), and PLearn::TMat< T >::width(). Referenced by PLearn::RightPseudoInverseVariable::fprop(), and PLearn::ProductRandomVariable::invertible(). |
|
calls system rm command with string file as parameters
Definition at line 364 of file fileutils.cc. Referenced by PLearn::VVMatrix::createPreproVMat(), PLearn::VVMatrix::generateFilterIndexFile(), PLearn::VVMatrix::generateVMatIndex(), PLearn::FilteredVMatrix::openIndex(), PLearn::RealMapping::operator==(), PLearn::VMatrix::saveStringMappings(), PLearn::VMatrix::setSFIFFilename(), PLearn::VMatrix::unlockMetaDataDir(), PLearn::PrecomputedVMatrix::usePrecomputed(), and vmatmain(). |
|
Definition at line 4119 of file TMat_maths_impl.h. References argmax(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4130 of file TMat_maths_impl.h. References argmin(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
returns a view of this vector as a single row matrix
Definition at line 734 of file TMat_impl.h. References PLearn::TVec< T >::length(), and PLearn::TVec< T >::toMat(). Referenced by product(), transposeProduct(), PLearn::GaussMix::updateFromConditionalSorting(), and PLearn::VVec::VVec(). |
|
Definition at line 4085 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), max(), and PLERROR. |
|
Definition at line 4074 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), max(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4036 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), mean(), PLERROR, and PLearn::TMat< T >::width(). Referenced by computeColumnsMeanAndStddev(). |
|
Definition at line 4108 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), min(), and PLERROR. |
|
Definition at line 4096 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), min(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 73 of file RowSumVariable.h. |
|
Definition at line 4025 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, and sum(). |
|
all the operations below result in a column vector and are obtained by iterating (e.g. summing) over the column index, e.g. yielding the sum of each row in the result. Definition at line 4013 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLERROR, sum(), and PLearn::TMat< T >::width(). Referenced by PLearn::KernelProjection::computeOutput(), PLearn::TimesColumnVariable::symbolicBprop(), PLearn::PlusColumnVariable::symbolicBprop(), PLearn::MinusColumnVariable::symbolicBprop(), and PLearn::DuplicateColumnVariable::symbolicBprop(). |
|
Definition at line 4058 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 4047 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLERROR, variance(), and PLearn::TMat< T >::width(). Referenced by computeColumnsMeanAndStddev(). |
|
Definition at line 84 of file pl_math.cc. References exp(). Referenced by PLearn::SoftmaxLossVariable::bprop(), PLearn::MatrixSoftmaxLossVariable::bprop(), PLearn::LogSoftmaxVariable::bprop(), PLearn::LogAddVariable::bprop(), PLearn::GraphicalBiText::compute_likelihood(), PLearn::MultiInstanceNNet::computeCostsFromOutputs(), PLearn::MixtureRandomVariable::EMBprop(), exp(), PLearn::SoftmaxLossVariable::fprop(), PLearn::MatrixSoftmaxVariable::fprop(), PLearn::MatrixSoftmaxLossVariable::fprop(), PLearn::ExpVariable::fprop(), PLearn::SoftmaxLossVariable::rfprop(), and softmax(). |
|
Definition at line 106 of file pl_math.cc. References safeflog(). |
|
Definition at line 75 of file pl_math.cc. References log(), and PLERROR. Referenced by PLearn::GaussianProcessRegressor::BayesianCost(), PLearn::PowVariableVariable::bprop(), PLearn::PLogPVariable::bprop(), PLearn::MultiInstanceNNet::computeCostsFromOutputs(), PLearn::MultinomialRandomVariable::EMUpdate(), PLearn::MixtureRandomVariable::EMUpdate(), PLearn::DiagonalNormalRandomVariable::EMUpdate(), PLearn::NegLogProbCostFunction::evaluate(), PLearn::SemiSupervisedProbClassCostVariable::fprop(), PLearn::PLogPVariable::fprop(), PLearn::LogVariable::fprop(), safeflog(), safeflog2(), and PLearn::AdaBoost::train(). |
|
Definition at line 111 of file pl_math.cc. References LOG_2, and safeflog(). Referenced by PLearn::GraphicalBiText::computeKL(). |
|
Definition at line 912 of file TMat_maths_impl.h. References compute_safelog(), and PLearn::TVec< T >::length(). Referenced by compute_safelog(). |
|
Definition at line 448 of file ProbabilitySparseMatrix.h. References PLearn::Set::begin(), PLearn::Set::end(), PLearn::ProbabilitySparseMatrix::exists(), PLearn::ProbabilitySparseMatrix::getPyX(), PLERROR, SetIterator, x, and PLearn::ProbabilitySparseMatrix::Y. |
|
Return a Var which depends functionally on the RHS instances and the value of other RandomVars which are non-random and influence the LHS. Definition at line 701 of file RandomVar.cc. References PLearn::ConditionalExpression::LHS, PLearn::ConditionalExpression::RHS, and PLearn::RVInstance::V. Referenced by PLearn::RandomVarVMatrix::RandomVarVMatrix(), and sample(). |
|
Sample N instances from the given conditional expression, of the form (LHS|RHS) where LHS is a RandomVar and RHS is a RVInstanceArray, e.g. (X==x && Z==z && W==w). Put the N instances in the rows of the given Nxd matrix. THIS ALSO SHOWS HOW TO REPEATEDLY SAMPLE IN AN EFFICIENT MANNER (rather than call "Vec sample(ConditionalExpression)"). Definition at line 677 of file RandomVar.cc. References PLearn::VarArray::fprop(), PLearn::TMat< T >::length(), and Sample(). |
|
Sample an instance from the given conditional expression, of the form (LHS|RHS) where LHS is a RandomVar and RHS is a RVInstanceArray, e.g. (X==x && Z==z && W==w). Definition at line 664 of file RandomVar.cc. References Sample(). Referenced by PLearn::GraphicalBiText::GraphicalBiText(), PLearn::RGBImageVMatrix::sample(), PLearn::GaussMix::train(), and PLearn::VMatrixFromDistribution::VMatrixFromDistribution(). |
|
If necessary, missing directories along the filepath will be created.
Definition at line 1183 of file PStream.h. References force_mkdir_for_file(), PLERROR, and x. Referenced by PLearn::GaussianContinuum::compute_train_and_validation_costs(), cross_valid(), PLearn::GaussianContinuum::get_image_matrix(), PLearn::VMatrix::getRanges(), PLearn::VMatrix::getStats(), PLearn::LearnerCommand::LearnerCommand(), PLearn::GaussianContinuum::make_random_walk(), PLearn::Learner::measure(), PLearn::PTester::perform(), PLearn::VMat::precompute(), PLearn::Train::run(), PLearn::SequentialValidation::run(), PLearn::Grapher::run(), PLearn::GenerateDecisionPlot::run(), PLearn::Experiment::run(), PLearn::WordNetOntology::save(), PLearn::Object::save(), PLearn::RowMapSparseMatrix< real >::saveAscii(), PLearn::Learner::stop_if_wanted(), PLearn::LearnerCommand::test(), PLearn::NeuralNet::train(), PLearn::LearnerCommand::train(), PLearn::GaussianContinuum::train(), PLearn::AdaBoost::train(), and train_and_test(). |
|
first number in file is length
Definition at line 464 of file MatIO.h. References PLearn::TVec< T >::begin(), PLearn::TVec< T >::end(), endl(), PLearn::TVec< T >::length(), and PLERROR. |
|
Definition at line 431 of file MatIO.h. References saveAscii(). |
|
Definition at line 437 of file MatIO.h. References endl(), k, PLearn::TMat< T >::length(), PLERROR, PLearn::TVec< T >::size(), space_to_underscore(), and PLearn::TMat< T >::width(). Referenced by PLearn::Grapher::plot_1D_regression(), PLearn::SequentialValidation::reportStats(), and saveAscii(). |
|
Definition at line 855 of file MatIO.cc. References PLearn::TMat< T >::length(), PLERROR, and pretty_print_number(). |
|
Definition at line 816 of file MatIO.cc. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and pretty_print_number(). Referenced by PLearn::SequentialModelSelector::test(), and PLearn::SequentialModelSelector::train(). |
|
Definition at line 597 of file MatIO.cc. References PLearn::TMat< T >::length(), and PLERROR. |
|
Definition at line 584 of file MatIO.cc. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::Gnuplot::multiplot(), PLearn::Gnuplot::plot(), PLearn::Gnuplot::plot3d(), and plotVMats(). |
|
Definition at line 804 of file TMat_impl.h. References PLERROR. |
|
Definition at line 361 of file MatIO.cc. References DATAFILE_HEADERLENGTH, header, PLearn::TMat< T >::length(), PLERROR, strlen(), and PLearn::TMat< T >::width(). |
|
Definition at line 329 of file MatIO.cc. References DATAFILE_HEADERLENGTH, header, PLearn::TMat< T >::length(), PLERROR, strlen(), and PLearn::TMat< T >::width(). Referenced by PLearn::TMat< pair< real, real > >::save(). |
|
Definition at line 133 of file TVec_impl.h. References PLERROR. |
|
Definition at line 193 of file MatIO.cc. References PLearn::TVec< T >::data(), DATAFILE_HEADERLENGTH, header, PLearn::TVec< T >::length(), PLERROR, and strlen(). |
|
Old native PLearn binary format (.pmat).
Definition at line 160 of file MatIO.cc. References PLearn::TVec< T >::data(), DATAFILE_HEADERLENGTH, header, PLearn::TVec< T >::length(), PLERROR, and strlen(). Referenced by PLearn::TVec< pair< real, real > >::save(). |
|
Definition at line 899 of file MatIO.cc. References fwrite_float(), fwrite_int(), PLearn::TMat< T >::length(), and PLearn::TMat< T >::width(). |
|
Definition at line 954 of file MatIO.cc. References PLearn::TVec< T >::data(), fwrite_float(), fwrite_int(), PLearn::TVec< T >::length(), and PLERROR. |
|
Writes the raw string into the given file Intermediate directories in filepath are created if necessary.
Definition at line 348 of file fileutils.cc. References force_mkdir_for_file(), and PLERROR. Referenced by PLearn::PTester::perform(), and PLearn::SequentialValidation::run(). |
|
replaces all occurences of searchstr in the text by replacestr returns the number of matches that got replaced
Definition at line 366 of file stringutils.cc. |
|
initializes the random number generator with the cpu time Definition at line 195 of file random.cc. References manual_seed(). Referenced by PLearn::RepeatSplitter::build_(), PLearn::EmpiricalDistribution::EmpiricalDistribution(), PLearn::AdaBoost::forget(), PLearn::VVMatrix::generateVMatIndex(), get_seed(), PLearn::TangentLearner::initializeParams(), PLearn::NNet::initializeParams(), PLearn::NeuralNet::initializeParams(), PLearn::NeighborhoodSmoothnessNNet::initializeParams(), PLearn::MultiInstanceNNet::initializeParams(), PLearn::GaussianContinuum::initializeParams(), PLearn::ConditionalDensityNet::initializeParams(), old_plearn_main(), plearn_main(), and PLearn::RepeatSplitter::RepeatSplitter(). |
|
|
|
Definition at line 473 of file TMat_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by eigenSparseNonSymmMat(), eigenSparseSymmMat(), PLearn::TMat< pair< real, real > >::operator()(), and PLearn::GraphicalBiText::test_WSD(). |
|
Definition at line 3584 of file TMat_maths_impl.h. References PLearn::TMat< T >::column(), PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::swapRows(), PLearn::TMat< T >::width(), and x. |
|
find the element at position pos that would result from a sort and put all elements (not in order!) lower than v[pos] in v[i<pos].
Definition at line 1890 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, swap(), and x. Referenced by PLearn::LiftStatsCollector::finalize(), and PLearn::LiftStatsIterator::finish(). |
|
Definition at line 445 of file TMat_impl.h. References PLearn::TMat< T >::column(), PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::TMat< pair< real, real > >::columns(). |
|
select the elements of the source as specified by the vector of indices (between 0 and source.length()-1) into the destination vector (which must have the same length() as the indices vector). Definition at line 161 of file TMat_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::TVec< pair< real, real > >::operator()(). |
|
Definition at line 418 of file TMat_impl.h. References PLearn::TVec< T >::data(), PLearn::TMat< T >::length(), PLearn::TVec< T >::length(), and PLERROR. Referenced by PLearn::TMat< pair< real, real > >::rows(). |
|
Referenced by lapack_Xgesdd_(). |
|
Referenced by lapackSolveLinearSystem(). |
|
Referenced by matInvert(). |
|
Referenced by matInvert(). |
|
exponential of the mean
Definition at line 416 of file StatsIterator.h. |
|
returns a SelectRowsVMatrix that has d's rows shuffled
Definition at line 775 of file VMat_maths.cc. References PLearn::VMat::length(), PLearn::VMat::rows(), and shuffleElements(). Referenced by PLearn::BootstrapVMatrix::BootstrapVMatrix(), and PLearn::RepeatSplitter::RepeatSplitter(). |
|
randomly shuffle the entries of the TVector
Definition at line 145 of file random.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and uniform_sample(). Referenced by bootstrap(), PLearn::TrainValidTestSplitter::build_(), PLearn::SelectInputSubsetLearner::build_(), PLearn::RepeatSplitter::build_(), PLearn::BootstrapVMatrix::build_(), PLearn::VVMatrix::generateVMatIndex(), randomSplit(), shuffle(), and split(). |
|
Definition at line 164 of file random.h. References PLearn::TMat< T >::length(), PLearn::TMat< T >::swapRows(), and uniform_sample(). Referenced by computeRanks(), input2dSet(), loadATT800(), loadBreastCancer(), loadBreastCancerWisconsin(), loadCorel(), loadDiabetes(), loadIonosphere(), loadLetters(), loadPimaIndians(), and loadSonar(). |
|
Definition at line 73 of file SigmoidVariable.h. |
|
Definition at line 995 of file TMat_maths_impl.h. References compute_sigmoid(), and PLearn::TVec< T >::length(). |
|
numerically stable version of sigmoid(x) = 1.0/(1.0+exp(-x))
Definition at line 270 of file pl_math.h. Referenced by PLearn::SoftSlopeVariable::bprop(), PLearn::SoftplusVariable::bprop(), PLearn::NegCrossEntropySigmoidVariable::bprop(), PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), PLearn::ConditionalDensityNet::build_(), compute_sigmoid(), d_soft_slope(), PLearn::SigmoidalKernel::evaluate(), PLearn::LiftBinaryCostFunction::evaluate(), PLearn::SigmoidVariable::fprop(), PLearn::NegCrossEntropySigmoidVariable::fprop(), softmax(), PLearn::SoftplusVariable::symbolicBprop(), and PLearn::ConditionalDensityNet::train(). |
|
Definition at line 72 of file SignVariable.h. |
|
Definition at line 92 of file pl_math.h. Referenced by PLearn::SignVariable::fprop(). |
|
will skip all blanks (white space, newline and #-style comments) Next character read will be first "non-blank"
Definition at line 434 of file fileutils.cc. References skipRestOfLine(). Referenced by PLearn::MultiInstanceVMatrix::build_(), getAfterSkipBlanksAndComments(), loadAscii(), loadAsciiSingleBinaryDescriptor(), peekAfterSkipBlanksAndComments(), and readAndMacroProcess(). |
|
skips everything until '
Definition at line 427 of file fileutils.cc. Referenced by PLearn::VMatLanguage::preprocess(), and skipBlanksAndComments(). |
|
Definition at line 150 of file pl_math.cc. Referenced by positive_dilogarithm(). |
|
Definition at line 79 of file GaussianContinuum.cc. References PLearn::TMat< T >::clear(), PLearn::VMat::length(), regularizeMatrix(), solveLinearSystem(), uniform_multinomial_sample(), and PLearn::VMat::width(). Referenced by PLearn::TangentLearner::initializeParams(). |
|
same as PStream's method smartReadUntilNext, but for istream
Definition at line 491 of file fileutils.cc. References PLearn::PStream::smartReadUntilNext(). Referenced by getModelAliases(), readAndMacroProcess(), and PLearn::PStream::smartReadUntilNext(). |
|
Definition at line 5494 of file TMat_maths_impl.h. References k, PLearn::TMat< T >::length(), and PLearn::TMat< T >::width(). |
|
Definition at line 595 of file databases.cc. References k, and PLearn::TMat< T >::length(). Referenced by loadCorel(). |
|
Referenced by eigenSparseNonSymmMat(). |
|
Referenced by eigenSparseNonSymmMat(). |
|
Definition at line 81 of file SoftSlopeVariable.h. |
|
Definition at line 349 of file pl_math.h. References hard_slope(), left(), right(), softplus(), and x. Referenced by PLearn::SoftSlopeVariable::bprop(), PLearn::ConditionalDensityNet::build_(), PLearn::SoftSlopeVariable::fprop(), and PLearn::ConditionalDensityNet::train(). |
|
Definition at line 80 of file SoftSlopeIntegralVariable.h. |
|
Definition at line 241 of file pl_math.cc. References hard_slope_integral(), left(), right(), and softplus_primitive(). Referenced by PLearn::ConditionalDensityNet::build_(), and PLearn::SoftSlopeIntegralVariable::fprop(). |
|
Definition at line 91 of file SoftSlopeVariable.h. References left(), PLearn::Var::length(), PLERROR, right(), PLearn::Var::width(), and x. Referenced by PLearn::ConditionalDensityNet::build_(). |
|
< should be numerically more stable Definition at line 66 of file Var_utils.cc. |
|
Definition at line 75 of file SoftmaxVariable.h. |
|
Definition at line 79 of file SoftmaxLossVariable.h. |
|
a soft version of the ordinary max(x1,x2) mathematical operation where the hardness parameter controls how close to an actual max(x1,x2) we are (i.e. as hardness --> infty we quickly get max(x1,x2), but as hardness --> 0 we get the simple average of x1 and x2. Definition at line 133 of file SigmoidVariable.cc. References sigmoid(). |
|
Definition at line 1613 of file TMat_maths_impl.h. |
|
y = softmax(x)
Definition at line 76 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), max(), PLERROR, safeexp(), and x. Referenced by PLearn::LogSumVariable::bprop(), PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MixtureRandomVariable::ElogP(), PLearn::SoftmaxVariable::fprop(), PLearn::MultinomialRandomVariable::logP(), PLearn::MixtureRandomVariable::logP(), PLearn::MultinomialRandomVariable::setValueFromParentsValue(), PLearn::MixtureRandomVariable::setValueFromParentsValue(), softmax(), and PLearn::LogSumVariable::symbolicBprop(). |
|
Definition at line 72 of file SoftplusVariable.h. |
|
numerically stable computation of log(1+exp(x)) return 0.5*x + LOG_2 - log(1./cosh(0.5*x)); Definition at line 293 of file pl_math.h. Referenced by PLearn::SoftSlopeIntegralVariable::bprop(), PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::GaussianContinuum::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::SoftplusVariable::fprop(), soft_slope(), and tabulated_softplus(). |
|
Definition at line 78 of file DilogarithmVariable.h. References dilogarithm(), and exp(). |
|
Definition at line 409 of file pl_math.h. References dilogarithm(), exp(), and x. Referenced by soft_slope_integral(), and tabulated_softplus_primitive(). |
|
Returns solution x of Ax = b (same as above, except b and x are vectors).
Definition at line 350 of file plapack.cc. References PLearn::TVec< T >::length(), solveLinearSystem(), and PLearn::TVec< T >::toMat(). |
|
Returns the solution X of AX = B A and B are left intact, and the solution is returned. This call does memory allocations/deallocations and transposed copies of matrices (contrary to the lower level lapackSolveLinearSystem call that you may consider using if efficiency is a concern). Definition at line 337 of file plapack.cc. References lapackSolveLinearSystem(), PLearn::TMat< T >::length(), PLERROR, and transpose(). |
|
for matrices A such that A.length() <= A.width(), find X s.t. A X = Y Definition at line 325 of file plapack.cc. References PLERROR. Referenced by constrainedLinearRegression(), PLearn::ProductRandomVariable::EMBprop(), linearRegression(), PLearn::ReconstructionWeightsKernel::reconstruct(), smartInitialization(), solveLinearSystem(), and weightedLinearRegression(). |
|
Definition at line 4732 of file TMat_maths_impl.h. References choleskyDecomposition(), choleskySolve(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ProductRandomVariable::EMUpdate(), linearRegression(), linearRegressionNoBias(), and weightedLinearRegression(). |
|
for matrices A such that A.length() >= A.width(), find X s.t. X A = Y Definition at line 332 of file plapack.cc. References PLERROR. Referenced by PLearn::ProductRandomVariable::EMBprop(). |
|
Definition at line 4760 of file TMat_maths_impl.h. References choleskyDecomposition(), choleskySolve(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ProductRandomVariable::EMUpdate(). |
|
Definition at line 239 of file TMat_sort.h. References PLearn::TMat< T >::length(), min(), PLERROR, and PLearn::TMat< T >::width(). |
|
Sorts the elements of vec in place.
Definition at line 113 of file TMat_sort.h. References PLearn::TVec< T >::begin(), and PLearn::TVec< T >::end(). Referenced by bootstrap(), PLearn::TrainValidTestSplitter::build_(), PLearn::RemoveRowsVMatrix::build_(), PLearn::BootstrapVMatrix::build_(), displayHistogram(), PLearn::QuantilesStatsIterator::finish(), max_cdf_diff(), PLearn::Gnuplot::plotcdf(), and PLearn::Gnuplot::plotdensity(). |
|
Definition at line 83 of file StatsCollector.cc. References PairRealSCCType. Referenced by PLearn::StatsCollector::sortIds(). |
|
This implementation should be very efficient, but it does two memory allocation: a first one of mat.length()*(sizeof(real)+sizeof(int)) and a second one of mat.length()*sizeof(int). (Note: due to the implementation of the column sorting, this function always performs a STABLE SORT (in the sense of the STL stable_sort function). There is no need to explicitly call stable_sort to achieve the effect, iff increasing_order=true) Definition at line 194 of file TMat_sort.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::swapRows(). |
|
Definition at line 104 of file TMat_sort.h. References PLearn::TMat< T >::rows_as_arrays_begin(), and PLearn::TMat< T >::rows_as_arrays_end(). Referenced by PLearn::SortRowsVMatrix::build_(), PLearn::Kernel::computeNeighbourMatrixFromDistanceMatrix(), computeRanks(), PLearn::ReconstructionWeightsKernel::computeWeights(), findClosestPairsOfDifferentClass(), newIndexedMatArray(), PLearn::Grapher::plot_1D_regression(), PLearn::Gnuplot::plotClasses(), rebalanceNClasses(), PLearn::TestDependenciesCommand::run(), and PLearn::SortRowsVMatrix::sortRows(). |
|
replaces all characters <= ' ' (i.e. newline, tab, space, etc...) by '_'
Definition at line 335 of file stringutils.cc. Referenced by PLearn::AsciiVMatrix::AsciiVMatrix(), PLearn::Learner::costNames(), PLearn::SDBVMFieldRemapStrings::getDiscreteValue(), PLearn::VMatrix::saveAMAT(), saveAscii(), PLearn::Learner::testResultsNames(), PLearn::RowIterator::toString(), and PLearn::FieldValue::toString(). |
|
Compute the Spearman Rank correlation statistic. It measures how much of a monotonic dependency there is between two variables x and y (column matrices). The statistic is computed as follows: r = 1 - 6 (sum_{i=1}^n (rx_i - ry_i)^2) / (n(n^2-1)) If x and y are column matrices than r is a 1x1 matrix. If x and y have width wx and wy respectively than the statistic is computed for each pair of column (the first taken from x and the second from y) and r will be a symmetric matrix size wx by wy upon return. N.B. If x holds in memory than copying to a matrix before calling this function will speed up computation significantly. Definition at line 62 of file stats_utils.cc. References PLearn::TMat< T >::clear(), computeRanks(), endl(), k, PLearn::VMat::length(), PLERROR, PLWARNING, PLearn::TMat< T >::resize(), PLearn::VMat::toMat(), PLearn::VMat::width(), and x. Referenced by testSpearmanRankCorrelation(). |
|
Splits the dataset d into 3 subsets.
Definition at line 115 of file Splitter.cc. References endl(), PLearn::VMat::length(), PLearn::VMat::rows(), shuffleElements(), and PLearn::TVec< T >::subVec(). |
|
Splits the dataset d into a train and a test subset If test_fraction is <1.0 then the size of the test subset is set to be ntest = int(test_fraction*d.length()) If test_fraction is >=1.0 then ntest = int(test_fraction) Last argument i allows to get the ith split of a K-fold cross validation i = 0 corresponds to having the last ntest samples used as the test set i = 1 means having the ntest samples before those as the test set, etc... If the bool 'use_all' is true, then the test set may contain more examples so that if we ask all splits, all the examples are contained in one test split. Definition at line 63 of file Splitter.cc. References PLearn::VMat::length(), PLearn::VMat::subMatRows(), and vconcat(). |
|
splits a string into a list of substrings (using any sequence of the given delimiters as split point) if keepdelimiters is true the delimitersequences are appended to the list otherwise (the default) they are removed. Definition at line 399 of file stringutils.cc. |
|
splits a string along occurences of the delimiters.
Definition at line 380 of file stringutils.cc. Referenced by PLearn::SDBVMatrix::appendField(), PLearn::MultiInstanceVMatrix::build_(), PLearn::GraphicalBiText::build_(), PLearn::AsciiVMatrix::build_(), PLearn::VVMatrix::createPreproVMat(), cross_valid(), PLearn::VVMatrix::extractSourceMatrix(), PLearn::VMatLanguage::generateCode(), PLearn::VVMatrix::generateVMatIndex(), getDataSet(), PLearn::VVMatrix::getDateOfVMat(), PLearn::Dictionary::getId(), PLearn::EntropyContrast::getInfo(), getList(), getNonBlankLines(), PLearn::KFoldSplitter::getSplit(), PLearn::ShellProgressBar::getTime(), interactiveDisplayCDF(), PLearn::WordNetOntology::load(), loadAscii(), loadAsciiSingleBinaryDescriptor(), PLearn::GraphicalBiText::loadBitext(), loadClassificationDataset(), PLearn::VMatrix::loadFieldInfos(), PLearn::GraphicalBiText::loadSensemap(), main(), PLearn::GhostScript::multilineShow(), PLearn::Object::newwrite(), parseSizeFromRemainingLines(), PLearn::StatSpec::parseStatname(), plotVMats(), PLearn::VMatLanguage::preprocess(), PLearn::VVMatrix::processJoinSection(), randomSplit(), and PLearn::StringTable::StringTable(). |
|
Split the string on the first occurence of a delimiter; return a pair with the two split parts. If the splitting character is not found, the original string is returned in the first part of the pair, and "" is in the second part Definition at line 475 of file stringutils.cc. References left(), right(), and split_on_first(). |
|
Split the string on the first occurence of a delimiter and returns what was left of the delimitor and what was right of it. If no delimitor character is found, the original string is returned as left, and "" is returned in right Definition at line 459 of file stringutils.cc. References left(), and right(). Referenced by PLearn::StatSpec::parseStatname(), PLearn::RunCommand::run(), and split_on_first(). |
|
Definition at line 130 of file databases.cc. References PLearn::VMat::length(), normalize(), normalizeDataSets(), PLearn::VMat::subMatColumns(), PLearn::VMat::subMatRows(), and PLearn::VMat::width(). |
|
Definition at line 80 of file PowVariable.h. References pow(). |
|
Definition at line 5544 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), sqrt(), and PLearn::TMat< T >::width(). |
|
Definition at line 894 of file TMat_maths_impl.h. References compute_sqrt(), and PLearn::TVec< T >::length(). Referenced by affineNormalization(), autocorrelation_function(), bnldev(), PLearn::SquareRootVariable::bprop(), PLearn::ErfVariable::bprop(), choleskyDecomposition(), compute_sqrt(), computeBasicStats(), computeColumnsMeanAndStddev(), computeConditionalMeans(), computeMeanAndStddev(), PLearn::GaussMix::computeMeansAndCovariances(), PLearn::PCA::computeOutput(), PLearn::KernelProjection::computeOutput(), PLearn::GaussianContinuum::computeOutput(), correlation(), correlations(), dist(), PLearn::GhostScript::drawCross(), PLearn::DivisiveNormalizationKernel::evaluate(), PLearn::DivisiveNormalizationKernel::evaluate_i_j(), PLearn::DistanceKernel::evaluate_i_j(), PLearn::DivisiveNormalizationKernel::evaluate_i_x(), PLearn::DivisiveNormalizationKernel::evaluate_i_x_again(), PLearn::DivisiveNormalizationKernel::evaluate_x_i(), PLearn::DivisiveNormalizationKernel::evaluate_x_i_again(), PLearn::FieldStat::finalize(), PLearn::SharpeRatioStatsIterator::finish(), PLearn::StderrStatsIterator::finish(), PLearn::StddevStatsIterator::finish(), PLearn::SquareRootVariable::fprop(), gamdev(), gaussian_01(), PLearn::GaussianDistribution::generate(), PLearn::GaussMix::generateFromGaussian(), PLearn::JoinVMatrix::getNewRow(), PLearn::TangentLearner::initializeParams(), PLearn::NNet::initializeParams(), PLearn::GaussianContinuum::initializeParams(), KS_test(), PLearn::GaussianContinuum::make_random_walk(), PLearn::ConjGradientOptimizer::minCubic(), multivariate_normal(), norm(), PLearn::ScaledGradientOptimizer::optimize(), p_value(), paired_t_test(), PLearn::SequentialModelSelector::paired_t_test(), poidev(), PLearn::PCA::reconstruct(), PLearn::VMatLanguage::run(), PLearn::GaussianProcessRegressor::setInput_const(), PLearn::DiagonalNormalRandomVariable::setValueFromParentsValue(), sqrt(), squareroot(), PLearn::VMFieldStat::stddev(), PLearn::StatsCollector::stddev(), PLearn::StatsCollector::stderror(), PLearn::ErfVariable::symbolicBprop(), testNoCorrelationAsymptotically(), PLearn::GaussianProcessRegressor::train(), PLearn::EntropyContrast::train(), PLearn::AdaBoost::train(), and weighted_distance(). |
|
Definition at line 74 of file SquareVariable.h. |
|
Definition at line 5534 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), square(), and PLearn::TMat< T >::width(). |
|
Definition at line 1334 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 125 of file pl_math.h. References x. Referenced by autocorrelation_function(), PLearn::TanhVariable::bprop(), PLearn::GaussianKernel::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::EntropyContrast::compute_df_dx(), computeBasicStats(), computeConditionalMeans(), PLearn::MovingAverage::computeCostsFromOutputs(), PLearn::GaussMix::computeLogLikelihood(), PLearn::PDistribution::computeOutput(), PLearn::SquaredErrorCostFunction::evaluate(), PLearn::ScaledGaussianKernel::evaluate(), PLearn::GeodesicDistanceKernel::evaluate(), PLearn::GeodesicDistanceKernel::evaluate_i_j(), PLearn::GeodesicDistanceKernel::evaluate_i_x_again(), PLearn::GeodesicDistanceKernel::evaluate_i_x_from_distances(), PLearn::FieldStat::finalize(), PLearn::OneHotSquaredLoss::fprop(), PLearn::MatrixOneHotSquaredLoss::fprop(), logOfCompactGaussian(), PLearn::DiagonalNormalRandomVariable::logP(), norm(), pownorm(), PLearn::TanhVariable::rfprop(), PLearn::EntropyContrast::set_NNcontinuous_gradient_from_extra_cost(), square(), squareElements(), sumsquare(), PLearn::TanhVariable::symbolicBprop(), PLearn::ErfVariable::symbolicBprop(), PLearn::DivVariable::symbolicBprop(), PLearn::EntropyContrast::train(), PLearn::ConditionalStatsCollector::update(), PLearn::EntropyContrast::update_mu_sigma_f(), PLearn::GaussMix::updateFromConditionalSorting(), PLearn::VMFieldStat::variance(), and PLearn::StatsCollector::variance(). |
|
Definition at line 131 of file pl_math.cc. References x. Referenced by PLearn::DiagonalNormalRandomVariable::EMBprop(). |
|
TVec[i] += x[i]*x[i];.
Definition at line 2141 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. Referenced by PLearn::ScaledGradientOptimizer::optimize(). |
|
Definition at line 88 of file SquaredErrorCostFunction.h. |
|
Definition at line 92 of file SquaredErrorCostFunction.cc. Referenced by PLearn::LinearRegressor::train(). |
|
squares the elements of m in place
Definition at line 156 of file TMat_maths_impl.h. References PLearn::TMat< T >::begin(), PLearn::TMat< T >::compact_begin(), PLearn::TMat< T >::compact_end(), PLearn::TMat< T >::end(), PLearn::TMat< T >::isCompact(), PLearn::TMat< T >::size(), and square(). |
|
squares the elements of x in place
Definition at line 143 of file TMat_maths_impl.h. References x. |
|
Definition at line 3548 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLERROR, PLearn::TMat< T >::width(), and x. |
|
TVec[i] += x[i]*x[i]*scale;.
Definition at line 2125 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. Referenced by PLearn::DiagonalNormalRandomVariable::EMBprop(), and PLearn::ScaledGradientOptimizer::optimize(). |
|
Definition at line 2948 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::TransposeProductVariable::bbprop(). |
|
Definition at line 3106 of file TMat_maths_impl.h. References k, PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 3223 of file TMat_maths_impl.h. References k, PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::TransposeProductVariable::bbprop(). |
|
Definition at line 73 of file SquareRootVariable.h. |
|
Definition at line 1346 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and sqrt(). |
|
Tvec[i] -= x[i]*x[i];.
Definition at line 2157 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and x. Referenced by PLearn::SharpeRatioStatsIterator::finish(), and PLearn::StderrStatsIterator::finish(). |
|
Referenced by eigenSparseSymmMat(). |
|
Referenced by eigenSparseSymmMat(). |
|
Referenced by eigen_SymmMat(). |
|
Referenced by lapack_Xsyevr_(). |
|
Referenced by lapack_Xsyevx_(). |
|
Referenced by lapack_Xsygvx_(). |
|
Definition at line 83 of file NegCrossEntropySigmoidVariable.h. Referenced by PLearn::NNet::build_(), and PLearn::NeighborhoodSmoothnessNNet::build_(). |
|
Definition at line 2899 of file WordNetOntology.cc. Referenced by extractFiles(), PLearn::WordNetOntology::load(), and main(). |
|
Definition at line 409 of file StatsIterator.h. |
|
Definition at line 410 of file StatsIterator.h. Referenced by PLearn::Learner::Learner(). |
|
Definition at line 2869 of file WordNetOntology.cc. References cstr(). |
|
Definition at line 2842 of file WordNetOntology.cc. References cstr(). Referenced by PLearn::WordNetOntology::extractWord(), PLearn::WordNetOntology::isInWordNet(), main(), and PLearn::TextSenseSequenceVMatrix::permute(). |
|
make a copy of a C string and return it
Definition at line 87 of file general.cc. References strlen(). |
|
Definition at line 93 of file TypesNumeriques.cc. Referenced by compactRepresentationTranslate(). |
|
makes a C++ style vector of strings from a C style vectr of strings Note: this may be useful in conjunction with get_option.
Definition at line 564 of file stringutils.cc. Referenced by old_plearn_main(), and plearn_main(). |
|
Definition at line 68 of file FileVMatrix.cc. Referenced by PLearn::FieldValue::FieldValue(), PLearn::VVMatrix::getDateOfVMat(), hashval(), loadLetters(), loadSTATLOG(), loadUCIMLDB(), PLearn::PStream::operator<<(), savePMat(), savePVec(), strcopy(), PLearn::FileVMatrix::updateHeader(), viewVMat(), word_sequences2files_int_stream(), PLearn::PStream::write(), and PLearn::PStream::writeAsciiNum(). |
|
Student-t cumulative distribution function Definition at line 158 of file random.cc. References incomplete_beta(), and PLERROR. |
|
Definition at line 89 of file SubMatVariable.h. Referenced by PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::Var::column(), PLearn::Variable::column(), PLearn::Var::operator()(), PLearn::Var::row(), PLearn::Variable::row(), PLearn::Variable::subVec(), and PLearn::Var::subVec(). |
|
Definition at line 81 of file SubsampleVariable.h. |
|
Definition at line 5600 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), norm(), sum(), and PLearn::TMat< T >::width(). Referenced by PLearn::SubsampleVariable::fprop(). |
|
Definition at line 4574 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 1501 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, and PLearn::TVec< T >::resize(). |
|
Definition at line 1496 of file TMat_maths_impl.h. References add(). Referenced by PLearn::ProjectionErrorVariable::bprop(), PLearn::GaussianContinuum::compute_train_and_validation_costs(), computeMeanAndVariance(), computeWeightedMeanAndCovar(), PLearn::DiagonalNormalRandomVariable::EMBprop(), PLearn::MinusRandomVariable::EMBprop(), PLearn::PlusRandomVariable::EMBprop(), PLearn::DiagonalNormalRandomVariable::EMUpdate(), PLearn::ProjectionErrorVariable::fprop(), PLearn::NllSemisphericalGaussianVariable::fprop(), PLearn::GaussianContinuum::get_image_matrix(), PLearn::LocalNeighborsDifferencesVMatrix::getNewRow(), logOfNormal(), operator-(), and PLearn::GaussianContinuum::train(). |
|
Definition at line 3746 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). |
|
Definition at line 3733 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(). |
|
Definition at line 75 of file SumVariable.h. |
|
Definition at line 3767 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), is_missing(), PLearn::TMat< T >::length(), MISSING_VALUE, PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). |
|
Definition at line 245 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), is_missing(), PLearn::TVec< T >::length(), and MISSING_VALUE. Referenced by PLearn::LogSoftmaxVariable::bprop(), PLearn::TextSenseSequenceVMatrix::build_(), PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), PLearn::KNNVMatrix::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::HistogramDistribution::calc_density_from_survival(), PLearn::GraphicalBiText::check_consitency(), PLearn::ComplementedProbSparseMatrix::checkCondProbIntegrity(), PLearn::SmoothedProbSparseMatrix::checkCondProbIntegrity(), PLearn::ProbSparseMatrix::checkCondProbIntegrity(), choleskyDecomposition(), choleskyInvert(), choleskySolve(), PLearn::GraphicalBiText::compute_likelihood(), PLearn::DivisiveNormalizationKernel::computeAverage(), PLearn::AdditiveNormalizationKernel::computeAverage(), computeConditionalMeans(), PLearn::MultiInstanceNNet::computeCostsFromOutputs(), PLearn::LiftStatsCollector::computeLift(), PLearn::LiftStatsCollector::computeLiftMax(), PLearn::KPCATangentLearner::computeOutput(), computeWeightedMean(), convolve(), PLearn::MixtureRandomVariable::ElogP(), PLearn::MixtureRandomVariable::EMBprop(), PLearn::MultinomialRandomVariable::EMUpdate(), PLearn::MixtureRandomVariable::EMUpdate(), entropy(), PLearn::Kernel::estimateHistograms(), PLearn::RowMapSparseValueMatrix< T >::euclidianDistance(), PLearn::RowMapSparseMatrix< real >::euclidianDistance(), PLearn::NegLogProbCostFunction::evaluate(), PLearn::ReconstructionWeightsKernel::evaluate_sum_k_i_k_j(), PLearn::HistogramDistribution::expectation(), PLearn::LiftStatsIterator::finish(), PLearn::SumVariable::fprop(), PLearn::SoftmaxLossVariable::fprop(), PLearn::ProjectionErrorVariable::fprop(), PLearn::MatrixSoftmaxLossVariable::fprop(), PLearn::DotProductVariable::fprop(), PLearn::GeneralizedOneHotVMatrix::GeneralizedOneHotVMatrix(), PLearn::JoinVMatrix::getNewRow(), loadATT800(), logadd(), PLearn::DiagonalNormalRandomVariable::logP(), makeRowsSumTo1(), mean(), PLearn::RowMapSparseMatrix< real >::multiplyVecs(), norm(), normalizeColumns(), normalizeRows(), PLearn::TextSenseSequenceVMatrix::permute(), pl_gser(), pownorm(), PLearn::ReconstructionWeightsKernel::reconstruct(), PLearn::SumVariable::rfprop(), PLearn::SoftmaxLossVariable::rfprop(), PLearn::OneHotSquaredLoss::rfprop(), PLearn::DotProductVariable::rfprop(), rowSum(), PLearn::EntropyContrast::set_NNcontinuous_gradient(), PLearn::AdditiveNormalizationKernel::setDataForKernelMatrix(), softmax(), subsample(), PLearn::DoubleAccessSparseMatrix< T >::sumCol(), PLearn::ProbabilitySparseMatrix::sumOfElements(), PLearn::DoubleAccessSparseMatrix< T >::sumOfElements(), PLearn::DoubleAccessSparseMatrix< T >::sumRow(), PLearn::PlusScalarVariable::symbolicBprop(), PLearn::MinusScalarVariable::symbolicBprop(), PLearn::DuplicateScalarVariable::symbolicBprop(), PLearn::HistogramDistribution::variance(), vmatmain(), and weighted_variance(). |
|
returns the sum of the log of the elements (this is also the log of the product of the elements but is more stable if you have very small elements).
Definition at line 261 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and log(). |
|
Definition at line 3794 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), and PLearn::TMat< T >::width(). Referenced by columnSumOfSquares(). |
|
Definition at line 73 of file SumAbsVariable.h. |
|
returns the sum of absolute value of the elements
Definition at line 202 of file TMat_maths_impl.h. References PLearn::TMat< T >::begin(), PLearn::TMat< T >::compact_begin(), PLearn::TMat< T >::compact_end(), PLearn::TMat< T >::end(), PLearn::TMat< T >::isCompact(), and PLearn::TMat< T >::size(). |
|
returns the sum of absolute values of elements
Definition at line 131 of file TMat_maths_impl.h. References x. Referenced by PLearn::NNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), PLearn::ConditionalDensityNet::build_(), and PLearn::AffineTransformWeightPenalty::fprop(). |
|
deprecated old version do not use!
Definition at line 99 of file SumOfVariable.h. References sumOf(). |
|
sumOf
Definition at line 95 of file SumOfVariable.h. |
|
Definition at line 96 of file MatrixSumOfVariable.h. Referenced by sumOf(). |
|
sumOf
Definition at line 122 of file SumOverBagsVariable.h. References transpose(). Referenced by PLearn::NeighborhoodSmoothnessNNet::train(), and PLearn::MultiInstanceNNet::train(). |
|
Definition at line 73 of file SumSquareVariable.h. |
|
returns the sum of squared elements
Definition at line 174 of file TMat_maths_impl.h. References PLearn::TMat< T >::begin(), PLearn::TMat< T >::compact_begin(), PLearn::TMat< T >::compact_end(), PLearn::TMat< T >::end(), PLearn::TMat< T >::isCompact(), PLearn::TMat< T >::size(), and square(). |
|
returns the sum of squared elements
Definition at line 119 of file TMat_maths_impl.h. Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), PLearn::ConditionalDensityNet::build_(), computeConditionalMeans(), PLearn::ProjectionErrorVariable::fprop(), PLearn::AffineTransformWeightPenalty::fprop(), PLearn::JoinVMatrix::getNewRow(), paired_t_test(), PLearn::SequentialModelSelector::paired_t_test(), and vmatmain(). |
|
Performs the SVD decomposition A = U.S.Vt Where U and Vt are orthonormal matrices. A is an MxN matrix whose content is destroyed by the call. S in the above formula is also an MxN matrix, with only its first min(M,N) diagonal elements are non-zero. The call fills a vector S with those elements: the singular values, in decreasing order. JOBZ has the following meaning: 'A': all M columns of U and all N rows of Vt are returned in the arrays U and VT; 'S': the first min(M,N) columns of U and the first min(M,N) rows of Vt are returned in the arrays U and Vt; 'O': If M >= N, the first N columns of U are overwritten on the array A and all rows of Vt are returned in the array VT; otherwise, all columns of U are returned in the array U and the first M rows of Vt are overwritten in the array VT; = 'N': no columns of U or rows of Vt are computed. 'N': compute only the singular values (U and V are not computed) The optional value 'safeguard' may be used with a value > 1 if there is a crash in the SVD (typically, saying that parameter 12 has an illegal value). Relationships between SVD(A) and eigendecomposition of At.A and A.At -> square(singular values) = eigenvalues -> columns of V (rows of Vt) are the eigenvectors of At.A -> columns of U are the eigenvectors of A.At Definition at line 501 of file plapack.h. References lapackSVD(). Referenced by PLearn::PLS::train(). |
|
Definition at line 101 of file TVec_impl.h. References PLearn::TVec< T >::begin(), and PLearn::TVec< T >::end(). |
|
Definition at line 628 of file TMat_impl.h. References PLearn::TMat< T >::begin(), and PLearn::TMat< T >::end(). |
|
|
|
Definition at line 56 of file Array_impl.h. References PLearn::TVec< T >::data(), PLERROR, and PLearn::TVec< T >::size(). Referenced by PLearn::SmallVector< T, SizeBits, Allocator >::operator=(), PLearn::FieldValue::operator=(), selectAndOrder(), PLearn::TinyVector< T, N, TTrait >::swap(), PLearn::ArrayAllocatorTrivial< T, SizeBits >::swap(), PLearn::ArrayAllocator< T, SizeBits >::swap(), and PLearn::TMat< pair< real, real > >::transpose(). |
|
Definition at line 358 of file pl_math.h. References hard_slope(), left(), right(), tabulated_softplus(), and x. Referenced by PLearn::SoftSlopeVariable::bprop(), and PLearn::SoftSlopeVariable::fprop(). |
|
Definition at line 254 of file pl_math.cc. References hard_slope_integral(), left(), right(), and tabulated_softplus_primitive(). Referenced by PLearn::SoftSlopeIntegralVariable::fprop(). |
|
Definition at line 304 of file pl_math.h. References softplus(), and x. Referenced by PLearn::SoftSlopeIntegralVariable::bprop(), and tabulated_soft_slope(). |
|
Definition at line 413 of file pl_math.h. References softplus_primitive(), and x. Referenced by tabulated_soft_slope_integral(). |
|
Definition at line 75 of file TanhVariable.h. |
|
Definition at line 1621 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, tanh(), and x. |
|
Definition at line 958 of file TMat_maths_impl.h. References compute_tanh(), and PLearn::TVec< T >::length(). Referenced by PLearn::TangentLearner::build_(), PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), PLearn::GaussianContinuum::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::EntropyContrast::compute_df_dx(), compute_tanh(), PLearn::TanhVariable::fprop(), PLearn::NNet::NNet(), PLearn::PLMathInitializer::PLMathInitializer(), PLearn::EntropyContrast::set_NNcontinuous_gradient(), PLearn::EntropyContrast::set_NNcontinuous_gradient_from_extra_cost(), sigmoid(), tanh(), and PLearn::EntropyContrast::train(). |
|
Definition at line 1208 of file VMat_maths.cc. References PLearn::VMat::length(), PLearn::TVec< T >::resize(), and PLearn::VMat::rows(). |
|
This VMat is a SelectRowsVMatrix which, given a threshold date, keep only the rows earlier (or later) than this date. The thresdold date is given as a YYYYMMDD date, and the date on the original VMatrix are kept on 1 column (YYYYMMDD) or 3 (YYYY, MM and DD). Definition at line 1192 of file VMat_maths.cc. References PLearn::VMat::length(), PLearn::TVec< T >::resize(), and PLearn::VMat::rows(). |
|
Return P(|R|>|r|) two-sided p-value for the null-hypothesis that there is no monotonic dependency, with r the observed correlation between two paired samples of length n. The p-value is computed by taking advantage of the fact that under the null hypothesis r*sqrt(n-1) converges to a Normal(0,1), if n is LARGE ENOUGH (approx. > 30). Definition at line 105 of file stats_utils.cc. References gauss_01_cum(), and sqrt(). Referenced by correlations(), and testSpearmanRankCorrelation(). |
|
same as above but return also in r the rank correlations
Definition at line 128 of file stats_utils.cc. References PLearn::TMat< T >::length(), PLearn::TMat< T >::resize(), SpearmanRankCorrelation(), testNoCorrelationAsymptotically(), PLearn::TMat< T >::width(), and x. Referenced by PLearn::TestDependencyCommand::run(), PLearn::TestDependenciesCommand::run(), and testSpearmanRankCorrelationPValues(). |
|
Compute P(|R|>|r|) two-sided p-value for the null-hypothesis that there is no monotonic dependency, with r the observed Spearman Rank correlation between two paired samples x and y of length n (column matrices). The p-value is computed by taking advantage of the fact that under the null hypothesis r*sqrt(n-1) is Normal(0,1). If x and y have width wx and wy respectively than the statistic is computed for each pair of column (the first taken from x and the second from y) and pvalues will be a symmetric matrix size wx by wy upon return. N.B. If x holds in memory than copying it to a matrix (toMat()) before calling this function will speed up computation significantly. Definition at line 122 of file stats_utils.cc. References testSpearmanRankCorrelation(), and x. |
|
Definition at line 82 of file ThresholdVMatrix.h. |
|
Definition at line 77 of file TimesVariable.h. Referenced by PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::Profiler::end(), PLearn::AutoRunCommand::run(), and PLearn::Profiler::start(). |
|
Definition at line 78 of file TimesScalarVariable.h. Referenced by PLearn::NeighborhoodSmoothnessNNet::build_(). |
|
Definition at line 119 of file stringutils.cc. References PLERROR. Referenced by PLearn::WordNetOntology::load(), and main(). |
|
Generic conversions from an iterator.
|
|
Definition at line 673 of file SimpleDB.cc. References PLearn::RowIterator::toDouble(). |
|
Definition at line 127 of file stringutils.cc. References MISSING_VALUE. Referenced by PLearn::SDBWithStats::computeStats(), PLearn::SDBVMFieldRemapReals::SDBVMFieldRemapReals(), and tofloat(). |
|
FLOAT.
Definition at line 95 of file stringutils.h. References todouble(). Referenced by PLearn::VMatLanguage::generateCode(), and PLearn::SDBWithStats::loadStats(). |
|
Definition at line 577 of file Object.h. References PLERROR. |
|
Definition at line 574 of file Object.h. References toObjectPtr(), and x. |
|
Definition at line 571 of file Object.h. References toObjectPtr(), and x. Referenced by PLearn::Option< DeallocatorType, self >::getIndexedObject(). |
|
Definition at line 94 of file stringutils.h. References tolong(). Referenced by PLearn::AsciiVMatrix::build_(), PLearn::VVMatrix::createPreproVMat(), PLearn::MatlabInterface::eigs_r11(), PLearn::VMatLanguage::generateCode(), PLearn::VVMatrix::generateVMatIndex(), PLearn::VMatrix::getFieldIndex(), PLearn::VecStatsCollector::getFieldNum(), getList(), PLearn::ShellProgressBar::getWcAsciiFileLineCount(), interactiveDisplayCDF(), PLearn::WordNetOntology::load(), loadAscii(), loadAsciiSingleBinaryDescriptor(), loadClassificationDataset(), PLearn::VMatrix::loadFieldInfos(), PLearn::WordNetOntology::loadPredominentSyntacticClasses(), PLearn::SDBWithStats::loadStats(), main(), matlabR11eigs(), old_plearn_main(), PLearn::StatSpec::parseStatname(), PLearn::PDate::PDate(), PLearn::PDateTime::PDateTime(), plotVMats(), PLearn::VMatLanguage::preprocess(), readAndMacroProcess(), readHeader(), PLearn::Object::readOptionVal(), PLearn::TestDependencyCommand::run(), PLearn::TestDependenciesCommand::run(), PLearn::KolmogorovSmirnovCommand::run(), PLearn::JulianDateCommand::run(), train_and_test(), viewVMat(), vmatmain(), and PLearn::Object::writeOptionVal(). |
|
conversions from string to numerical types
Definition at line 107 of file stringutils.cc. References PLERROR. Referenced by PLearn::WordNetOntology::load(), and toint(). |
|
Definition at line 113 of file SetOption.h. |
|
Definition at line 237 of file RealMapping.h. |
|
Definition at line 568 of file Object.h. References toObjectPtr(), and x. |
|
Definition at line 564 of file Object.h. References x. |
|
Definition at line 561 of file Object.h. References x. |
|
Definition at line 557 of file Object.h. References PLERROR. |
|
The toObjectPtr functions attempt to return a pointer to Object (or 0 if the passed argument cannot be considered an Object subclass).
Definition at line 554 of file Object.h. References PLERROR. Referenced by PLearn::Option< DeallocatorType, self >::getAsObject(), toIndexedObjectPtr(), and toObjectPtr(). |
|
|
|
Definition at line 678 of file SimpleDB.cc. References PLearn::RowIterator::toString(). |
|
specialised version for char*
Definition at line 78 of file stringutils.h. |
|
------------------------------------------------------------------ ****************** Implementation * Definition at line 276 of file stringutils.h. References x. |
|
Definition at line 637 of file stringutils.cc. References x. |
|
Definition at line 624 of file stringutils.cc. References x. Referenced by PLearn::TextProgressBarPlugin::addProgressBar(), PLearn::DiskVMatrix::appendRow(), PLearn::MovingAverageVMatrix::build_(), PLearn::GraphicalBiText::build_(), PLearn::DiskVMatrix::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::ConcatColumnsVMatrix::build_(), PLearn::SequentialModelSelector::checkModelNames(), PLearn::VMatLanguage::compileStream(), compute_learner_outputs_on_grid(), computeOutputFields(), PLearn::SDBWithStats::computeStats(), cross_valid(), PLearn::ShellProgressBar::draw(), DX_create_grid_outputs_file(), DX_write_2D_fields(), PLearn::MatlabInterface::eigs_r11(), PLearn::VMatrix::getFieldInfos(), PLearn::Variable::getName(), PLearn::VMatrix::getString(), PLearn::PLearner::getTestCostIndex(), PLearn::PLearner::getTrainCostIndex(), PLearn::UnequalConstantVariable::info(), PLearn::TimesConstantVariable::info(), PLearn::QuantilesStatsIterator::info(), PLearn::SelectedOutputCostFunction::info(), PLearn::PowDistanceKernel::info(), PLearn::PlusConstantVariable::info(), PLearn::PDateTime::info(), PLearn::PDate::info(), PLearn::EqualConstantVariable::info(), PLearn::DistanceKernel::info(), loadAscii(), PLearn::GraphicalBiText::loadBitext(), main(), PLearn::GaussianContinuum::make_random_walk(), makeFileNameValid(), matlabR11eigs(), matlabSave(), PLearn::Learner::measure(), PLearn::PTester::perform(), PLearn::Gnuplot::plotClasses(), plotVMats(), PLearn::VMatLanguage::preprocess(), PLearn::WordNetOntology::processUnknownWord(), readAndMacroProcess(), PLearn::SequentialValidation::run(), PLearn::Experiment::run(), PLearn::FinancePreprocVMatrix::setVMFields(), PLearn::Learner::stop_if_wanted(), PLearn::SequentialModelSelector::test(), PLearn::RowIterator::toString(), PLearn::FieldValue::toString(), PLearn::TangentLearner::train(), PLearn::StackedLearner::train(), PLearn::SequentialModelSelector::train(), PLearn::NNet::train(), PLearn::NeighborhoodSmoothnessNNet::train(), PLearn::MultiInstanceNNet::train(), PLearn::GraphicalBiText::train(), PLearn::GaussianContinuum::train(), PLearn::ConditionalDensityNet::train(), PLearn::ClassifierFromDensity::train(), PLearn::AdaBoost::train(), PLearn::SimpleDB< KeyType, QueryResult >::truncateFromRow(), PLearn::VMatrix::unduplicateFieldNames(), PLearn::TextProgressBarPlugin::update(), PLearn::GraphicalBiText::update_WSD_model(), PLearn::FieldStat::updateNumber(), viewVMat(), vmatmain(), while(), and word_sequences2files_int_stream(). |
|
trivial unix touch
Definition at line 567 of file fileutils.cc. |
|
Definition at line 3422 of file TMat_maths_impl.h. References PLearn::TMat< T >::firstElement(), PLearn::TMat< T >::isSquare(), PLearn::TMat< T >::length(), and PLERROR. Referenced by regularizeMatrix(). |
|
Definition at line 127 of file old_plearn_main.cc. References endl(), exitmsg(), getDataSet(), getDatasetAliases(), getModelAliases(), isdir(), isfile(), PLearn::TVec< T >::length(), PLearn::VMat::length(), loadObject(), lsdir(), read(), save(), PLearn::TVec< T >::subVec(), toint(), and PLearn::VMat::width(). Referenced by old_plearn_main(). |
|
returns M1'
Definition at line 902 of file VMat_maths.cc. References PLearn::VMat::toMat(), and transpose(). |
|
Definition at line 90 of file SubMatTransposeVariable.h. References PLearn::Var::length(), and PLearn::Var::width(). |
|
Definition at line 5318 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), transpose(), and PLearn::TMat< T >::width(). |
|
Definition at line 5297 of file TMat_maths_impl.h. References PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ConditionalDensityNet::build_(), PLearn::Var::column(), PLearn::Variable::column(), PLearn::Var::row(), PLearn::Variable::row(), PLearn::EntropyContrast::set_NNcontinuous_gradient_from_extra_cost(), solveLinearSystem(), PLearn::Variable::subVec(), PLearn::Var::subVec(), sumOverBags(), PLearn::SumOverBagsVariable::SumOverBagsVariable(), PLearn::SubMatTransposeVariable::symbolicBprop(), transpose(), PLearn::RowMapSparseMatrix< real >::transposeProduct(), unfoldedFunc(), PLearn::UnfoldedFuncVariable::UnfoldedFuncVariable(), and vmatmain(). |
|
computes M1'.V2
Definition at line 841 of file VMat_maths.cc. References PLearn::TVec< T >::clear(), PLearn::TVec< T >::length(), PLearn::VMat::length(), PLERROR, and PLearn::VMat::width(). |
|
computes M1'.M2
Definition at line 820 of file VMat_maths.cc. References PLearn::VMat::length(), PLERROR, rowmatrix(), transposeProductAcc(), and PLearn::VMat::width(). |
|
computes M'.M
Definition at line 805 of file VMat_maths.cc. References PLearn::VMat::length(), rowmatrix(), transposeProductAcc(), and PLearn::VMat::width(). |
|
Definition at line 79 of file TransposeProductVariable.h. |
|
return m1' x m2
Definition at line 5699 of file TMat_maths_impl.h. References transposeProduct(), and PLearn::TMat< T >::width(). |
|
return m' x v
Definition at line 5689 of file TMat_maths_impl.h. References transposeProduct(), and PLearn::TMat< T >::width(). |
|
Definition at line 3253 of file TMat_maths_impl.h. References PLearn::TMat< T >::clear(), PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
result[i] = sum_j m[j,i] * v[j] Equivalently: rowvec(result) = rowvec(v) . m Equivalently: columnvec(result) = transpose(m).columnvec(v) Definition at line 2257 of file TMat_maths_impl.h. References PLearn::TVec< T >::clear(), PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::NNet::build_(), PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::MultiInstanceNNet::build_(), PLearn::ConditionalDensityNet::build_(), closestPointOnHyperplane(), PLearn::GaussianContinuum::compute_train_and_validation_costs(), computeCovar(), computeMeanAndCovar(), PLearn::PLS::computeOutput(), PLearn::LinearRegressor::computeOutput(), computePrincipalComponents(), PLearn::ProductRandomVariable::EMBprop(), PLearn::TransposeProductVariable::fprop(), PLearn::ProjectionErrorVariable::fprop(), PLearn::NllSemisphericalGaussianVariable::fprop(), PLearn::GaussianDistribution::generate(), PLearn::GaussianContinuum::get_image_matrix(), linearRegressionNoBias(), PLearn::TransposeProductVariable::rfprop(), PLearn::ProductVariable::symbolicBprop(), PLearn::ProductTransposeVariable::symbolicBprop(), PLearn::PLS::train(), PLearn::PCA::train(), PLearn::GaussianContinuum::train(), transposeProduct(), and PLearn::Function::verifyrfprop(). |
|
Definition at line 3281 of file TMat_maths_impl.h. References PLearn::TMat< T >::clear(), PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 3339 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ProductVariable::bbprop(), and PLearn::ProductTransposeVariable::bbprop(). |
|
Definition at line 3312 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
result[i] += alpha * sum_j m[j,i] * v[j]
Definition at line 2322 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
result[i] += sum_j m[j,i] * v[j]
Definition at line 2277 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). Referenced by PLearn::ProductVariable::bprop(), PLearn::ProductTransposeVariable::bprop(), PLearn::MatrixAffineTransformVariable::fprop(), PLearn::AffineTransformVariable::fprop(), PLearn::TransposeProductVariable::rfprop(), and transposeProduct(). |
|
Definition at line 3369 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 3397 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), k, PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 2790 of file WordNetOntology.cc. References isDigit(), isLegalPunct(), isLetter(), and NULL_TAG. Referenced by PLearn::WordNetOntology::extractWord(), and PLearn::WordNetOntology::isInWordNet(). |
|
Definition at line 134 of file pl_math.h. References x. Referenced by PLearn::OneHotSquaredLoss::bprop(), PLearn::MatrixOneHotSquaredLoss::bprop(), PLearn::AffineTransformWeightPenalty::bprop(), and PLearn::TestDependencyCommand::TestDependencyCommand(). |
|
Definition at line 230 of file pl_math.h. References ultrafasttanh(), and x. |
|
Definition at line 212 of file pl_math.h. References x. Referenced by ultrafastsigmoid(). |
|
Definition at line 83 of file UnaryHardSlopeVariable.h. Referenced by PLearn::NNet::build_(). |
|
Definition at line 494 of file pl_io.cc. References mode, PLERROR, read_compr_mode_and_size_ptr(), and val. |
|
replaces all underscores by a single space character
Definition at line 345 of file stringutils.cc. Referenced by PLearn::WordNetOntology::extractWord(), PLearn::WordNetOntology::isInWordNet(), and matlabSave(). |
|
Definition at line 90 of file UnfoldedFuncVariable.h. References transpose(). Referenced by PLearn::NeighborhoodSmoothnessNNet::build_(). |
|
Definition at line 91 of file UnfoldedSumOfVariable.h. Referenced by PLearn::MultiInstanceNNet::build_(). |
|
return an integer between 0 and N-1 with equal probabilities
Definition at line 553 of file random.cc. References uniform_sample(). Referenced by bootstrap(), bootstrap_rows(), fill_random_discrete(), PLearn::EmpiricalDistribution::generate(), and smartInitialization(). |
|
returns a random number uniformly distributed between 0 and 1 Definition at line 248 of file random.cc. References AM1, IA1, IA2, IM1, IM2, IMM1, IQ1, IQ2, IR1, IR2, k, NDIV1, NTAB, RNMX, and the_seed. Referenced by bnldev(), bounded_uniform(), PLearn::RepeatSplitter::build_(), expdev(), fill_random_uniform(), gamdev(), gaussian_01(), PLearn::ConditionalDensityNet::generate(), PLearn::UniformVMatrix::get(), PLearn::UniformVMatrix::getSubRow(), multinomial_sample(), PLearn::TextSenseSequenceVMatrix::permute(), poidev(), randomShuffleRows(), shuffleElements(), shuffleRows(), PLearn::AdaBoost::train(), and uniform_multinomial_sample(). |
|
|
|
Definition at line 497 of file ProbabilitySparseMatrix.h. References PLearn::Set::begin(), PLearn::ProbabilitySparseMatrix::clear(), PLearn::ProbabilitySparseMatrix::computeX(), PLearn::ProbabilitySparseMatrix::computeY(), PLearn::Set::end(), PLearn::ProbabilitySparseMatrix::set(), SetIterator, PLearn::ProbabilitySparseMatrix::sumPYx(), x, PLearn::ProbabilitySparseMatrix::X, and PLearn::ProbabilitySparseMatrix::Y. Referenced by PLearn::GraphicalBiText::compute_BN_likelihood(), PLearn::GraphicalBiText::compute_likelihood(), PLearn::ShellProgressBar::done(), PLearn::SequentialModelSelector::test(), PLearn::SequentialModelSelector::train(), PLearn::VecStatsCollector::update(), PLearn::StatsIterator::update(), and PLearn::StatsItArray::update(). |
|
Definition at line 521 of file ProbabilitySparseMatrix.h. References PLearn::Set::begin(), PLearn::ProbabilitySparseMatrix::clear(), PLearn::ProbabilitySparseMatrix::computeX(), PLearn::ProbabilitySparseMatrix::computeY(), PLearn::Set::end(), PLearn::ProbabilitySparseMatrix::set(), SetIterator, PLearn::ProbabilitySparseMatrix::sumPYx(), x, PLearn::ProbabilitySparseMatrix::X, and PLearn::ProbabilitySparseMatrix::Y. |
|
convert a string to all uppercase
Definition at line 278 of file stringutils.cc. Referenced by PLearn::RealMapping::read(). |
|
Definition at line 460 of file old_plearn_main.cc. References endl(). Referenced by PLearn::FieldConvertCommand::FieldConvertCommand(), and old_plearn_main(). |
|
Definition at line 407 of file old_plearn_main.cc. References endl(), exitmsg(), getDataSet(), getDatasetAliases(), PLearn::VMat::length(), loadObject(), remove_extension(), PLearn::TVec< T >::subVec(), and PLearn::VMat::width(). Referenced by PLearn::Learner::apply(), PLearn::Learner::computeLeaveOneOutCosts(), PLearn::Learner::computeOutput(), PLearn::FieldConvertCommand::FieldConvertCommand(), PLearn::KolmogorovSmirnovCommand::KolmogorovSmirnovCommand(), PLearn::LearnerCommand::LearnerCommand(), old_plearn_main(), PLearn::Learner::use(), PLearn::Learner::useAndCost(), and PLearn::PLearner::useOnTrain(). |
|
Definition at line 69 of file Var.h. Referenced by PLearn::NeuralNet::build_(), PLearn::NeighborhoodSmoothnessNNet::build_(), PLearn::ConditionalDensityNet::build_(), PLearn::AddCostToLearner::build_(), PLearn::GaussianProcessRegressor::computeCostsFromOutputs(), computeInputMeanAndVariance(), d_hard_slope(), gauss_density_var(), gauss_log_density_var(), PLearn::CompactVMatrix::perturb(), and PLearn::GaussianProcessRegressor::variance(). |
|
To use varDeepCopyField.
Definition at line 59 of file Var.cc. Referenced by PLearn::Variable::makeDeepCopyFromShallowCopy(), PLearn::VarArray::makeDeepCopyFromShallowCopy(), PLearn::UnfoldedSumOfVariable::makeDeepCopyFromShallowCopy(), PLearn::UnaryVariable::makeDeepCopyFromShallowCopy(), PLearn::TangentLearner::makeDeepCopyFromShallowCopy(), PLearn::Optimizer::makeDeepCopyFromShallowCopy(), PLearn::NNet::makeDeepCopyFromShallowCopy(), PLearn::MultiInstanceNNet::makeDeepCopyFromShallowCopy(), PLearn::MatrixElementsVariable::makeDeepCopyFromShallowCopy(), PLearn::GaussianContinuum::makeDeepCopyFromShallowCopy(), PLearn::ConditionalDensityNet::makeDeepCopyFromShallowCopy(), PLearn::BinaryVariable::makeDeepCopyFromShallowCopy(), and PLearn::AddCostToLearner::makeDeepCopyFromShallowCopy(). |
|
Definition at line 3844 of file TMat_maths_impl.h. References PLearn::TMat< T >::data(), PLearn::TMat< T >::length(), PLearn::TMat< T >::mod(), PLERROR, and PLearn::TMat< T >::width(). |
|
Definition at line 408 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), and PLERROR. Referenced by columnVariance(), computeConditionalMeans(), PLearn::GaussMix::computeMeansAndCovariances(), PLearn::PDistribution::computeOutput(), PLearn::PConditionalDistribution::computeOutput(), PLearn::HistogramDistribution::computeOutput(), PLearn::DiagonalNormalRandomVariable::logP(), normal(), rowVariance(), PLearn::SequentialModelSelector::sequenceCost(), and vmatmain(). |
|
Definition at line 140 of file ConcatRowsVMatrix.h. References PLearn::TVec< T >::size(). |
|
Definition at line 137 of file ConcatRowsVMatrix.h. |
|
Definition at line 79 of file ConcatRowsVariable.h. |
|
Definition at line 211 of file Array_impl.h. References vconcat(). |
|
Definition at line 169 of file Array_impl.h. References PLERROR, and PLearn::TMat< T >::subMatRows(). Referenced by PLearn::ConditionalDensityNet::build_(), PLearn::ConditionalExpression::ConditionalExpression(), PLearn::VVMatrix::createPreproVMat(), PLearn::MixtureRandomVariable::ElogP(), getDataSet(), PLearn::TrainValidTestSplitter::getSplit(), PLearn::TestInTrainSplitter::getSplit(), loadUCI(), PLearn::MixtureRandomVariable::logP(), PLearn::RVArrayRandomElementRandomVariable::logP(), PLearn::GaussianContinuum::make_random_walk(), PLearn::RVInstanceArray::operator|(), removeRow(), PLearn::JointRandomVariable::setValueFromParentsValue(), split(), PLearn::InterValuesVariable::symbolicBprop(), and vconcat(). |
|
Definition at line 1787 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). |
|
Definition at line 1800 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), and PLearn::TVec< T >::length(). Referenced by PLearn::UniformizeVMatrix::getNewRow(), and PLearn::GeneralizedOneHotVMatrix::getNewRow(). |
|
Definition at line 379 of file vmatmain.cc. References PLearn::TVec< T >::begin(), PLearn::VMat::columns(), PLearn::TVec< T >::end(), endl(), PLearn::VMat::fieldName(), fname, getDataSet(), PLearn::VMat::getFieldIndex(), getList(), is_missing(), PLearn::VMat::length(), max(), min(), pl_isnumber(), PLERROR, removeblanks(), PLearn::TVec< T >::resize(), strlen(), toint(), tostring(), val, PLearn::VMat::width(), and x. Referenced by vmatmain(). |
|
Definition at line 1279 of file vmatmain.cc. References PLearn::TVec< T >::append(), c_str(), PLearn::VMatLanguage::compileString(), displayBasicStats(), endl(), extract_extension(), PLearn::VMat::fieldName(), flush(), getDataSet(), getDataSetDate(), getDataSetHelp(), PLearn::VMatrix::getMtime(), PLearn::VVMatrix::getPrecomputedDataName(), interactiveDisplayCDF(), PLearn::VVMatrix::isPrecomputedAndUpToDate(), PLearn::VMat::length(), max(), mean(), min(), PLERROR, plotVMats(), print_diff(), printDistanceStatistics(), rm(), PLearn::VMatLanguage::run(), PLearn::TVec< T >::size(), sum(), sumsquare(), toint(), tostring(), transpose(), variance(), viewVMat(), and PLearn::VMat::width(). |
|
Definition at line 81 of file RangeVMatrix.h. |
|
Definition at line 92 of file plerror.cc. References endl(), ERROR_MSG_SIZE, and error_stream. |
|
reweighting
Definition at line 83 of file WeightedCostFunction.h. |
|
Definition at line 824 of file TMat_maths_impl.h. References mypow(), sqrt(), and weighted_powdistance(). |
|
Definition at line 383 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), is_missing(), PLearn::TVec< T >::length(), MISSING_VALUE, and PLERROR. Referenced by columnWeightedMean(), and weighted_variance(). |
|
Definition at line 780 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), mypow(), and PLERROR. Referenced by PLearn::ScaledGaussianKernel::evaluate(), and weighted_distance(). |
|
Definition at line 80 of file WeightedSumSquareVariable.h. Referenced by PLearn::NeuralNet::build_(). |
|
Definition at line 448 of file TMat_maths_impl.h. References PLearn::TVec< T >::data(), PLearn::TVec< T >::length(), PLERROR, sum(), and weighted_mean(). Referenced by columnWeightedVariance(). |
|
Version that does all the memory allocations of XtX, XtY and theta_t. Returns theta_t.
Definition at line 1049 of file VMat_maths.cc. References weightedLinearRegression(), and PLearn::VMat::width(). |
|
Linear regression where each input point is given a different importance weight (the gammas); returns weighted average of squared loss.
Definition at line 987 of file VMat_maths.cc. References PLearn::TMat< T >::clear(), dot(), externalProductScaleAcc(), PLearn::TMat< T >::length(), PLearn::VMat::length(), PLERROR, product(), solveLinearSystem(), solveLinearSystemByCholesky(), PLearn::TMat< T >::width(), PLearn::VMat::width(), and x. Referenced by PLearn::LinearRegressor::train(), and weightedLinearRegression(). |
|
Convert <word_sequences> filename into a FilesIntStream stream. This file must contain one line per <word_sequence> filename, and each of these filenames must represent binary integers files that can be associated to an IntStream. Definition at line 247 of file IntStream.cc. References PLERROR, strlen(), and tostring(). |
|
List of characters considered to mark a separation between "words"; This is a fairly restricted list, meaning that many things can be part of a "word" in this sense (for ex: "this-is_a+single@wor'd"), this is to insure a smooth transition for the new setOption, which calls readOptionVal ... which may call read(istream&, string&)... |
|
|
|
Definition at line 116 of file RealMapping.h. Referenced by PLearn::CompactVMatrix::append(), PLearn::StatsCollector::oldwrite(), PLearn::PStream::operator<<(), PLearn::pl_fdstreambuf::overflow(), PLearn::PStream::put(), PLearn::RowMapSparseMatrix< real >::save(), PLearn::pl_fdstreambuf::sync(), PLearn::Variable::write(), PLearn::RowMapSparseMatrix< real >::write(), PLearn::PStream::write(), PLearn::PStream::writeAsciiNum(), writeField(), PLearn::OptionBase::writeIntoString(), and PLearn::pl_fdstreambuf::xsputn(). |
|
|
|
Definition at line 76 of file pl_io.cc. References binwrite(), header, mode, and PLERROR. Referenced by binwrite_compressed(). |
|
Definition at line 429 of file pl_io.cc. References header, mode, and PLERROR. Referenced by compress_vec(). |
|
Definition at line 133 of file pl_io_deprecated.h. References write_double(). |
|
Definition at line 338 of file pl_io_deprecated.cc. References reverse_double(). Referenced by write_double(). |
|
Definition at line 131 of file pl_io_deprecated.h. References write_float(). |
|
Definition at line 363 of file pl_io_deprecated.cc. References reverse_float(). Referenced by write_float(). |
|
The following calls write a single value to the file in the specified representation, regardeless of the endianness on the current architecture.
Definition at line 127 of file pl_io_deprecated.h. References write_int(). |
|
Writes binary data to the file in the specified representation (little or big endian) regardeless of the endianness used on the current architecture.
Definition at line 290 of file pl_io_deprecated.cc. References reverse_int(). Referenced by write_int(), and write_uint(). |
|
Definition at line 139 of file pl_io_deprecated.h. References x. Referenced by PLearn::VecCompressor::writeCompressedVec(). |
|
Definition at line 129 of file pl_io_deprecated.h. References write_short(). |
|
Definition at line 314 of file pl_io_deprecated.cc. References reverse_short(). Referenced by write_short(), and write_ushort(). |
|
Definition at line 140 of file pl_io_deprecated.h. References x. |
|
Definition at line 135 of file pl_io_deprecated.h. References write_uint(). |
|
Definition at line 119 of file pl_io_deprecated.h. References write_int(). Referenced by write_uint(). |
|
Definition at line 137 of file pl_io_deprecated.h. References write_ushort(). |
|
Definition at line 121 of file pl_io_deprecated.h. References write_short(). Referenced by write_ushort(). |
|
generic field writing and reading
Definition at line 216 of file pl_io_deprecated.h. References write(), writeFieldName(), and x. Referenced by PLearn::VMatrix::oldwrite(), PLearn::QuantilesStatsIterator::oldwrite(), PLearn::LiftStatsIterator::oldwrite(), PLearn::SharpeRatioStatsIterator::oldwrite(), PLearn::StderrStatsIterator::oldwrite(), PLearn::StddevStatsIterator::oldwrite(), PLearn::ExpMeanStatsIterator::oldwrite(), PLearn::MeanStatsIterator::oldwrite(), PLearn::StatsIterator::oldwrite(), PLearn::StatsCollector::oldwrite(), PLearn::Optimizer::oldwrite(), PLearn::Learner::oldwrite(), and PLearn::RowMapSparseMatrix< real >::write(). |
|
writes "fieldname: " writes and reads the given fieldname (should be followed by wrtiting or reading of the field's value. The readFieldName method checks the read fieldname against the one passed as argument and issues an error if they do not match Definition at line 92 of file pl_io_deprecated.cc. Referenced by binwriteField(), binwriteField_double(), PLearn::StatsCollector::oldwrite(), and writeField(). |
|
writes "</ClassName>\n"
Definition at line 58 of file pl_io_deprecated.cc. Referenced by PLearn::VMatrix::oldwrite(), PLearn::QuantilesStatsIterator::oldwrite(), PLearn::LiftStatsIterator::oldwrite(), PLearn::MaxStatsIterator::oldwrite(), PLearn::MinStatsIterator::oldwrite(), PLearn::SharpeRatioStatsIterator::oldwrite(), PLearn::StderrStatsIterator::oldwrite(), PLearn::StddevStatsIterator::oldwrite(), PLearn::ExpMeanStatsIterator::oldwrite(), PLearn::MeanStatsIterator::oldwrite(), PLearn::StatsIterator::oldwrite(), PLearn::StatsCollector::oldwrite(), PLearn::Optimizer::oldwrite(), PLearn::Learner::oldwrite(), PLearn::RowMapSparseMatrix< real >::write(), and PLearn::RealMapping::write(). |
|
writes "<ClassName:version>\n"
Definition at line 55 of file pl_io_deprecated.cc. Referenced by PLearn::VMatrix::oldwrite(), PLearn::QuantilesStatsIterator::oldwrite(), PLearn::LiftStatsIterator::oldwrite(), PLearn::MaxStatsIterator::oldwrite(), PLearn::MinStatsIterator::oldwrite(), PLearn::SharpeRatioStatsIterator::oldwrite(), PLearn::StderrStatsIterator::oldwrite(), PLearn::StddevStatsIterator::oldwrite(), PLearn::ExpMeanStatsIterator::oldwrite(), PLearn::MeanStatsIterator::oldwrite(), PLearn::StatsIterator::oldwrite(), PLearn::StatsCollector::oldwrite(), PLearn::Optimizer::oldwrite(), PLearn::Learner::oldwrite(), PLearn::RowMapSparseMatrix< real >::write(), and PLearn::RealMapping::write(). |
|
Definition at line 674 of file PStream.h. References PLearn::PStream::put(), and PLearn::PStream::write(). Referenced by operator<<(). |
|
Writes a single newline character.
Definition at line 196 of file pl_io_deprecated.h. Referenced by PLearn::StatsCollector::oldwrite(). |
|
Definition at line 891 of file PStream.h. References binwrite_(), byte_order(), LITTLE_ENDIAN_ORDER, PLearn::PStream::outmode, PLERROR, PLearn::PStream::put(), and PLearn::PStream::write(). Referenced by operator<<(), and PLearn::TVec< pair< real, real > >::write(). |
|
Definition at line 1120 of file PStream.h. References PLearn::PStream::put(), and PLearn::PStream::write(). Referenced by operator<<(). |
|
Definition at line 64 of file PStream.cc. References PLearn::PStream::skipBlanksAndComments(). Referenced by PLearn::SumOverBagsVariable::build_(), PLearn::AsciiVMatrix::build_(), PLearn::WordNetOntology::computeWordSenseUniqueIds(), PLearn::WordNetOntology::extractSenses(), getDatasetAliases(), getModelAliases(), PLearn::WordNetOntology::getSenseKey(), PLearn::WordNetOntology::getWordSenseUniqueId(), PLearn::WordNetOntology::load(), loadAscii(), loadAsciiSingleBinaryDescriptor(), PLearn::RealMapping::read(), PLearn::Object::read(), and PLearn::GaussianDistribution::train(). |
|
Definition at line 55 of file general.cc. |
|
Definition at line 51 of file TypesNumeriques.cc. Referenced by compactRepresentationTranslate(). |
|
|
|
|
|
Definition at line 47 of file PStream_util.cc. |
|
Definition at line 179 of file databases.cc. Referenced by loadATT800(), loadBreastCancer(), loadBreastCancerWisconsin(), loadCallxx(), loadCorelDatamat(), loadDiabetes(), loadHousing(), loadIonosphere(), loadLetters(), loadPimaIndians(), loadSonar(), loadUCI(), and loadUSPS(). |
|
Definition at line 50 of file TypesNumeriques.cc. Referenced by compactRepresentationTranslate(), and looksNumeric(). |
|
Definition at line 138 of file GradientOptimizer.cc. Referenced by PLearn::GradientOptimizer::optimize(). |
|
Definition at line 59 of file plerror.cc. Referenced by errormsg(), exitmsg(), and warningmsg(). |
|
Definition at line 57 of file random.cc. Referenced by gaussian_01(). |
|
Definition at line 50 of file Hash.cc. Referenced by PLearn::Hash< KeyType, DataType >::add(), PLearn::Hash< KeyType, DataType >::cleanup(), PLearn::Hash< KeyType, DataType >::del(), PLearn::Hash< KeyType, DataType >::element(), PLearn::Hash< KeyType, DataType >::find(), PLearn::Hash< KeyType, DataType >::findGap(), PLearn::Hash< KeyType, DataType >::flush(), PLearn::Hash< KeyType, DataType >::hashAddress(), PLearn::Hash< KeyType, DataType >::operator()(), PLearn::Hash< KeyType, DataType >::operator[](), and PLearn::Hash< KeyType, DataType >::resize(). |
|
Definition at line 53 of file Hash.cc. Referenced by PLearn::Hash< KeyType, DataType >::hashKey(). |
|
DataType must have new, delete and copy constructor Keys are unique. KeyType must have a (char *) type cast operator that returns a pointer to its usefull region since the key can be any object (therefore, the usefull part of the object does not necessarily starts a offset_0) const size_t byteLength() const that returns the byte-size of its usefull region, new, delete and a copy constructor ==, != Definition at line 49 of file Hash.cc. Referenced by PLearn::SimpleDB< KeyType, QueryResult >::findEqualIndexed(), PLearn::Hash< KeyType, DataType >::hashAddress(), and PLearn::SimpleDB< KeyType, QueryResult >::indexColumn(). |
|
Definition at line 48 of file PStream_util.cc. |
|
Definition at line 56 of file random.cc. Referenced by gaussian_01(), and manual_seed(). |
|
|
|
|
|
|
|
Definition at line 48 of file SimpleDB.cc. Referenced by PLearn::RowIterator::isMissing(), PLearn::FieldValue::isMissing(), PLearn::RowIterator::setMissing(), and PLearn::FieldValue::setMissing(). |
|
Definition at line 54 of file SimpleDB.cc. Referenced by PLearn::RowIterator::isMissing(), PLearn::FieldValue::isMissing(), PLearn::RowIterator::setMissing(), and PLearn::FieldValue::setMissing(). |
|
Definition at line 53 of file SimpleDB.cc. Referenced by PLearn::RowIterator::setMissing(), and PLearn::FieldValue::setMissing(). |
|
Definition at line 52 of file SimpleDB.cc. Referenced by PLearn::RowIterator::setMissing(). |
|
Definition at line 51 of file SimpleDB.cc. Referenced by PLearn::RowIterator::isMissing(), PLearn::FieldValue::isMissing(), PLearn::RowIterator::setMissing(), and PLearn::FieldValue::setMissing(). |
|
Definition at line 50 of file SimpleDB.cc. Referenced by PLearn::RowIterator::isMissing(), PLearn::FieldValue::isMissing(), PLearn::RowIterator::setMissing(), and PLearn::FieldValue::setMissing(). |
|
Definition at line 49 of file SimpleDB.cc. Referenced by PLearn::RowIterator::isMissing(), PLearn::FieldValue::isMissing(), PLearn::RowIterator::setMissing(), and PLearn::FieldValue::setMissing(). |
|
A few constants for representing missing values.
Definition at line 47 of file SimpleDB.cc. Referenced by PLearn::RowIterator::isMissing(), PLearn::FieldValue::isMissing(), PLearn::RowIterator::setMissing(), and PLearn::FieldValue::setMissing(). |
|
Definition at line 51 of file PStream_util.cc. |
|
a null instream: reading from it does nothing
Definition at line 82 of file PStream_util.h. Referenced by PLearn::PLMPI::init(). |
|
a null iostream: reading/writing from/to it does nothing
Definition at line 83 of file PStream_util.h. |
|
a null ostream: writing to it does nothing
Definition at line 81 of file PStream_util.h. Referenced by PLearn::PLMPI::init(). |
|
Definition at line 52 of file TypesNumeriques.cc. Referenced by compactRepresentationTranslate(). |
|
Definition at line 53 of file pl_fdstream.h. Referenced by PLearn::StdPStreamBuf::attach(), and PLearn::pl_fdstream::attach(). |
|
Initial value:
Definition at line 50 of file pl_erf.cc. Referenced by pl_dgammlndz(), and pl_gammln(). |
|
Definition at line 42 of file pl_hash_fun.cc. Referenced by hashbytes(). |
|
Definition at line 73 of file pl_math.cc. |
|
|
|
Definition at line 46 of file PStream_util.cc. Referenced by PLearn::Row::begin(), PLearn::Row::bind(), PLearn::RowIterator::copyFrom(), PLearn::Row::end(), and PLearn::Row::Row(). |
|
Initial value:
Definition at line 89 of file TypesNumeriques.h. Referenced by numericType(). |
|
Definition at line 48 of file MemoryMap.h. Referenced by PLearn::Storage< pair< real, real > >::pointTo(), PLearn::Storage< pair< real, real > >::Storage(), and PLearn::Storage< pair< real, real > >::~Storage(). |
|
Definition at line 60 of file pl_math.cc. Referenced by fasttanh(), and PLearn::PLMathInitializer::PLMathInitializer(). |
|
Definition at line 55 of file random.cc. Referenced by gaussian_01(), get_seed(), manual_seed(), and uniform_sample(). |
|
The specification of the dataset viewed by the vmat program.
Definition at line 45 of file vmatmain.h. |