00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: TanhVariable.cc,v 1.6 2004/04/27 16:02:26 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "TanhVariable.h" 00044 #include "Var_operators.h" 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00049 00052 PLEARN_IMPLEMENT_OBJECT(TanhVariable, 00053 "ONE LINE DESCR", 00054 "NO HELP"); 00055 00056 TanhVariable::TanhVariable(Variable* input) 00057 : inherited(input, input->length(), input->width()) 00058 {} 00059 00060 void TanhVariable::recomputeSize(int& l, int& w) const 00061 { 00062 if (input) { 00063 l = input->length(); 00064 w = input->width(); 00065 } else 00066 l = w = 0; 00067 } 00068 00069 void TanhVariable::fprop() 00070 { 00071 int l = nelems(); 00072 real* inputptr = input->valuedata; 00073 real* ptr = valuedata; 00074 for(int i=0; i<l; i++) 00075 *ptr++ = tanh(*inputptr++); 00076 } 00077 00078 00079 void TanhVariable::bprop() 00080 { 00081 int l = nelems(); 00082 real* inputgradientptr = input->gradientdata; 00083 real* gradientptr = gradientdata; 00084 real* valueptr = valuedata; 00085 for(int i=0; i<l; i++) 00086 *inputgradientptr++ += *gradientptr++ * (1.0-square(*valueptr++)); 00087 } 00088 00089 00090 void TanhVariable::bbprop() 00091 { 00092 if (input->diaghessian.length()==0) 00093 input->resizeDiagHessian(); 00094 for(int i=0; i<nelems(); i++) 00095 { 00096 real yi=valuedata[i]; 00097 real fprime=(1-yi*yi); 00098 input->diaghessiandata[i] += diaghessiandata[i] * fprime * fprime; 00099 } 00100 } 00101 00102 00103 void TanhVariable::symbolicBprop() 00104 { 00105 Var v(this); 00106 input->accg(g * (1. - square(v))); 00107 } 00108 00109 00110 // R(tanh(x)) = (1-tanh(x)^2)R(x) 00111 void TanhVariable::rfprop() 00112 { 00113 if (rValue.length()==0) resizeRValue(); 00114 int l = nelems(); 00115 real* inputptr = input->rvaluedata; 00116 real* valueptr = valuedata; 00117 real* ptr = rvaluedata; 00118 for(int i=0; i<l; i++) 00119 *ptr++ = *inputptr++ * (1.0 - square(*valueptr++)); 00120 } 00121 00122 00123 00124 } // end of namespace PLearn 00125 00126