Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

LimitedGaussianSmoother.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // LimitedGaussianSmoother.cc 00004 // 00005 // Copyright (C) 2002 Xavier Saint-Mleux 00006 // 00007 // Redistribution and use in source and binary forms, with or without 00008 // modification, are permitted provided that the following conditions are met: 00009 // 00010 // 1. Redistributions of source code must retain the above copyright 00011 // notice, this list of conditions and the following disclaimer. 00012 // 00013 // 2. Redistributions in binary form must reproduce the above copyright 00014 // notice, this list of conditions and the following disclaimer in the 00015 // documentation and/or other materials provided with the distribution. 00016 // 00017 // 3. The name of the authors may not be used to endorse or promote 00018 // products derived from this software without specific prior written 00019 // permission. 00020 // 00021 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00022 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00023 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00024 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00025 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00026 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00027 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00028 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00029 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00030 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00031 // 00032 // This file is part of the PLearn library. For more information on the PLearn 00033 // library, go to the PLearn Web site at www.plearn.org 00034 00035 /* ******************************************************* 00036 * $Id: LimitedGaussianSmoother.cc,v 1.10 2004/06/26 00:24:14 plearner Exp $ 00037 ******************************************************* */ 00038 00040 #include "LimitedGaussianSmoother.h" 00041 #include "pl_erf.h" 00042 00043 namespace PLearn { 00044 using namespace std; 00045 00046 LimitedGaussianSmoother::LimitedGaussianSmoother() 00047 :Smoother() 00048 /* ### Initialise all fields to their default value */ 00049 { 00050 // ... 00051 00052 // ### You may or may not want to call build_() to finish building the object 00053 // build_(); 00054 } 00055 00056 LimitedGaussianSmoother::LimitedGaussianSmoother(real window_size_wrt_sigma_, real sigma_bin_) 00057 :Smoother(), window_size_wrt_sigma(window_size_wrt_sigma_), sigma_bin(sigma_bin_) 00058 {} 00059 00060 PLEARN_IMPLEMENT_OBJECT(LimitedGaussianSmoother, "ONE LINE DESCR", "NO HELP"); 00061 00062 void LimitedGaussianSmoother::declareOptions(OptionList& ol) 00063 { 00064 // ### Declare all of this object's options here 00065 // ### For the "flags" of each option, you should typically specify 00066 // ### one of OptionBase::buildoption, OptionBase::learntoption or 00067 // ### OptionBase::tuningoption. Another possible flag to be combined with 00068 // ### is OptionBase::nosave 00069 00070 // ### ex: 00071 // declareOption(ol, "myoption", &LimitedGaussianSmoother::myoption, OptionBase::buildoption, 00072 // "Help text describing this option"); 00073 // ... 00074 00075 // Now call the parent class' declareOptions 00076 inherited::declareOptions(ol); 00077 } 00078 00079 void LimitedGaussianSmoother::build_() 00080 { 00081 // ### This method should do the real building of the object, 00082 // ### according to set 'options', in *any* situation. 00083 // ### Typical situations include: 00084 // ### - Initial building of an object from a few user-specified options 00085 // ### - Building of a "reloaded" object: i.e. from the complete set of all serialised options. 00086 // ### - Updating or "re-building" of an object after a few "tuning" options have been modified. 00087 // ### You should assume that the parent class' build_() has already been called. 00088 } 00089 00090 // ### Nothing to add here, simply calls build_ 00091 void LimitedGaussianSmoother::build() 00092 { 00093 inherited::build(); 00094 build_(); 00095 } 00096 00097 00098 void LimitedGaussianSmoother::makeDeepCopyFromShallowCopy(map<const void*, void*>& copies) 00099 { 00100 Object::makeDeepCopyFromShallowCopy(copies); 00101 00102 // ### Call deepCopyField on all "pointer-like" fields 00103 // ### that you wish to be deepCopied rather than 00104 // ### shallow-copied. 00105 // ### ex: 00106 // deepCopyField(trainvec, copies); 00107 00108 // ### Remove this line when you have fully implemented this method. 00109 PLERROR("LimitedGaussianSmoother::makeDeepCopyFromShallowCopy not fully (correctly) implemented yet!"); 00110 } 00111 00112 00113 real LimitedGaussianSmoother::smooth(const Vec& source_function, Vec& smoothed_function, 00114 Vec bin_positions, Vec dest_bin_positions) const 00115 { 00116 //parzen regressor?? kernel smoothing?? 00117 // smoothed_function[k] = sum_{j=max(0,k-window_size)}^{min(l-1,k+window_size)} w_{k,j} source_function[j] 00118 // / sum_{j=max(0,k-window_size)}^{min(l-1,k+window_size)} w_{k,j} 00119 // with w_{k,j} = phi(bin_positions[j+1];mu_k,sigma_k)-phi(bin_positions[j];mu_k,sigma_k) 00120 // where mu_k = 0.5*(bin_positions[k+1]+bin_positions[k]), 00121 // sigma_k = bin_positions[k+window_size]-bin_positions[k] 00122 // where phi(x;mu,sigma) = cdf of normal(mu,sigma) at x, 00123 // window_size = window_size_wrt_sigma * sigma_bin 00124 00125 // for dest_bin_positions != bin_positions: 2 methods: 00126 // 1- trouver sigma_bin en fonction du voisinage 00127 // d'une position dest. Somme ponderee avec 00128 // gaussienne centree sur le pt. dest. 00129 // 2- Un sigma_bin pour chaque bin_position (src). 00130 // Une gaussienne centree sur sur ch. pos src. 00131 // 00132 00133 00134 00135 smoothed_function.resize(source_function.length()); 00136 smoothed_function.fill(0.0); 00137 real window_size= window_size_wrt_sigma * sigma_bin; 00138 for(int i= 0; i < smoothed_function.length()-1; ++i) 00139 { 00140 int min_j= i-static_cast<int>(window_size), max_j= i+static_cast<int>(window_size); 00141 if(min_j < 0) min_j= 0; 00142 if(max_j > smoothed_function.length()) max_j= smoothed_function.length(); 00143 real sum_weights= 0.0; 00144 real mu= 0.5*(bin_positions[i+1]+bin_positions[i]), 00145 sigma= bin_positions[max_j-1]-bin_positions[i]; 00146 for(int j= min_j; j < max_j-1; ++j) 00147 { 00148 sum_weights+= gauss_cum(bin_positions[j+1], mu, sigma) - 00149 gauss_cum(bin_positions[j], mu, sigma); 00150 } 00151 for(int j= min_j; j < max_j-1; ++j) 00152 smoothed_function[i]+= ( gauss_cum(bin_positions[j+1], mu, sigma) 00153 - gauss_cum(bin_positions[j], mu, sigma) 00154 ) 00155 * source_function[j] / sum_weights; 00156 } 00157 00158 return 0.0; //dummy - FIXME - xsm 00159 00160 00161 00162 /* 00163 if(bin_positions.length() != 0 && source_function.length() != bin_positions.length()-1) 00164 PLERROR("in LimitedGaussianSmoother::smooth There must be one more bin_positions than the " 00165 "number of source_function points."); 00166 //if no bin_positions given, assume positions are 0, 1, 2, ..., n 00167 if(bin_positions.length() == 0) 00168 { 00169 int n= source_function.length()+1; 00170 bin_positions.resize(n); 00171 for(int i= 0; i < n; ++i) 00172 bin_positions[i]= i; 00173 } 00174 //if no dest_bin_positions given, assume same as bin_positions 00175 if(dest_bin_positions.length() == 0) 00176 dest_bin_positions= bin_positions; 00177 00178 smoothed_function.resize(dest_bin_positions.length()-1); 00179 smoothed_function.fill(0.0); 00180 real window_size, mu, sigma, sum_weights; 00181 int n= smoothed_function.length(); 00182 for(int i= 0; i < n; ++i) 00183 { 00184 sum_weights= 0.0; 00185 int nj= source_function.length(); 00186 for(int j= 0; j < nj; ++j) 00187 { 00188 mu= 0.5*(bin_positions[i+1]+bin_positions[i]); 00189 sigma= bin_positions[i+1]-bin_positions[i]; 00190 window_size= window_size_wrt_sigma * sigma; 00191 real p1= mu - 0.5*window_size, 00192 p2= mu + 0.5*window_size; 00193 00194 Vec::iterator it = find_if(options.begin(), options.end(), 00195 bind2nd(mem_fun(&OptionBase::isOptionNamed), optionname)); 00196 00197 00198 00199 } 00200 00201 00202 00203 / * 00204 int min_j= i-static_cast<int>(window_size), max_j= i+static_cast<int>(window_size); 00205 if(min_j < 0) min_j= 0; 00206 if(max_j > smoothed_function.length()) max_j= smoothed_function.length(); 00207 * / 00208 real sum_weights= 0.0; 00209 for(int j= min_j; j < max_j-1; ++j) 00210 { 00211 sum_weights+= gauss_cum(bin_positions[j+1], mu, sigma) - 00212 gauss_cum(bin_positions[j], mu, sigma); 00213 } 00214 for(int j= min_j; j < max_j-1; ++j) 00215 smoothed_function[i]+= ( gauss_cum(bin_positions[j+1], mu, sigma) 00216 - gauss_cum(bin_positions[j], mu, sigma) 00217 ) 00218 * source_function[j] / sum_weights; 00219 } 00220 */ 00221 } 00222 00223 } // end of namespace PLearn

Generated on Tue Aug 17 15:57:27 2004 for PLearn by doxygen 1.3.7