Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

AffineTransformWeightPenalty.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: AffineTransformWeightPenalty.cc,v 1.8 2004/04/28 18:42:20 tihocan Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "AffineTransformWeightPenalty.h" 00044 #include "Var_utils.h" 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00049 00050 PLEARN_IMPLEMENT_OBJECT(AffineTransformWeightPenalty, "Affine transformation with Weight decay terms", "NO HELP"); 00051 00052 void AffineTransformWeightPenalty::recomputeSize(int& l, int& w) const 00053 { l=1; w=1; } 00054 00055 void 00056 AffineTransformWeightPenalty::declareOptions(OptionList &ol) 00057 { 00058 declareOption(ol, "weight_decay_", &AffineTransformWeightPenalty::weight_decay_, OptionBase::buildoption, ""); 00059 declareOption(ol, "bias_decay_", &AffineTransformWeightPenalty::bias_decay_, OptionBase::buildoption, ""); 00060 declareOption(ol, "L1_penalty_", &AffineTransformWeightPenalty::L1_penalty_, OptionBase::buildoption, ""); 00061 inherited::declareOptions(ol); 00062 } 00063 00064 void AffineTransformWeightPenalty::fprop() 00065 { 00066 if (L1_penalty_) 00067 { 00068 if (input->length()>1) 00069 valuedata[0] = weight_decay_*sumabs(input->matValue.subMatRows(1,input->length()-1)); 00070 else 00071 valuedata[0] = 0; 00072 if(bias_decay_!=0) 00073 valuedata[0] += bias_decay_*sumabs(input->matValue(0)); 00074 } 00075 else 00076 { 00077 if (input->length()>1) 00078 valuedata[0] = weight_decay_*sumsquare(input->matValue.subMatRows(1,input->length()-1)); 00079 else 00080 valuedata[0] = 0; 00081 if(bias_decay_!=0) 00082 valuedata[0] += bias_decay_*sumsquare(input->matValue(0)); 00083 } 00084 } 00085 00086 00087 void AffineTransformWeightPenalty::bprop() 00088 { 00089 int l = input->length() - 1; 00090 if (L1_penalty_) 00091 { 00092 if (!input->matGradient.isCompact()) 00093 PLERROR("AffineTransformWeightPenalty::bprop, L1 penalty currently not handling non-compact weight matrix"); 00094 int n=input->width(); 00095 if (weight_decay_!=0) 00096 { 00097 real delta = weight_decay_ * gradientdata[0]; 00098 real* w = input->matValue[n]; 00099 real* d_w = input->matGradient[n]; 00100 int tot = l * n; // Number of weights to update. 00101 for (int i = 0; i < tot; i++) { 00102 if (w[i] > 0) 00103 d_w[i] += delta; 00104 else if (w[i] < 0) 00105 d_w[i] -= delta; 00106 } 00107 } 00108 if(bias_decay_!=0) 00109 { 00110 real* d_biases = input->matGradient[0]; 00111 real* biases = input->matValue[0]; 00112 for (int i=0;i<n;i++) 00113 if (biases[i]>0) 00114 d_biases[i] += bias_decay_*gradientdata[0]; 00115 else if (biases[i]<0) 00116 d_biases[i] -= bias_decay_*gradientdata[0]; 00117 } 00118 } 00119 else 00120 { 00121 multiplyAcc(input->matGradient.subMatRows(1,l), input->matValue.subMatRows(1,l), two(weight_decay_)*gradientdata[0]); 00122 if(bias_decay_!=0) 00123 multiplyAcc(input->matGradient(0), input->matValue(0), two(bias_decay_)*gradientdata[0]); 00124 } 00125 } 00126 00127 00128 00129 } // end of namespace PLearn 00130 00131

Generated on Tue Aug 17 15:48:32 2004 for PLearn by doxygen 1.3.7