Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

HardSlopeVariable.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: HardSlopeVariable.cc,v 1.3 2004/04/27 16:02:26 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "HardSlopeVariable.h" 00044 #include "Var_utils.h" 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00049 00052 PLEARN_IMPLEMENT_OBJECT(HardSlopeVariable, 00053 "This Var computes the hard_slope function", 00054 "The hard_slope function is linear by parts function:\n" 00055 "0 in [-infty,left], linear in [left,right], and 1 in [right,infty], and continuous.\n" 00056 "If the arguments are vectors than the operation is performed element by element on all of them.\n"); 00057 00058 HardSlopeVariable:: HardSlopeVariable(Variable* x, Variable* left, Variable* right) 00059 : inherited(VarArray(x,left) & Var(right), 00060 x->length()<left->length()?left->length():x->length(), 00061 x->width()<left->width()?left->width():x->width()) 00062 {} 00063 00064 00065 void HardSlopeVariable::recomputeSize(int& l, int& w) const 00066 { 00067 l = w = 0; 00068 if (varray.size() >= 3) { 00069 for (int i = 0;i < 3; i++) { 00070 if (varray[i]->length()>l) 00071 l = varray[i]->length(); 00072 if (varray[i]->width() > w) 00073 w = varray[i]->width(); 00074 } 00075 for (int i = 0;i < 3; i++) { 00076 if (varray[i]->length() != l || varray[i]->width() != w) { 00077 if (varray[i]->length() != 1 || varray[i]->width() != 1) 00078 PLERROR("Each argument of HardSlopeVariable should either have the same length/width as the others or length 1"); 00079 } 00080 } 00081 } 00082 } 00083 00084 00085 void HardSlopeVariable::fprop() 00086 { 00087 int n=nelems(); 00088 int n1=varray[0]->nelems(); 00089 int n2=varray[1]->nelems(); 00090 int n3=varray[2]->nelems(); 00091 real* x = varray[0]->valuedata; 00092 real* left = varray[1]->valuedata; 00093 real* right = varray[2]->valuedata; 00094 00095 if (n1==n && n2==n && n3==n) 00096 for(int i=0; i<n; i++) 00097 valuedata[i] = hard_slope(x[i], left[i], right[i]); 00098 else if (n1==1 && n2==n && n3==n) 00099 for(int i=0; i<n; i++) 00100 valuedata[i] = hard_slope(*x, left[i], right[i]); 00101 else 00102 { 00103 int m1= n1==1?0:1; 00104 int m2= n2==1?0:1; 00105 int m3= n3==1?0:1; 00106 for(int i=0; i<n; i++,x+=m1,left+=m2,right+=m3) 00107 valuedata[i] = hard_slope(*x, *left, *right); 00108 } 00109 } 00110 00111 00112 void HardSlopeVariable::bprop() 00113 { 00114 int n=nelems(); 00115 int n1=varray[0]->nelems(); 00116 int n2=varray[1]->nelems(); 00117 int n3=varray[2]->nelems(); 00118 int m1= n1==1?0:1; 00119 int m2= n2==1?0:1; 00120 int m3= n3==1?0:1; 00121 real* x = varray[0]->valuedata; 00122 real* left = varray[1]->valuedata; 00123 real* right = varray[2]->valuedata; 00124 real* dx = varray[0]->gradientdata; 00125 real* dleft = varray[1]->gradientdata; 00126 real* dright = varray[2]->gradientdata; 00127 for(int i=0; i<n; i++,x+=m1,left+=m2,right+=m3,dx+=m1,dleft+=m2,dright+=m3) 00128 { 00129 real tleft = *x - *left; 00130 real tright = *x - *right; 00131 if (tright<=0 && tleft>=0) 00132 { 00133 real inv_delta=1.0/(*right - *left); 00134 real dll = tright*inv_delta; 00135 real drr = -tleft*inv_delta; 00136 real dxx = inv_delta; 00137 *dx += gradientdata[i] * dxx; 00138 *dleft += gradientdata[i] * dll; 00139 *dright += gradientdata[i] * drr; 00140 } 00141 } 00142 } 00143 00144 void HardSlopeVariable::symbolicBprop() 00145 { 00146 PLERROR("HardSlopeVariable::symbolicBprop() not implemented"); 00147 } 00148 00149 00150 00151 } // end of namespace PLearn 00152 00153

Generated on Tue Aug 17 15:54:54 2004 for PLearn by doxygen 1.3.7