00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: Var_utils.cc,v 1.3 2004/02/20 21:11:54 chrish42 Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "AbsVariable.h" 00044 #include "ColumnIndexVariable.h" 00045 #include "ExpVariable.h" 00046 #include "LogVariable.h" 00047 #include "PLogPVariable.h" 00048 #include "PowVariable.h" 00049 #include "SumVariable.h" 00050 #include "Var_utils.h" 00051 //#include "Var_all.h" 00052 #include "Var_operators.h" 00053 00054 namespace PLearn { 00055 using namespace std; 00056 00057 Var mean(Var v) 00058 { return sum(v)/real(v->nelems()); } 00059 00060 Var neg_log_pi(Var p, Var index) 00061 { 00062 if(index->isScalar()) return -log(p[index]); 00063 else return -log(matrixIndex(p,index)); 00064 } 00065 00066 Var softmax(Var input, int index) 00067 { 00068 return 1.0/sum(exp(input-input[index])); 00069 } 00070 00071 Var pownorm(Var input, real n) 00072 { 00073 if(n==2.0) 00074 return sum(square(input)); 00075 else if(n==1.0) 00076 return sum(abs(input)); 00077 else 00078 return sum(pow(abs(input),n)); 00079 } 00080 00081 Var norm(Var input, real n) 00082 { 00083 if(n==2.0) 00084 return sqrt(sum(square(input))); 00085 else if(n==1.0) 00086 return sum(abs(input)); 00087 else 00088 return pow(sum(pow(abs(input),n)),1.0/n); 00089 } 00090 00091 Var entropy(Var v, bool normalize) 00092 { 00093 if(normalize) 00094 { 00095 Var absx = abs(v); 00096 Var normalized = absx/sum(absx); 00097 return sum(plogp(normalized))*(-1.0/log(2.0)); 00098 } 00099 else 00100 return sum(plogp(v))*(-1.0/log(2.0)); 00101 } 00102 00103 Var distance(Var input1, Var input2, real n) 00104 { return norm(input1-input2, n); } 00105 00106 Var powdistance(Var input1, Var input2, real n) 00107 { return pownorm(input1-input2, n); } 00108 00109 00110 00111 } // end of namespace PLearn 00112 00113