00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: PrecomputedKernel.cc,v 1.6 2004/04/07 23:15:17 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "PrecomputedKernel.h" 00044 00045 namespace PLearn { 00046 using namespace std; 00047 00048 00049 00050 // ** PrecomputedKernel ** 00051 00052 PLEARN_IMPLEMENT_OBJECT(PrecomputedKernel, "ONE LINE DESCR", "NO HELP"); 00053 00054 // PrecomputedKernel::~PrecomputedKernel() 00055 // { 00056 // if(precomputedK) 00057 // delete[] precomputedK; 00058 // } 00059 00060 void PrecomputedKernel::build_() 00061 {} 00062 00063 00064 void PrecomputedKernel::build() 00065 { 00066 inherited::build(); 00067 build_(); 00068 } 00069 00070 00071 00072 void PrecomputedKernel::makeDeepCopyFromShallowCopy(map<const void*, void*>& copies) 00073 { 00074 Kernel::makeDeepCopyFromShallowCopy(copies); 00075 deepCopyField(ker, copies); 00076 deepCopyField(precomputedK, copies); 00077 } 00078 00079 00080 // Old 00081 // void PrecomputedKernel::setDataForKernelMatrix(VMat the_data) 00082 // { 00083 // Kernel::setDataForKernelMatrix(the_data); 00084 // ker->setDataForKernelMatrix(the_data); 00085 00086 // if(precomputedK) 00087 // delete[] precomputedK; 00088 // int l = data.length(); 00089 // precomputedK = new float(l*l); 00090 // float* Kdata = precomputedK; 00091 // for(int i=0; i<l; i++) 00092 // { 00093 // cerr << "Precomputing Kernel Matrix Row " << i << " of " << l << " ..." << endl; 00094 // for(int j=0; j<l; j++) 00095 // Kdata[j] = (float)ker->evaluate_i_j(i,j); 00096 // Kdata += l; 00097 // } 00098 // } 00099 00100 /* 00101 Given that the matrix is symetric, we 00102 reduce the computation from n^2 to (n^2)/2 + n/2 calls to evaluate_i_j 00103 */ 00104 void PrecomputedKernel::setDataForKernelMatrix(VMat the_data) 00105 { 00106 Kernel::setDataForKernelMatrix(the_data); 00107 ker->setDataForKernelMatrix(the_data); 00108 00109 int len = data.length(); 00110 precomputedK.resize(len); //TVec of lines!!! 00111 for(int i=0; i < len; i++) 00112 { 00113 precomputedK[i].resize(len); 00114 00115 for(int j=0; j < len; j++) 00116 { 00117 if(is_symmetric && j<i) 00118 precomputedK[i][j] = precomputedK[j][i]; 00119 else 00120 precomputedK[i][j] = ker->evaluate_i_j(i,j); 00121 } 00122 } 00123 } 00124 00125 00126 real PrecomputedKernel::evaluate(const Vec& x1, const Vec& x2) const 00127 { return ker->evaluate(x1,x2); } 00128 00129 00130 real PrecomputedKernel::evaluate_i_j(int i, int j) const 00131 { 00132 #ifdef BOUNDCHECK 00133 if(precomputedK.isNull()) 00134 PLERROR("In PrecomputedKernel::evaluate_i_j data must first be set with setDataForKernelMatrix"); 00135 else if(i<0 || j<0 || i>=data.length() || j>=data.length()) 00136 PLERROR("In PrecomputedKernel::evaluate_i_j i (%d) and j (%d) must be between 0 and data.length() (%d)", 00137 i, j, data.length()); 00138 #endif 00139 return precomputedK[i][j];//[i*data.length()+j]; 00140 } 00141 00142 00143 real PrecomputedKernel::evaluate_i_x(int i, const Vec& x, real squared_norm_of_x) const 00144 { return ker->evaluate_i_x(i,x,squared_norm_of_x); } 00145 00146 00147 real PrecomputedKernel::evaluate_x_i(const Vec& x, int i, real squared_norm_of_x) const 00148 { return ker->evaluate_x_i(x,i,squared_norm_of_x); } 00149 00150 void PrecomputedKernel::declareOptions(OptionList &ol) 00151 { 00152 declareOption(ol, "ker", &PrecomputedKernel::ker, OptionBase::buildoption, 00153 "The underlying kernel."); 00154 inherited::declareOptions(ol); 00155 } 00156 00157 00158 00159 } // end of namespace PLearn 00160