Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

MiniBatchClassificationLossVariable.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: MiniBatchClassificationLossVariable.cc,v 1.5 2004/04/27 15:58:16 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "MiniBatchClassificationLossVariable.h" 00044 00045 namespace PLearn { 00046 using namespace std; 00047 00048 00051 PLEARN_IMPLEMENT_OBJECT(MiniBatchClassificationLossVariable, 00052 "ONE LINE DESCR", 00053 "NO HELP"); 00054 00055 MiniBatchClassificationLossVariable::MiniBatchClassificationLossVariable(Variable* netout, Variable* classnum) 00056 : inherited(netout,classnum,classnum->length(),classnum->width()) 00057 { 00058 build_(); 00059 } 00060 00061 void 00062 MiniBatchClassificationLossVariable::build() 00063 { 00064 inherited::build(); 00065 build_(); 00066 } 00067 00068 void 00069 MiniBatchClassificationLossVariable::build_() 00070 { 00071 // input2 is classnum from constructor 00072 if(input2 && !input2->isVec()) 00073 PLERROR("In MiniBatchClassificationLossVariable: classnum must be a vector variable representing the indexs of netout (typically class numbers)"); 00074 } 00075 00076 00077 void MiniBatchClassificationLossVariable::recomputeSize(int& l, int& w) const 00078 { 00079 if (input2) { 00080 l = input2->length(); 00081 w = input2->width(); 00082 } else 00083 l = w = 0; 00084 } 00085 00086 void MiniBatchClassificationLossVariable::fprop() 00087 { 00088 int n = input2->size(); 00089 if(input1->length()==n) 00090 for (int i=0; i<n; i++) 00091 { 00092 int topscorepos = argmax(input1->matValue.row(i)); 00093 int num = int(input2->valuedata[i]); 00094 valuedata[i] = (topscorepos==num ?0 :1); 00095 } 00096 else if(input1->width()==n) 00097 for (int i=0; i<n; i++) 00098 { 00099 int topscorepos = argmax(input1->matValue.column(i)); 00100 int num = int(input2->valuedata[i]); 00101 valuedata[i] = (topscorepos==num ?0 :1); 00102 } 00103 else PLERROR("In MiniBatchClassificationLossVariable: The length or width of netout doesn't equal to the size of classnum"); 00104 } 00105 00106 00107 void MiniBatchClassificationLossVariable::symbolicBprop() 00108 { 00109 PLERROR("MiniBatchClassificationLossVariable::symbolicBprop not implemented."); 00110 } 00111 00112 00113 00114 } // end of namespace PLearn 00115 00116

Generated on Tue Aug 17 15:58:42 2004 for PLearn by doxygen 1.3.7