00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
#include "MatrixOneHotSquaredLoss.h"
00044
00045
namespace PLearn {
00046
using namespace std;
00047
00048
00051
PLEARN_IMPLEMENT_OBJECT(MatrixOneHotSquaredLoss,
00052
"ONE LINE DESCR",
00053
"NO HELP");
00054
00055 MatrixOneHotSquaredLoss::MatrixOneHotSquaredLoss(
Variable* input1,
Variable* input2,
real coldval,
real hotval)
00056 :
inherited(input1,input2,input2->length(),input2->width()), coldval_(coldval), hotval_(hotval)
00057 {
00058
build_();
00059 }
00060
00061
void
00062 MatrixOneHotSquaredLoss::build()
00063 {
00064 inherited::build();
00065
build_();
00066 }
00067
00068
void
00069 MatrixOneHotSquaredLoss::build_()
00070 {
00071
if (input2 && !input2->isVec())
00072
PLERROR(
"In MatrixOneHotSquaredLoss: classnum must be a vector variable representing the indexs of netouts (typically some classnums)");
00073 }
00074
00075
void
00076 MatrixOneHotSquaredLoss::declareOptions(
OptionList &ol)
00077 {
00078
declareOption(ol,
"coldval_", &MatrixOneHotSquaredLoss::coldval_, OptionBase::buildoption,
"");
00079
declareOption(ol,
"hotval_", &MatrixOneHotSquaredLoss::hotval_, OptionBase::buildoption,
"");
00080 inherited::declareOptions(ol);
00081 }
00082
00083 void MatrixOneHotSquaredLoss::recomputeSize(
int& l,
int& w)
const
00084
{
00085
if (input2) {
00086 l = input2->
length();
00087 w = input2->
width();
00088 }
else
00089 l = w = 0;
00090 }
00091
00092 void MatrixOneHotSquaredLoss::fprop()
00093 {
00094
int n = input1->
length();
00095
for (
int k=0;
k<
length();
k++)
00096 {
00097
int classnum = (
int) input2->valuedata[
k];
00098
real res = 0.;
00099
for(
int i=0; i<n; i++)
00100 res +=
square(input1->matValue[i][
k] - (i==classnum ?
hotval_ :
coldval_));
00101 valuedata[
k] = res;
00102 }
00103 }
00104
00105
00106 void MatrixOneHotSquaredLoss::bprop()
00107 {
00108
int n = input1->
length();
00109
for(
int k=0;
k<
length();
k++)
00110 {
00111
real gr = gradientdata[
k];
00112
int classnum = (
int) input2->valuedata[
k];
00113
if (gr!=1.)
00114 {
00115 gr = gr+gr;
00116
for (
int i=0; i<n; i++)
00117 input1->matGradient[i][
k] += gr*(input1->matValue[i][
k] - (i==classnum ?
hotval_ :
coldval_));
00118 }
00119
else
00120 {
00121
for (
int i=0; i<n; i++)
00122 input1->matGradient[i][
k] +=
two(input1->matValue[i][
k] - (i==classnum ?
hotval_ :
coldval_));
00123 }
00124 }
00125 }
00126
00127
00128 void MatrixOneHotSquaredLoss::symbolicBprop()
00129 {
00130
PLERROR(
"MatrixOneHotSquaredLoss::symbolicBprop not implemented.");
00131 }
00132
00133
00134
00135 }
00136
00137