Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

SubsampleVariable.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: SubsampleVariable.cc,v 1.5 2004/04/27 16:03:35 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "SubsampleVariable.h" 00044 00045 namespace PLearn { 00046 using namespace std; 00047 00048 00051 PLEARN_IMPLEMENT_OBJECT(SubsampleVariable, 00052 "A subsample var; equals subsample(input, the_subsamplefactor)", 00053 "NO HELP"); 00054 00055 SubsampleVariable::SubsampleVariable(Variable* input, int the_subsamplefactor) 00056 : inherited(input, input->length()/the_subsamplefactor, input->width()/the_subsamplefactor), 00057 subsamplefactor(the_subsamplefactor) 00058 { 00059 build_(); 00060 } 00061 00062 void 00063 SubsampleVariable::build() 00064 { 00065 inherited::build(); 00066 build_(); 00067 } 00068 00069 void 00070 SubsampleVariable::build_() 00071 { 00072 if (input) { 00073 if (input->length() % subsamplefactor != 0 || input->width() % subsamplefactor != 0) 00074 PLERROR("In SubsampleVariable constructor: Dimensions of input are not dividable by subsamplefactor"); 00075 } 00076 } 00077 00078 void 00079 SubsampleVariable::declareOptions(OptionList &ol) 00080 { 00081 declareOption(ol, "subsamplefactor", &SubsampleVariable::subsamplefactor, OptionBase::buildoption, ""); 00082 inherited::declareOptions(ol); 00083 } 00084 00085 void SubsampleVariable::recomputeSize(int& l, int& w) const 00086 { 00087 if (input) { 00088 l = input->length() / subsamplefactor; 00089 w = input->width()/subsamplefactor; 00090 } else 00091 l = w = 0; 00092 } 00093 00094 void SubsampleVariable::fprop() 00095 { 00096 subsample(input->matValue, subsamplefactor, matValue); 00097 } 00098 00099 00100 void SubsampleVariable::bprop() 00101 { 00102 int norm = subsamplefactor * subsamplefactor; 00103 for(int i=0; i<length(); i++) 00104 for(int j=0; j<width(); j++) 00105 { 00106 real* inputgradientptr = input->matGradient[subsamplefactor*i]+subsamplefactor*j; 00107 real thisgradient = matGradient(i,j); 00108 for(int l=0; l<subsamplefactor; l++, inputgradientptr += input->matGradient.mod()) 00109 for(int c=0; c<subsamplefactor; c++) 00110 { 00111 inputgradientptr[c] = thisgradient/norm; 00112 } 00113 } 00114 } 00115 00116 00117 void SubsampleVariable::symbolicBprop() 00118 { PLERROR("SubsampleVariable::symbolicBprop() not yet implemented"); } 00119 00120 00121 00122 } // end of namespace PLearn 00123 00124

Generated on Tue Aug 17 16:07:49 2004 for PLearn by doxygen 1.3.7