00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: ProductTransposeVariable.cc,v 1.6 2004/04/27 15:58:16 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "ProductVariable.h" 00044 #include "ProductTransposeVariable.h" 00045 #include "TransposeProductVariable.h" 00046 //#include "Var_utils.h" 00047 00048 namespace PLearn { 00049 using namespace std; 00050 00051 00054 // Matrix product between matrix1 and transpose of matrix2 00055 00056 PLEARN_IMPLEMENT_OBJECT(ProductTransposeVariable, 00057 "Matrix product between matrix1 and transpose of matrix2", 00058 "NO HELP"); 00059 00060 ProductTransposeVariable::ProductTransposeVariable(Variable* m1, Variable* m2) 00061 : inherited(m1, m2, m1->length(), m2->length()) 00062 { 00063 build_(); 00064 } 00065 00066 void 00067 ProductTransposeVariable::build() 00068 { 00069 inherited::build(); 00070 build_(); 00071 } 00072 00073 void 00074 ProductTransposeVariable::build_() 00075 { 00076 if (input1 && input2) { 00077 // input1 and input2 are (respectively) m1 and m2 from constructor 00078 if (input1->width() != input2->width()) 00079 PLERROR("In ProductVariable: the size of m1 and m2 are not compatible for a matrix product"); 00080 } 00081 } 00082 00083 00084 void ProductTransposeVariable::recomputeSize(int& l, int& w) const 00085 { 00086 if (input1 && input2) { 00087 l = input1->length(); 00088 w = input2->width(); 00089 } else 00090 l = w = 0; 00091 } 00092 00093 void ProductTransposeVariable::fprop() 00094 { 00095 // m[i,j] = sum_k input1[i,k] * input2[j,k] 00096 productTranspose(matValue, input1->matValue,input2->matValue); 00097 } 00098 00099 00100 void ProductTransposeVariable::bprop() 00101 { 00102 // dC/dinput1[i,k] += sum_j dC/dm[i,j] input2[j,k] 00103 productAcc(input1->matGradient, matGradient,input2->matValue); 00104 // dC/dinput2[j,k] += sum_i dC/dm[i,j] itnput1[i,k] 00105 transposeProductAcc(input2->matGradient, matGradient,input1->matValue); 00106 } 00107 00108 00109 void ProductTransposeVariable::bbprop() 00110 { 00111 if (input1->diaghessian.length()==0) 00112 input1->resizeDiagHessian(); 00113 if (input2->diaghessian.length()==0) 00114 input2->resizeDiagHessian(); 00115 // d^2C/dinput1[i,k]^2 += sum_j d^2C/dm[i,j]^2 input2[j,k]^2 00116 product2Acc(input1->matGradient, matGradient,input2->matValue); 00117 // d^2C/dinput2[j,k]^2 += sum_i d^C/dm[i,j]^2 input1[i,k]^2 00118 transposeProduct2Acc(input2->matGradient, matGradient,input1->matValue); 00119 } 00120 00121 00122 void ProductTransposeVariable::symbolicBprop() 00123 { 00124 // dC/dinput1[i,k] += sum_j dC/dm[i,j] input2[j,k] 00125 input1->accg(product(g, input2)); 00126 // dC/dinput2[j,k] += sum_i dC/dm[i,j] itnput1[i,k] 00127 input2->accg(transposeProduct(g,input1)); 00128 } 00129 00130 00131 void ProductTransposeVariable::rfprop() 00132 { 00133 if (rValue.length()==0) 00134 resizeRValue(); 00135 productTranspose(matRValue, input1->matRValue,input2->matValue); 00136 productTransposeAcc(matRValue, input1->matValue,input2->matRValue); 00137 } 00138 00139 00140 00141 } // end of namespace PLearn 00142 00143