Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

PowVariableVariable.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: PowVariableVariable.cc,v 1.6 2004/04/27 16:03:35 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "DotProductVariable.h" 00044 #include "IfThenElseVariable.h" 00045 #include "IsAboveThresholdVariable.h" 00046 #include "LogVariable.h" 00047 #include "PowVariableVariable.h" 00048 #include "Var_operators.h" 00049 00050 namespace PLearn { 00051 using namespace std; 00052 00053 00056 /* PowVariableVariable: x^y where x and y are variables but y is scalar 00057 or it has the same size as x */ 00058 00059 PLEARN_IMPLEMENT_OBJECT(PowVariableVariable, 00060 "x^y where x and y are variables but y is scalar " 00061 "or it has the same size as x", 00062 "NO HELP"); 00063 00064 PowVariableVariable::PowVariableVariable(Variable* input1, Variable* input2) 00065 : inherited(input1, input2, input1->length(), input1->width()) 00066 { 00067 build_(); 00068 } 00069 00070 void 00071 PowVariableVariable::build() 00072 { 00073 inherited::build(); 00074 build_(); 00075 } 00076 00077 void 00078 PowVariableVariable::build_() 00079 { 00080 if (input1 && input2) { 00081 if(!input2->isScalar() && (input1->length()!=input2->length() || input1->width()!=input2->width())) 00082 PLERROR("IN FunctionPowVariableVariable(Variable* input1, Variable* input2) input1 and input2 must have the same size or input2 must be scalar"); 00083 } 00084 } 00085 00086 void PowVariableVariable::recomputeSize(int& l, int& w) const 00087 { 00088 if (input1) { 00089 l = input1->length(); 00090 w = input1->width(); 00091 } else 00092 l = w = 0; 00093 } 00094 00095 00096 void PowVariableVariable::fprop() 00097 { 00098 if (input2->isScalar()) 00099 { 00100 real p = input2->valuedata[0]; 00101 for(int i=0; i<nelems(); i++) 00102 if (input1->valuedata[i]>0) 00103 valuedata[i] = pow(input1->valuedata[i],p); 00104 else 00105 valuedata[i] = 0; 00106 } 00107 else 00108 for(int i=0; i<nelems(); i++) 00109 if (input1->valuedata[i]>0) 00110 valuedata[i] = pow(input1->valuedata[i],input2->valuedata[i]); 00111 else 00112 valuedata[i] = 0; 00113 } 00114 00115 00116 void PowVariableVariable::bprop() 00117 { 00118 if (input2->isScalar()) 00119 { 00120 real p = input2->valuedata[0]; 00121 real& dp = input2->gradientdata[0]; 00122 for(int i=0; i<nelems(); i++) 00123 { 00124 if (input1->valuedata[i]>0) 00125 { 00126 input1->gradientdata[i] += 00127 gradientdata[i] * valuedata[i] * p / input1->valuedata[i]; 00128 dp += gradientdata[i] * valuedata[i] * safeflog(input1->valuedata[i]); 00129 } 00130 } 00131 } 00132 else 00133 { 00134 for(int i=0; i<nelems(); i++) 00135 { 00136 if (input1->valuedata[i]>0) 00137 { 00138 input1->gradientdata[i] += 00139 gradientdata[i] * valuedata[i] * input2->valuedata[i] 00140 / input1->valuedata[i]; 00141 input2->gradientdata[i] += 00142 gradientdata[i] * valuedata[i] * safeflog(input1->valuedata[i]); 00143 } 00144 } 00145 } 00146 } 00147 00148 00149 void PowVariableVariable::symbolicBprop() 00150 { 00151 Var gv = g * Var(this); 00152 Var input1zero = (input1<=0.0); 00153 Var zero(length(), width()); 00154 input1->accg(ifThenElse(input1zero, zero, gv * input2 / input1)); 00155 if (input2->isScalar()) 00156 input2->accg(dot(gv,ifThenElse(input1zero, zero, log(input1)))); 00157 else 00158 input2->accg(ifThenElse(input1zero, zero, gv * log(input1))); 00159 } 00160 00161 00162 00163 } // end of namespace PLearn 00164 00165

Generated on Tue Aug 17 16:02:36 2004 for PLearn by doxygen 1.3.7