Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

SelectInputSubsetLearner.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // SelectInputSubsetLearner.cc 00004 // 00005 // Copyright (C) 2004 Yoshua Bengio 00006 // 00007 // Redistribution and use in source and binary forms, with or without 00008 // modification, are permitted provided that the following conditions are met: 00009 // 00010 // 1. Redistributions of source code must retain the above copyright 00011 // notice, this list of conditions and the following disclaimer. 00012 // 00013 // 2. Redistributions in binary form must reproduce the above copyright 00014 // notice, this list of conditions and the following disclaimer in the 00015 // documentation and/or other materials provided with the distribution. 00016 // 00017 // 3. The name of the authors may not be used to endorse or promote 00018 // products derived from this software without specific prior written 00019 // permission. 00020 // 00021 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00022 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00023 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00024 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00025 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00026 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00027 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00028 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00029 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00030 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00031 // 00032 // This file is part of the PLearn library. For more information on the PLearn 00033 // library, go to the PLearn Web site at www.plearn.org 00034 00035 /* ******************************************************* 00036 * $Id: SelectInputSubsetLearner.cc,v 1.3 2004/07/21 16:30:56 chrish42 Exp $ 00037 ******************************************************* */ 00038 00039 // Authors: Yoshua Bengio 00040 00043 #include "SelectInputSubsetLearner.h" 00044 #include <plearn/vmat/SelectColumnsVMatrix.h> 00045 #include <plearn/math/random.h> 00046 00047 namespace PLearn { 00048 using namespace std; 00049 00050 SelectInputSubsetLearner::SelectInputSubsetLearner() : random_fraction(0) 00051 /* ### Initialize all fields to their default value here */ 00052 { 00053 } 00054 00055 PLEARN_IMPLEMENT_OBJECT(SelectInputSubsetLearner, "PLearner which selects a subset of the inputs for an embedded learner.", 00056 "This learner class contains an embedded learner for which it selects a subset of the inputs.\n" 00057 "The subset can be either selected explicitly or chosen randomly (the user chooses what fraction\n" 00058 "of the original inputs will be selected)."); 00059 00060 void SelectInputSubsetLearner::declareOptions(OptionList& ol) 00061 { 00062 // ### Declare all of this object's options here 00063 // ### For the "flags" of each option, you should typically specify 00064 // ### one of OptionBase::buildoption, OptionBase::learntoption or 00065 // ### OptionBase::tuningoption. Another possible flag to be combined with 00066 // ### is OptionBase::nosave 00067 00068 declareOption(ol, "selected_inputs", &SelectInputSubsetLearner::selected_inputs, OptionBase::buildoption, 00069 "List of selected inputs. If this option is set then random_fraction should not be set (or set to 0).\n"); 00070 00071 declareOption(ol, "random_fraction", &SelectInputSubsetLearner::random_fraction, OptionBase::buildoption, 00072 "Fraction of the original inputs that is randomly selected.\n" 00073 "If 0 then the selected_inputs option should be set.\n" 00074 "If selected_inputs is provided (length>0) then this option is ignored.\n"); 00075 00076 // Now call the parent class' declareOptions 00077 inherited::declareOptions(ol); 00078 } 00079 00080 void SelectInputSubsetLearner::build_() 00081 { 00082 if (random_fraction>0 && learner_ && inputsize_>0 && selected_inputs.length()==0) 00083 { 00084 int n_selected = int(rint(random_fraction*inputsize_)); 00085 selected_inputs.resize(inputsize_); 00086 for (int i=0;i<n_selected;i++) 00087 selected_inputs[i]=i; 00088 shuffleElements(selected_inputs); 00089 selected_inputs.resize(n_selected); 00090 } 00091 learner_inputs.resize(selected_inputs.length()); 00092 } 00093 00094 // ### Nothing to add here, simply calls build_ 00095 void SelectInputSubsetLearner::build() 00096 { 00097 inherited::build(); 00098 build_(); 00099 } 00100 00101 00102 void SelectInputSubsetLearner::makeDeepCopyFromShallowCopy(map<const void*, void*>& copies) 00103 { 00104 inherited::makeDeepCopyFromShallowCopy(copies); 00105 00106 // ### Call deepCopyField on all "pointer-like" fields 00107 // ### that you wish to be deepCopied rather than 00108 // ### shallow-copied. 00109 // ### ex: 00110 deepCopyField(selected_inputs, copies); 00111 deepCopyField(all_indices, copies); 00112 deepCopyField(learner_inputs, copies); 00113 } 00114 00115 int SelectInputSubsetLearner::inputsize() const 00116 { return inputsize_; } 00117 00118 00119 void SelectInputSubsetLearner::computeOutput(const Vec& input, Vec& output) const 00120 { 00121 for (int i=0;i<learner_inputs.length();i++) 00122 learner_inputs[i] = input[selected_inputs[i]]; 00123 learner_->computeOutput(learner_inputs,output); 00124 } 00125 00126 void SelectInputSubsetLearner::computeCostsFromOutputs(const Vec& input, const Vec& output, 00127 const Vec& target, Vec& costs) const 00128 { 00129 // Compute the costs from *already* computed output. 00130 for (int i=0;i<learner_inputs.length();i++) 00131 learner_inputs[i] = input[selected_inputs[i]]; 00132 learner_->computeCostsFromOutputs(learner_inputs,output,target,costs); 00133 } 00134 00135 void SelectInputSubsetLearner::computeOutputAndCosts(const Vec& input, const Vec& target, 00136 Vec& output, Vec& costs) const 00137 { 00138 for (int i=0;i<learner_inputs.length();i++) 00139 learner_inputs[i] = input[selected_inputs[i]]; 00140 learner_->computeOutputAndCosts(learner_inputs, target, output, costs); 00141 } 00142 00143 void SelectInputSubsetLearner::setTrainingSet(VMat training_set, bool call_forget) 00144 { 00145 inherited::setTrainingSet(training_set,call_forget); 00146 int n_other_columns = training_set->width()-inputsize(); 00147 all_indices.resize(selected_inputs.length()+n_other_columns); 00148 for (int i=0;i<selected_inputs.length();i++) 00149 all_indices[i]=selected_inputs[i]; 00150 for (int j=0;j<n_other_columns;j++) 00151 all_indices[selected_inputs.length()+j]=inputsize()+j; 00152 VMat vm = new SelectColumnsVMatrix(training_set,all_indices); 00153 vm->defineSizes(selected_inputs.length(),training_set->targetsize(),training_set->weightsize()); 00154 learner_->setTrainingSet(vm,call_forget); 00155 } 00156 00157 } // end of namespace PLearn

Generated on Tue Aug 17 16:04:55 2004 for PLearn by doxygen 1.3.7