Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

SigmoidVariable.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: SigmoidVariable.cc,v 1.6 2004/04/27 16:02:26 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "SigmoidVariable.h" 00044 #include "Var_operators.h" 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00049 00052 PLEARN_IMPLEMENT_OBJECT(SigmoidVariable, 00053 "ONE LINE DESCR", 00054 "NO HELP"); 00055 00056 SigmoidVariable::SigmoidVariable(Variable* input) 00057 : inherited(input, input->length(), input->width()) 00058 {} 00059 00060 void SigmoidVariable::recomputeSize(int& l, int& w) const 00061 { 00062 if (input) { 00063 l = input->length(); 00064 w = input->width(); 00065 } else 00066 l = w = 0; 00067 } 00068 00069 void SigmoidVariable::fprop() 00070 { 00071 int l = nelems(); 00072 real* valueptr = valuedata; 00073 real* inputvalueptr = input->valuedata; 00074 for(int i=0; i<l; i++) 00075 *valueptr++ = sigmoid(*inputvalueptr++); 00076 } 00077 00078 00079 void SigmoidVariable::bprop() 00080 { 00081 int l = nelems(); 00082 real* inputgradientptr = input->gradientdata; 00083 real* gradientptr = gradientdata; 00084 real* valueptr = valuedata; 00085 for(int i=0; i<l; i++) 00086 { 00087 real val = *valueptr++; 00088 *inputgradientptr++ += *gradientptr++ * val*(1.0-val); 00089 } 00090 } 00091 00092 00093 void SigmoidVariable::bbprop() 00094 { 00095 if (input->diaghessian.length()==0) 00096 input->resizeDiagHessian(); 00097 for(int i=0; i<nelems(); i++) 00098 { 00099 real yi = valuedata[i]; 00100 real fprime = yi*(1-yi); 00101 input->gradientdata[i] += gradientdata[i] * fprime * fprime; 00102 } 00103 } 00104 00105 00106 void SigmoidVariable::symbolicBprop() 00107 { 00108 Var v(this); 00109 input->accg(g*v*(1. - v)); 00110 } 00111 00112 00113 // R{sigmoid(x)} = f(x)(1-f(x))R(x) 00114 void SigmoidVariable::rfprop() 00115 { 00116 if (rValue.length()==0) resizeRValue(); 00117 int l = nelems(); 00118 real* inputptr = input->rvaluedata; 00119 real* inputvalueptr = valuedata; 00120 real* ptr = rvaluedata; 00121 for(int i=0; i<l; i++) 00122 { 00123 real val = *inputvalueptr++; 00124 *ptr++ = *inputptr++ * val * (1.0 - val); 00125 } 00126 } 00127 00133 Var softmax(Var x1, Var x2, Var hardness) 00134 { 00135 Var w=sigmoid(hardness*(x1-x2)); 00136 return x1*w + x2*(1-w); 00137 } 00138 00139 00140 } // end of namespace PLearn 00141 00142

Generated on Tue Aug 17 16:05:49 2004 for PLearn by doxygen 1.3.7