00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2001 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2002 Pascal Vincent, Julien Keable, Xavier Saint-Mleux 00007 // 00008 // Redistribution and use in source and binary forms, with or without 00009 // modification, are permitted provided that the following conditions are met: 00010 // 00011 // 1. Redistributions of source code must retain the above copyright 00012 // notice, this list of conditions and the following disclaimer. 00013 // 00014 // 2. Redistributions in binary form must reproduce the above copyright 00015 // notice, this list of conditions and the following disclaimer in the 00016 // documentation and/or other materials provided with the distribution. 00017 // 00018 // 3. The name of the authors may not be used to endorse or promote 00019 // products derived from this software without specific prior written 00020 // permission. 00021 // 00022 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00023 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00024 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00025 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00026 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00027 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00028 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00029 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00030 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00031 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00032 // 00033 // This file is part of the PLearn library. For more information on the PLearn 00034 // library, go to the PLearn Web site at www.plearn.org 00035 00036 00037 /* ******************************************************* 00038 * $Id: UniformVMatrix.cc,v 1.5 2004/07/21 16:30:55 chrish42 Exp $ 00039 ******************************************************* */ 00040 00041 #include "UniformVMatrix.h" 00042 #include <plearn/math/random.h> 00043 00044 namespace PLearn { 00045 using namespace std; 00046 00047 00050 PLEARN_IMPLEMENT_OBJECT(UniformVMatrix, "ONE LINE DESC", "NO HELP"); 00051 00052 UniformVMatrix::UniformVMatrix() 00053 : minval(0), maxval(1) 00054 { 00055 } 00056 00057 UniformVMatrix::UniformVMatrix(real the_minval, real the_maxval, int the_width) 00058 : inherited(-1,the_width),minval(the_minval), maxval(the_maxval) 00059 {} 00060 00061 void 00062 UniformVMatrix::build() 00063 { 00064 inherited::build(); 00065 build_(); 00066 } 00067 00068 void 00069 UniformVMatrix::build_() 00070 { 00071 } 00072 00073 void 00074 UniformVMatrix::declareOptions(OptionList &ol) 00075 { 00076 declareOption(ol, "minval", &UniformVMatrix::minval, OptionBase::buildoption, ""); 00077 declareOption(ol, "maxval", &UniformVMatrix::maxval, OptionBase::buildoption, ""); 00078 inherited::declareOptions(ol); 00079 } 00080 00081 real UniformVMatrix::get(int i, int j) const 00082 { 00083 double scale = maxval-minval; 00084 return uniform_sample()*scale+minval; 00085 } 00086 00087 void UniformVMatrix::getSubRow(int i, int j, Vec v) const 00088 { 00089 double scale = maxval-minval; 00090 for(int k=0; k<v.length(); k++) 00091 v[k] = uniform_sample()*scale+minval; 00092 } 00093 00094 00095 } // end of namespcae PLearn