00001 // -*- C++ -*- 00002 00003 // NearestNeighborPredictionCost.cc 00004 // 00005 // Copyright (C) 2004 Martin Monperrus 00006 // 00007 // Redistribution and use in source and binary forms, with or without 00008 // modification, are permitted provided that the following conditions are met: 00009 // 00010 // 1. Redistributions of source code must retain the above copyright 00011 // notice, this list of conditions and the following disclaimer. 00012 // 00013 // 2. Redistributions in binary form must reproduce the above copyright 00014 // notice, this list of conditions and the following disclaimer in the 00015 // documentation and/or other materials provided with the distribution. 00016 // 00017 // 3. The name of the authors may not be used to endorse or promote 00018 // products derived from this software without specific prior written 00019 // permission. 00020 // 00021 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00022 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00023 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00024 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00025 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00026 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00027 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00028 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00029 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00030 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00031 // 00032 // This file is part of the PLearn library. For more information on the PLearn 00033 // library, go to the PLearn Web site at www.plearn.org 00034 00035 /* ******************************************************* 00036 * $Id: NearestNeighborPredictionCost.cc,v 1.1 2004/08/12 16:11:59 monperrm Exp $ 00037 ******************************************************* */ 00038 00039 // Authors: Martin Monperrus 00040 00044 #include "NearestNeighborPredictionCost.h" 00045 #include "plearn/var/ProjectionErrorVariable.h" 00046 #include "plearn/vmat/LocalNeighborsDifferencesVMatrix.h" 00047 #include "plearn/var/Func.h" 00048 #include "plearn/vmat/AutoVMatrix.h" 00049 #include "plearn/vmat/MemoryVMatrix.h" 00050 00051 namespace PLearn { 00052 //using namespace std; 00053 using namespace PLearn; 00054 00055 00056 NearestNeighborPredictionCost::NearestNeighborPredictionCost() : test_set(AutoVMatrix("/u/monperrm/data/amat/gauss2D_200_0p001_1.amat")) 00057 /* ### Initialize all fields to their default value */ 00058 { 00059 // ... 00060 00061 // ### You may or may not want to call build_() to finish building the object 00062 // build_(); 00063 } 00064 00065 PLEARN_IMPLEMENT_OBJECT(NearestNeighborPredictionCost, "ONE LINE DESCRIPTION", "MULTI LINE\nHELP"); 00066 00067 void NearestNeighborPredictionCost::declareOptions(OptionList& ol) 00068 { 00069 // ### Declare all of this object's options here 00070 // ### For the "flags" of each option, you should typically specify 00071 // ### one of OptionBase::buildoption, OptionBase::learntoption or 00072 // ### OptionBase::tuningoption. Another possible flag to be combined with 00073 // ### is OptionBase::nosave 00074 00075 declareOption(ol, "knn", &NearestNeighborPredictionCost::knn, OptionBase::buildoption, 00076 "Help text describing this option"); 00077 declareOption(ol, "test_set", &NearestNeighborPredictionCost::test_set, OptionBase::buildoption, 00078 "Help text describing this option"); 00079 declareOption(ol, "learner_spec", &NearestNeighborPredictionCost::learner_spec, OptionBase::buildoption, 00080 "Help text describing this option"); 00081 00082 // ### ex: 00083 // declareOption(ol, "myoption", &NearestNeighborPredictionCost::myoption, OptionBase::buildoption, 00084 // "Help text describing this option"); 00085 // ... 00086 00087 // Now call the parent class' declareOptions 00088 inherited::declareOptions(ol); 00089 } 00090 00091 void NearestNeighborPredictionCost::build_() 00092 { 00093 // ### This method should do the real building of the object, 00094 // ### according to set 'options', in *any* situation. 00095 // ### Typical situations include: 00096 // ### - Initial building of an object from a few user-specified options 00097 // ### - Building of a "reloaded" object: i.e. from the complete set of all serialised options. 00098 // ### - Updating or "re-building" of an object after a few "tuning" options have been modified. 00099 // ### You should assume that the parent class' build_() has already been called. 00100 00101 PLearn::load(learner_spec,learner); 00102 learner->report_progress = false; 00103 cost.resize(knn); 00104 cost<<0; 00105 computed_outputs = new MemoryVMatrix(test_set->length(),learner->outputsize()); 00106 learner->use(test_set,computed_outputs); 00107 00108 } 00109 00110 void NearestNeighborPredictionCost::run() 00111 { 00112 00113 VMat targets_vmat; 00114 int l = test_set->length(); 00115 int n = test_set->width(); 00116 int n_dim = learner->outputsize() / test_set->width(); 00117 Var targets = Var(1,n); 00118 Var prediction = Var(n_dim,n); 00119 Var proj_err = projection_error(prediction, targets, 0, n); 00120 Func projection_error_f = Func(prediction & targets, proj_err); 00121 Vec temp(n_dim*n); 00122 Vec temp2(n); 00123 00124 for (int j=0; j<knn; ++j) 00125 { 00126 targets_vmat = local_neighbors_differences(test_set, j+1, true); 00127 for (int i=0;i<l;++i) 00128 { 00129 computed_outputs->getRow(i,temp); 00130 targets_vmat->getRow(i,temp2); 00131 //cout<<temp2<<"/ "<<temp<<" "<<dot(temp,temp2)<<endl; 00132 //cout<<projection_error_f(temp,temp2)<<endl; 00133 cost[j]+=projection_error_f(temp,temp2); 00134 } 00135 } 00136 cost/=l; 00137 cout<<"Cost = "<<cost<<endl; 00138 cout<<min(cost)<<endl; 00139 // printf("%.12f",cost); 00140 00141 } 00142 00143 00144 // ### Nothing to add here, simply calls build_ 00145 void NearestNeighborPredictionCost::build() 00146 { 00147 inherited::build(); 00148 build_(); 00149 } 00150 00151 void NearestNeighborPredictionCost::makeDeepCopyFromShallowCopy(map<const void*, void*>& copies) 00152 { 00153 inherited::makeDeepCopyFromShallowCopy(copies); 00154 00155 // ### Call deepCopyField on all "pointer-like" fields 00156 // ### that you wish to be deepCopied rather than 00157 // ### shallow-copied. 00158 // ### ex: 00159 // deepCopyField(trainvec, copies); 00160 00161 // ### Remove this line when you have fully implemented this method. 00162 PLERROR("NearestNeighborPredictionCost::makeDeepCopyFromShallowCopy not fully (correctly) implemented yet!"); 00163 } 00164 00165 } // end of namespace PLearn