Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

ConvolveVariable.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: ConvolveVariable.cc,v 1.5 2004/04/27 16:02:26 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "ConvolveVariable.h" 00044 00045 namespace PLearn { 00046 using namespace std; 00047 00048 00051 PLEARN_IMPLEMENT_OBJECT(ConvolveVariable, 00052 "A convolve var; equals convolve(input, mask)", 00053 "NO HELP"); 00054 00055 ConvolveVariable::ConvolveVariable(Variable* input, Variable* mask) 00056 : inherited(input, mask, input->length()-mask->length()+1, input->width()-mask->width()+1) 00057 {} 00058 00059 00060 void ConvolveVariable::recomputeSize(int& l, int& w) const 00061 { 00062 if (input1 && input2) { 00063 l = input1->length() - input2->length() + 1; 00064 w = input1->width() - input2->width() + 1; 00065 } else 00066 l = w = 0; 00067 } 00068 00069 00070 void ConvolveVariable::fprop() 00071 { 00072 convolve(input1->matValue, input2->matValue, matValue); 00073 } 00074 00075 00076 void ConvolveVariable::bprop() 00077 { 00078 for(int i=0; i<length(); i++) // size of matGradient 00079 for(int j=0; j<width(); j++) 00080 { 00081 real* input1valueptr = input1->matValue[i]+j; 00082 real* input2valueptr = input2->matValue.data(); 00083 00084 real thisgradient = matGradient(i,j); 00085 real* input1gradientptr = input1->matGradient[i]+j; 00086 real* input2gradientptr = input2->matGradient.data(); 00087 00088 for(int l=0; l<input2->length(); l++, 00089 input1valueptr += input1->matValue.mod(), input2valueptr += input2->matValue.mod(), 00090 input1gradientptr += input1->matGradient.mod(), input2gradientptr += input2->matGradient.mod()) 00091 for(int c=0; c<input2->width(); c++) 00092 { 00093 input1gradientptr[c] += thisgradient * input2valueptr[c]; 00094 input2gradientptr[c] += thisgradient * input1valueptr[c]; 00095 } 00096 } 00097 } 00098 00099 00100 void ConvolveVariable::symbolicBprop() 00101 { PLERROR("ConvolveVariable::symbolicBprop() not yet implemented"); } 00102 00103 00104 00105 } // end of namespace PLearn 00106 00107

Generated on Tue Aug 17 15:50:37 2004 for PLearn by doxygen 1.3.7