00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: PowVariable.cc,v 1.6 2004/04/27 15:59:16 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "PowVariable.h" 00044 #include "Var_operators.h" 00045 //#include "Var_utils.h" 00046 00047 namespace PLearn { 00048 using namespace std; 00049 00050 00053 PLEARN_IMPLEMENT_OBJECT(PowVariable, 00054 "Elementwise pow (returns 0 wherever input is negative)", 00055 "NO HELP"); 00056 00057 PowVariable::PowVariable(Variable* input, real the_power) 00058 : inherited(input, input->length(), input->width()), power(the_power) 00059 {} 00060 00061 void 00062 PowVariable::declareOptions(OptionList &ol) 00063 { 00064 declareOption(ol, "power", &PowVariable::power, OptionBase::buildoption, ""); 00065 inherited::declareOptions(ol); 00066 } 00067 00068 void PowVariable::recomputeSize(int& l, int& w) const 00069 { 00070 if (input) { 00071 l = input->length(); 00072 w = input->width(); 00073 } else 00074 l = w = 0; 00075 } 00076 00077 void PowVariable::fprop() 00078 { 00079 for(int i=0; i<nelems(); i++) 00080 valuedata[i] = mypow(input->valuedata[i],power); 00081 } 00082 00083 00084 void PowVariable::bprop() 00085 { 00086 for(int i=0; i<nelems(); i++) 00087 input->gradientdata[i] += power*gradientdata[i]*mypow(input->valuedata[i],power-1.0); 00088 } 00089 00090 00091 void PowVariable::symbolicBprop() 00092 { 00093 input->accg(g * (power*pow(input, power-1.))); 00094 } 00095 00096 00097 00098 } // end of namespace PLearn 00099 00100