Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

OneHotSquaredLoss.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: OneHotSquaredLoss.cc,v 1.6 2004/04/27 16:03:35 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "OneHotSquaredLoss.h" 00044 #include "RowAtPositionVariable.h" 00045 #include "Var_operators.h" 00046 //#include "Var_utils.h" 00047 00048 namespace PLearn { 00049 using namespace std; 00050 00051 00054 PLEARN_IMPLEMENT_OBJECT(OneHotSquaredLoss, 00055 "Computes sum(square_i(netout[i]-(i==classnum ?hotval :coldval))", 00056 "NO HELP"); 00057 00058 OneHotSquaredLoss::OneHotSquaredLoss(Variable* netout, Variable* classnum, real coldval, real hotval) 00059 : inherited(netout,classnum,1,1), coldval_(coldval), hotval_(hotval) 00060 { 00061 build_(); 00062 } 00063 00064 void 00065 OneHotSquaredLoss::build() 00066 { 00067 inherited::build(); 00068 build_(); 00069 } 00070 00071 void 00072 OneHotSquaredLoss::build_() 00073 { 00074 // input2 is classnum from constructor 00075 if(input2 && !input2->isScalar()) 00076 PLERROR("In OneHotSquaredLoss: classnum must be a scalar variable representing an index of netout (typically a classnum)"); 00077 } 00078 00079 void 00080 OneHotSquaredLoss::declareOptions(OptionList &ol) 00081 { 00082 declareOption(ol, "coldval_", &OneHotSquaredLoss::coldval_, OptionBase::buildoption, ""); 00083 declareOption(ol, "hotval_", &OneHotSquaredLoss::hotval_, OptionBase::buildoption, ""); 00084 inherited::declareOptions(ol); 00085 } 00086 00087 void OneHotSquaredLoss::recomputeSize(int& l, int& w) const 00088 { l=1, w=1; } 00089 00090 void OneHotSquaredLoss::fprop() 00091 { 00092 real* netout = input1->valuedata; 00093 int n = input1->value.size(); 00094 int classnum = (int) input2->valuedata[0]; 00095 real res = 0.; 00096 for(int i=0; i<n; i++) 00097 res += square(*netout++ - (i==classnum ? hotval_ : coldval_)); 00098 *valuedata = res; 00099 } 00100 00101 00102 void OneHotSquaredLoss::bprop() 00103 { 00104 real gr = *gradientdata; 00105 real* netout = input1->valuedata; 00106 int n = input1->value.size(); 00107 int classnum = (int) input2->valuedata[0]; 00108 real* input1grptr = input1->gradientdata; 00109 if(gr!=1.) 00110 { 00111 gr = gr+gr; 00112 for(int i=0; i<n; i++) 00113 *input1grptr++ += gr*(*netout++ - (i==classnum ? hotval_ : coldval_)); 00114 } 00115 else // specialised version for gr==1 00116 { 00117 for(int i=0; i<n; i++) 00118 input1->gradientdata[i] += two(netout[i] - (i==classnum ? hotval_ : coldval_)); 00119 } 00120 } 00121 00122 00123 void OneHotSquaredLoss::symbolicBprop() 00124 { 00125 Var gi = g*(input1 - coldval_); 00126 Var gindex = new RowAtPositionVariable(g*(coldval_-hotval_), input2, input1->length()); 00127 Var ginput = gi + gindex; 00128 input1->accg(ginput+ginput); //2*gi 00129 } 00130 00131 00132 void OneHotSquaredLoss::rfprop() 00133 { 00134 int n = input1->value.size(); 00135 int classnum = (int) input2->valuedata[0]; 00136 real sum = 0; 00137 for (int i=0; i<n; i++) 00138 sum += 2 * input1->rvaluedata[i] * (input1->valuedata[i] - (i==classnum ? hotval_ : coldval_)); 00139 rvaluedata[0] = sum; 00140 } 00141 00142 00143 00144 } // end of namespace PLearn 00145 00146

Generated on Tue Aug 17 16:00:10 2004 for PLearn by doxygen 1.3.7