00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: KernelVMatrix.cc,v 1.3 2004/07/21 16:30:55 chrish42 Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "KernelVMatrix.h" 00044 00045 // From Old Kernel.cc: all includes are putted in every file. 00046 // To be revised manually 00047 /*#include <cmath> 00048 #include <plearn/base/stringutils.h> 00049 #include <plearn/ker/Kernel.h> 00050 #include <plearn/math/TMat_maths.h> 00051 #include <plearn/sys/PLMPI.h>*/ 00053 namespace PLearn { 00054 using namespace std; 00055 00056 00057 // ***************** 00058 // * KernelVMatrix * 00059 // ***************** 00060 00061 PLEARN_IMPLEMENT_OBJECT(KernelVMatrix, "ONE LINE DESC", "NO HELP"); 00062 00063 KernelVMatrix::KernelVMatrix() 00064 { 00065 } 00066 00067 KernelVMatrix::KernelVMatrix(VMat data1, VMat data2, Ker the_ker) 00068 : VMatrix(data1->length(), data2->length()), 00069 d1(data1), d2(data2), ker(the_ker), 00070 input1(data1->width()), input2(data2->width()) 00071 {} 00072 00073 void 00074 KernelVMatrix::build() 00075 { 00076 inherited::build(); 00077 build_(); 00078 } 00079 00080 void 00081 KernelVMatrix::build_() 00082 { 00083 if (d1) 00084 input1.resize(d1->width()); 00085 if (d2) 00086 input2.resize(d2->width()); 00087 } 00088 00089 void 00090 KernelVMatrix::declareOptions(OptionList &ol) 00091 { 00092 declareOption(ol, "d1", &KernelVMatrix::d1, OptionBase::buildoption, ""); 00093 declareOption(ol, "d2", &KernelVMatrix::d2, OptionBase::buildoption, ""); 00094 declareOption(ol, "ker", &KernelVMatrix::ker, OptionBase::buildoption, ""); 00095 inherited::declareOptions(ol); 00096 } 00097 00098 /* 00099 IMPLEMENT_NAME_AND_DEEPCOPY(KernelVMatrix); 00100 void KernelVMatrix::makeDeepCopyFromShallowCopy(map<const void*, void*>& copies) 00101 { 00102 Kernel::makeDeepCopyFromShallowCopy(copies); 00103 deepCopyField(d1, copies); 00104 deepCopyField(d2, copies); 00105 deepCopyField(ker, copies); 00106 deepCopyField(input1, copies); 00107 deepCopyField(input2, copies); 00108 } 00109 */ 00110 00111 real KernelVMatrix::get(int i, int j) const 00112 { 00113 #ifdef BOUNDCHECK 00114 if(i<0 || i>=length() || j<0 || j>=width()) 00115 PLERROR("In KernelVMatrix::get OUT OF BOUNDS"); 00116 #endif 00117 00118 d1->getRow(i,input1); 00119 d2->getRow(j,input2); 00120 return ker(input1,input2); 00121 } 00122 00123 00124 void KernelVMatrix::getSubRow(int i, int j, Vec v) const 00125 { 00126 #ifdef BOUNDCHECK 00127 if(i<0 || i>=length() || j<0 || j+v.length()>width()) 00128 PLERROR("In KernelVMatrix::getRow OUT OF BOUNDS"); 00129 #endif 00130 00131 d1->getRow(i,input1); 00132 for(int jj=0; jj<v.length(); jj++) 00133 { 00134 d2->getRow(j+jj,input2); 00135 v[jj] = ker(input1,input2); 00136 } 00137 } 00138 00139 00140 00141 } // end of namespace PLearn 00142