Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

MatrixOneHotSquaredLoss.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: MatrixOneHotSquaredLoss.cc,v 1.5 2004/04/27 16:03:35 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "MatrixOneHotSquaredLoss.h" 00044 00045 namespace PLearn { 00046 using namespace std; 00047 00048 00051 PLEARN_IMPLEMENT_OBJECT(MatrixOneHotSquaredLoss, 00052 "ONE LINE DESCR", 00053 "NO HELP"); 00054 00055 MatrixOneHotSquaredLoss::MatrixOneHotSquaredLoss(Variable* input1, Variable* input2, real coldval, real hotval) 00056 : inherited(input1,input2,input2->length(),input2->width()), coldval_(coldval), hotval_(hotval) 00057 { 00058 build_(); 00059 } 00060 00061 void 00062 MatrixOneHotSquaredLoss::build() 00063 { 00064 inherited::build(); 00065 build_(); 00066 } 00067 00068 void 00069 MatrixOneHotSquaredLoss::build_() 00070 { 00071 if (input2 && !input2->isVec()) 00072 PLERROR("In MatrixOneHotSquaredLoss: classnum must be a vector variable representing the indexs of netouts (typically some classnums)"); 00073 } 00074 00075 void 00076 MatrixOneHotSquaredLoss::declareOptions(OptionList &ol) 00077 { 00078 declareOption(ol, "coldval_", &MatrixOneHotSquaredLoss::coldval_, OptionBase::buildoption, ""); 00079 declareOption(ol, "hotval_", &MatrixOneHotSquaredLoss::hotval_, OptionBase::buildoption, ""); 00080 inherited::declareOptions(ol); 00081 } 00082 00083 void MatrixOneHotSquaredLoss::recomputeSize(int& l, int& w) const 00084 { 00085 if (input2) { 00086 l = input2->length(); 00087 w = input2->width(); 00088 } else 00089 l = w = 0; 00090 } 00091 00092 void MatrixOneHotSquaredLoss::fprop() 00093 { 00094 int n = input1->length(); 00095 for (int k=0; k<length(); k++) 00096 { 00097 int classnum = (int) input2->valuedata[k]; 00098 real res = 0.; 00099 for(int i=0; i<n; i++) 00100 res += square(input1->matValue[i][k] - (i==classnum ? hotval_ : coldval_)); 00101 valuedata[k] = res; 00102 } 00103 } 00104 00105 00106 void MatrixOneHotSquaredLoss::bprop() 00107 { 00108 int n = input1->length(); 00109 for(int k=0; k<length(); k++) 00110 { 00111 real gr = gradientdata[k]; 00112 int classnum = (int) input2->valuedata[k]; 00113 if (gr!=1.) 00114 { 00115 gr = gr+gr; 00116 for (int i=0; i<n; i++) 00117 input1->matGradient[i][k] += gr*(input1->matValue[i][k] - (i==classnum ? hotval_ : coldval_)); 00118 } 00119 else // specialised version for gr==1 00120 { 00121 for (int i=0; i<n; i++) 00122 input1->matGradient[i][k] += two(input1->matValue[i][k] - (i==classnum ? hotval_ : coldval_)); 00123 } 00124 } 00125 } 00126 00127 00128 void MatrixOneHotSquaredLoss::symbolicBprop() 00129 { 00130 PLERROR("MatrixOneHotSquaredLoss::symbolicBprop not implemented."); 00131 } 00132 00133 00134 00135 } // end of namespace PLearn 00136 00137

Generated on Tue Aug 17 15:58:18 2004 for PLearn by doxygen 1.3.7