Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

MatrixSoftmaxLossVariable.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: MatrixSoftmaxLossVariable.cc,v 1.5 2004/04/27 15:58:16 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "MatrixSoftmaxLossVariable.h" 00044 00045 namespace PLearn { 00046 using namespace std; 00047 00048 00050 PLEARN_IMPLEMENT_OBJECT(MatrixSoftmaxLossVariable, 00051 "ONE LINE DESCR", 00052 "NO HELP"); 00053 00054 MatrixSoftmaxLossVariable::MatrixSoftmaxLossVariable(Variable* input1, Variable* input2) 00055 : inherited(input1, input2, input2->length(), input2->width()) 00056 { 00057 build_(); 00058 } 00059 00060 void 00061 MatrixSoftmaxLossVariable::build() 00062 { 00063 inherited::build(); 00064 build_(); 00065 } 00066 00067 void 00068 MatrixSoftmaxLossVariable::build_() 00069 { 00070 if (input2 && !input2->isVec()) 00071 PLERROR("In MatrixSoftmaxLossVariable: position must be a vector"); 00072 } 00073 00074 00075 void MatrixSoftmaxLossVariable::recomputeSize(int& l, int& w) const 00076 { 00077 if (input2) { 00078 l = input2->length(); 00079 w = input2->width(); 00080 } else 00081 l = w = 0; 00082 } 00083 00084 00085 void MatrixSoftmaxLossVariable::fprop() 00086 { 00087 for (int i=0; i<input2->length(); i++) 00088 { 00089 int classnum = (int)input2->valuedata[i]; 00090 real input_index = input1->matValue[classnum][i]; 00091 real sum=0; 00092 for(int j=0; j<input1->length(); j++) 00093 sum += safeexp(input1->matValue[j][i]-input_index); 00094 valuedata[i] = 1.0/sum; 00095 } 00096 } 00097 00098 00099 void MatrixSoftmaxLossVariable::bprop() 00100 { 00101 for (int i=0; i<input2->length(); i++) 00102 { 00103 int classnum = (int)input2->valuedata[i]; 00104 real input_index = input1->matValue[classnum][i]; 00105 real vali = valuedata[i]; 00106 for(int j=0; j<input1->length(); j++) 00107 { 00108 if (j!=classnum){ 00109 input1->matGradient[j][i] = -gradientdata[i]*vali*vali*safeexp(input1->matValue[j][i]-input_index);} 00110 else 00111 input1->matGradient[j][i] = gradientdata[i]*vali*(1.-vali); 00112 } 00113 } 00114 } 00115 00116 00117 void MatrixSoftmaxLossVariable::bbprop() 00118 { 00119 PLERROR("MatrixSoftmaxLossVariable::bbprop() not implemented"); 00120 } 00121 00122 00123 void MatrixSoftmaxLossVariable::symbolicBprop() 00124 { 00125 PLERROR("MatrixSoftmaxLossVariable::symbolicBprop() not implemented"); 00126 } 00127 00128 00129 void MatrixSoftmaxLossVariable::rfprop() 00130 { 00131 PLERROR("MatrixSoftmaxLossVariable::rfprop() not implemented"); 00132 } 00133 00134 00135 00136 } // end of namespace PLearn 00137 00138

Generated on Tue Aug 17 15:58:20 2004 for PLearn by doxygen 1.3.7