Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

PLearn Class List

Here are the classes, structs, unions and interfaces with brief descriptions:
__attribute__
PLearn::_plearn_nan_type
PLearn::AbsVariable
PLearn::AdaBoost
PLearn::AdaptGradientOptimizer
PLearn::AddCostToLearner
PLearn::AdditiveNormalizationKernel
PLearn::AffineTransformVariableAffine transformation of a vector variable
PLearn::AffineTransformWeightPenaltyWeight decay terms for affine transforms
PLearn::ArgmaxVariable
PLearn::ArgminOfVariable
PLearn::ArgminVariable
PLearn::Array< T >
PLearn::Array2ArrayMap< T >
PLearn::ArrayAllocator< T, SizeBits >
PLearn::ArrayAllocatorIndex< IndexBase, SizeBits >This type represents an index into the allocated memory, as a bit-field parameterized by the template argument SizeBits
PLearn::ArrayAllocatorOptions
PLearn::ArrayAllocatorTrivial< T, SizeBits >This allocator solely performs allocation
PLearn::AsciiVMatrix
PLearn::AutoRunCommand
PLearn::AutoSDBVMatrixA VMatrix view of a SimpleDB: columns whose type is string are removed from the view, all others are converted to real (characters to their ascii code, and dates to the float date format: 990324)
PLearn::AutoVMatrixThis class is a simple wrapper to an underlying VMatrix of another type All it does is forward the method calls
PLearn::BatchVMatrixVMat class that replicates small parts of a matrix (mini-batches), so that each mini-batch appears twice (consecutively)
PLearn::BinaryClassificationLossVariableFor one-dimensional output: class is 0 if output < 0.5, and 1 if >= 0.5
PLearn::BinarySampleVariable
PLearn::BinaryVariable
PLearn::Binner
PLearn::BootstrapSplitter
PLearn::BootstrapVMatrix
PLearn::BottomNI< T >
PLearn::ByteMemoryVMatrix
PLearn::CallbackMeasurer
PLearn::CenteredVMatrix
PLearn::ClassDistanceProportionCostFunction
PLearn::ClassErrorCostFunction
PLearn::ClassificationLossVariableIndicator(classnum==argmax(netout))
PLearn::ClassifierFromDensity
PLearn::ClassMarginCostFunction
PLearn::ColumnIndexVariable
PLearn::ColumnSumVariableResult is a single row that contains the sum of each column of the input
PLearn::CompactVMatrix
PLearn::CompactVMatrixGaussianKernel
PLearn::CompactVMatrixPolynomialKernel
PLearn::ComplementedProbSparseMatrix
PLearn::CompressedVMatrix
PLearn::ConcatColumnsRandomVariableConcatenate the columns of the matrix arguments, just like the hconcat function (PLearn.h) on Vars
PLearn::ConcatColumnsVariableConcatenation of the columns of several variables
PLearn::ConcatColumnsVMatrix
PLearn::ConcatOfVariable
PLearn::ConcatRowsSubVMatrix
PLearn::ConcatRowsVariableConcatenation of the rows of several variables
PLearn::ConcatRowsVMatrix
PLearn::ConditionalCDFSmoother
PLearn::ConditionalDensityNet
PLearn::ConditionalDistribution
PLearn::ConditionalExpression
PLearn::ConditionalGaussianDistribution
PLearn::ConditionalStatsCollector
PLearn::ConjGradientOptimizer
PLearn::ConstantRegressor
PLearn::ConvexBasisKernelReturns prod_i log(1+exp(c*(x1[i]-x2[i]))) NOTE: IT IS NOT SYMMETRIC!
PLearn::ConvolveVariableA convolve var; equals convolve(input, mask)
PLearn::CountEventsSemaphore
PLearn::CrossEntropyVariableCost = - sum_i {target_i * log(output_i) + (1-target_i) * log(1-output_i)}
PLearn::CrossReferenceVMatrix
PLearn::CumVMatrix
PLearn::CutAboveThresholdVariable
PLearn::CutBelowThresholdVariable
PLearn::DatedJoinVMatrix
PLearn::DatedVMatrix
PLearn::DBSplitter
PLearn::DeterminantVariableThe argument must be a square matrix Var and the result is its determinant
PLearn::DiagonalizedFactorsProductVariable
PLearn::DiagonalNormalRandomVariable
PLearn::DiagonalNormalSampleVariable
PLearn::Dictionary
PLearn::DifferenceKernelReturns sum_i[x1_i-x2_i]
PLearn::DilogarithmVariableThis is the primitive of a sigmoid: log(1+exp(x))
PLearn::DirectNegativeCostFunction
PLearn::DiskVMatrixA VMatrix whose (compressed) data resides in a directory and can span several files
PLearn::DistanceKernelThis class implements an Ln distance (defaults to L2 i.e. euclidean distance)
PLearn::Distribution
PLearn::DivisiveNormalizationKernel
PLearn::DivVariableDivides 2 matrix vars of same size elementwise
PLearn::DotProductKernelReturns <x1,x2>
PLearn::DotProductVariableDot product between 2 vectors (or possibly 2 matrices, which are then simply seen as vectors)
PLearn::DoubleAccessSparseMatrix< T >
PLearn::DuplicateColumnVariable
PLearn::DuplicateRowVariable
PLearn::DuplicateScalarVariable
PLearn::ElementAtPositionVariable
PLearn::ElementWiseDivisionRandomVariable
PLearn::EmbeddedLearner
PLearn::EmbeddedSequentialLearner
PLearn::EmpiricalDistribution
PLearn::EntropyContrast
PLearn::EqualConstantVariableA scalar var; equal 1 if input1==input2, 0 otherwise
PLearn::EqualScalarVariableA scalar var; equal 1 if input1==input2, 0 otherwise
PLearn::EqualVariableA scalar var; equal 1 if input1==input2, 0 otherwise
PLearn::ErfVariable
PLearn::Experiment
PLearn::ExplicitSplitter
PLearn::ExpMeanStatsIterator
PLearn::ExpRandomVariable
PLearn::ExpVariable
PLearn::ExtendedRandomVariable
PLearn::ExtendedVariable
PLearn::ExtendedVMatrix
PLearn::Field
PLearn::FieldConvertCommand
PLearn::FieldPtr
PLearn::FieldRowRef
PLearn::FieldStat
PLearn::FieldValue
PLearn::FieldValue::DateVal_t
PLearn::FilePStreamBuf
PLearn::FilesIntStream
PLearn::FileVMatrixA VMatrix that exists in a .pmat file (native plearn matrix format, same as for Mat)
PLearn::FilteredVMatrix
PLearn::FilterSplitter
PLearn::FinancePreprocVMatrix
PLearn::ForwardVMatrixThis class is a simple wrapper to an underlying VMatrix of another type All it does is forward the method calls
PLearn::FractionSplitter
PLearn::Func
PLearn::Function
PLearn::FunctionalRandomVariable
PLearn::GaussianContinuum
PLearn::GaussianDensityKernel
PLearn::GaussianDistribution
PLearn::GaussianKernelReturns exp(-norm_2(x1-x2)^2/sigma^2)
PLearn::GaussianProcessRegressor
PLearn::GaussMix
PLearn::GeneralizedDistanceRBFKernelReturns exp(-phi*(sum_i[abs(x1_i^a - x2_i^a)^b])^c)
PLearn::GeneralizedOneHotVMatrixThis VMat is a generalization of OneHotVMatrix where all columns (given by the Vec index) are mapped, instead of just the last one
PLearn::GenerateDecisionPlot
PLearn::GeodesicDistanceKernel
PLearn::GetInputVMatrix
PLearn::GhostScript
PLearn::Gnuplot
PLearn::GradientOptimizer
PLearn::GramVMatrix
PLearn::Grapher
PLearn::GraphicalBiText
PLearn::HardSlopeVariable
PLearn::Hash< KeyType, DataType >
PLearn::HashKeyDataPair< KeyType, DataType >
PLearn::HCoordinateDescent
PLearn::HelpCommand
PLearn::HistogramDistribution
PLearn::HSetVal
PLearn::HSV
PLearn::HTryAll
PLearn::HTryCombinations
PLearn::HyperOptimizer
PLearn::IfThenElseVariable
PLearn::IndexAtPositionVariable
PLearn::IndexedVMatrixVMat class that sees a matrix as a collection of triplets (row, column, value) Thus it is a N x 3 matrix, with N = the number of elements in the original matrix
PLearn::InMemoryIntStream
PLearn::InterleaveVMatrix
PLearn::InterValuesVariableIf values = [x1,x2,...,x10], the resulting variable is [(x1+x2)/2,(x2+x3)/2, ..
PLearn::IntPairExample of class that can be used as key
PLearn::IntStream
PLearn::IntStreamVMatrix
PLearn::IntVecFile
PLearn::InvertElementsVariable
iostream
PLearn::IPopen
PLearn::IPServer
PLearn::IsAboveThresholdVariableDoes elementwise newx_i = (x_i>=threshold ?truevalue :falsevalue);
PLearn::IsLargerVariable++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
PLearn::IsMissingVariableA scalar var; equal 1 if input1!=c, 0 otherwise
PLearn::Isomap
PLearn::IsomapTangentLearner
PLearn::IsSmallerVariable
PLearn::JoinFieldStat
PLearn::JointRandomVariable
PLearn::JoinVMatrix
PLearn::JulianDateCommand
PLearn::JulianizeVMatrix
PLearn::Ker
PLearn::Kernel
PLearn::KernelPCA
PLearn::KernelProjection
PLearn::KernelVMatrix
PLearn::KFoldSplitter
PLearn::KNNVMatrix
PLearn::KolmogorovSmirnovCommand
PLearn::KPCATangentLearner
PLearn::LaplacianKernelReturns exp(-phi*(sum_i[abs(x1_i - x2_i)]))
PLearn::Learner
PLearn::LearnerCommand
PLearn::LearnerProcessedVMatrix
PLearn::LeftPseudoInverseVariable
PLearn::LiftBinaryCostFunction
PLearn::LiftOutputVariable
PLearn::LiftStatsCollector
PLearn::LiftStatsIterator
PLearn::LimitedGaussianSmoother
PLearn::LinearRegressor
PLearn::LLE
PLearn::LLEKernel
PLearn::LocallyWeightedDistribution
PLearn::LocalNeighborsDifferencesVMatrix
PLearn::LogAddVariableOutput = log(exp(input1)+exp(input2)) but it is computed in such a way as to preserve precision
PLearn::LogOfGaussianDensityKernel
PLearn::LogRandomVariable
PLearn::LogSoftmaxVariable
PLearn::LogSumVariable
PLearn::LogVariable
PLearn::ManifoldParzen2
PLearn::ManualBinner
PLearn::MarginPerceptronCostVariable
PLearn::MatlabInterface
PLearn::MatrixAffineTransformFeedbackVariableAffine transformation of a MATRIX variable
PLearn::MatrixAffineTransformVariableAffine transformation of a MATRIX variable
PLearn::MatrixElementsVariable
PLearn::MatrixInverseVariable
PLearn::MatrixOneHotSquaredLoss
PLearn::MatrixSoftmaxLossVariable
PLearn::MatrixSoftmaxVariable
PLearn::MatrixSumOfVariable
PLearn::MatRowVariableVariable that is the row of matrix mat indexed by variable input
PLearn::Max2Variable
PLearn::MaxStatsIterator
PLearn::MaxVariable
PLearn::MeanStatsIterator
PLearn::Measurer
PLearn::MemoryVMatrix
PLearn::MiniBatchClassificationLossVariable
PLearn::MinStatsIterator
PLearn::MinusColumnVariable
PLearn::MinusRandomVariable
PLearn::MinusRowVariable
PLearn::MinusScalarVariable
PLearn::MinusTransposedColumnVariable
PLearn::MinusVariable
PLearn::MinVariable
PLearn::MixtureRandomVariable
PLearn::MovingAverageThis SequentialLearner only takes the n previous target to predict the next one
PLearn::MovingAverageVMatrix
PLearn::MRUFileList
PLearn::MulticlassErrorCostFunction
PLearn::MulticlassLossVariableCost = sum_i {cost_i}, with cost_i = 1 if (target_i == 1 && output_i < 1/2) cost_i = 1 if (target_i == 0 && output_i > 1/2) cost_i = 0 otherwise
PLearn::MultiInstanceNNet
PLearn::MultiInstanceVMatrix
PLearn::MultiMap< A, B >
PLearn::MultinomialRandomVariable
PLearn::MultinomialSampleVariable
PLearn::NaryVariable
PLearn::NearestNeighborPredictionCost
PLearn::NegateElementsVariable
PLearn::NegCrossEntropySigmoidVariable
PLearn::NegKernel
PLearn::NegLogProbCostFunction
PLearn::NegOutputCostFunctionThis simply returns -output[0] (target should usually have a length of 0) This is used for density estimators whose use(x) method typically computes log(p(x))
PLearn::NegRandomVariable
PLearn::NeighborhoodSmoothnessNNet
PLearn::NeuralNet
PLearn::NistDB
PLearn::NllSemisphericalGaussianVariableThis class implements the negative log-likelihood cost of a Markov chain that uses semispherical gaussian transition probabilities
PLearn::NNet
PLearn::Node
PLearn::NonRandomVariable
PLearn::NormalizedDotProductKernel
PLearn::NullProgressBarPluginSimpler plugin that doesn't display a progress bar at all
PLearn::NumToStringMapping
PLearn::ObjectThe Object class
PLearn::ObjectGenerator
PLearn::OneHotSquaredLossComputes sum(square_i(netout[i]-(i==classnum ?hotval :coldval)) This is used typically in a classification setting where netout is a Var of network outputs, and classnum is the target class number
PLearn::OneHotVariableRepresents a vector of a given lenth, that has value 1 at the index given by another variable and 0 everywhere else
PLearn::OneHotVMatrix
PLearn::Optimizer
PLearn::Option< T, Enclosing >Template class for option definitions
PLearn::OptionBaseBase class for option definitions
PLearn::PairsVMatrix
PLearn::PCA
PLearn::PConditionalDistribution
PLearn::PDate
PLearn::PDateTime
PLearn::PDistribution
PLearn::PDistributionVariable
PLearn::PIFStream
PLearn::PIStringStream
PLearn::pl_fdstream
PLearn::pl_fdstreambufPl_fdstreambuf: stream buffer that acts on a POSIX file descriptor
PLearn::pl_nullstreambuf
PLearn::pl_stream_clear_flags
PLearn::pl_stream_initiate
PLearn::pl_stream_raw
PLearn::pl_streambuf
PLearn::pl_streammarker
PLearn::PLearnCommandThis is the base class for all PLearn commands (those that can be issued in the plearn program)
PLearn::PLearnCommandRegistry
PLearn::PLearner
PLearn::PLearnerOutputVMatrix
PLearn::PLearnError
PLearn::PLearnInit
PLearn::PLMathInitializer
PLearn::PLMPI** PLMPI is just a "namespace holder" (because we're not actually using namespaces) for a few MPI related variables. All members are static **
PLearn::PLogPVariableReturns the elementwise x*log(x) in a (hopefully!) numerically stable way This can be used to compute the Entropy for instance
PLearn::PLS
PLearn::PlusColumnVariableAdds a single-column var to each column of a matrix var
PLearn::PlusConstantVariableAdds a scalar constant to a matrix var
PLearn::PlusRandomVariable
PLearn::PlusRowVariableAdds a single-row var to each row of a matrix var
PLearn::PlusScalarVariableAdds a scalar var to a matrix var
PLearn::PlusVariableAdds 2 matrix vars of same size
PLearn::POFStream
PLearn::PolynomialKernelReturns (beta*dot(x1,x2)+1)^n
PLearn::Popen
PLearn::PowDistanceKernel
PLearn::PowVariableElementwise pow (returns 0 wherever input is negative)
PLearn::PowVariableVariable
PLearn::PP< T >
PLearn::PPointable
PLearn::PPointableSet
PLearn::PrecomputedKernelA kernel that precomputes the kernel matrix as soon as setDataForKernelMatrix is called
PLearn::PrecomputedVMatrix
PLearn::PreprocessingVMatrix
PLearn::PricingTransactionPairProfitFunction
PLearn::ProbabilitySparseMatrix
PLearn::ProbSparseMatrix
PLearn::ProbVector
PLearn::ProcessingVMatrix
PLearn::ProductRandomVariable
PLearn::ProductTransposeVariableMatrix product between matrix1 and transpose of matrix2
PLearn::ProductVariableMatrix product
PLearn::Profiler
PLearn::Profiler::Stats
PLearn::ProgressBarThis class will help you display progress of a calculation
PLearn::ProgressBarPluginBase class for pb plugins
PLearn::ProjectionErrorVariableThe first input is a set of n_dim vectors (possibly seen as a single vector of their concatenation) f_i, each in R^n The second input is a set of T vectors (possibly seen as a single vector of their concatenation) t_j, each in R^n The output is the following: sum_j min_{w_j} || t_j - sum_i w_{ji} f_i ||^2 where row w_j of w is optmized analytically and separately for each j
PLearn::PSMat
PLearn::PStream
PLearn::PStreamBuf
PLearn::PTesterThis code is deprecated, use PTester.h and PTester.cc instead
PLearn::QuadraticUtilityCostFunction
PLearn::QuantilesStatsIterator
PLearn::RandomElementOfRandomVariableRandomVariable that is the element of the first parent RandomVariable indexed by the second parent RandomVariable
PLearn::RandomVarWe follow the same pattern as Var & Variable
PLearn::RandomVariable
PLearn::RandomVarVMatrixThis is a convenient wrapping around the required data structures for efficient repeated sampling from a RandomVar
PLearn::Range
PLearn::RangeVMatrixOutputs scalar samples (length 1) starting at start, up to end (inclusive) with step. When end is reached it starts over again
PLearn::ReadAndWriteCommand
PLearn::RealMapping
PLearn::RealRangeReal range: i.e. one of ]low,high[ ; [low,high[; [low,high]; ]low,high]
PLearn::ReconstructionWeightsKernel
PLearn::RegularGridVMatrix
PLearn::RemapLastColumnVMatrix
PLearn::RemoveDuplicateVMatrix
PLearn::RemoveRowsVMatrixSees an underlying VMat with the specified rows excluded
PLearn::RepeatSplitter
PLearn::ReshapeVariableVariable that views another variable, but with a different length() and width() (the only restriction being that length()*width() remain the same)
PLearn::ResourceSemaphore
PLearn::RGB
PLearn::RGBImageUses top left coordinate system Pixel (i,j) is at row i, column j
PLearn::RGBImageDB
PLearn::RGBImagesVMatrix
PLearn::RGBImageVMatrix
PLearn::RightPseudoInverseVariable
PLearn::Row
PLearn::RowAtPositionVariable
PLearn::RowBufferedVMatrix
PLearn::RowIterator
PLearn::RowMapSparseMatrix< T >
PLearn::RowMapSparseValueMatrix< T >
PLearn::RowsSubVMatrix
PLearn::RowSumVariableResult is a single column that contains the sum of each row of the input
PLearn::RunCommand
PLearn::RunObject
PLearn::RVArrayAn RVArray stores a table of RandomVar's
PLearn::RVArrayRandomElementRandomVariable
PLearn::RVInstanceRVInstance represents a RandomVariable V along with a "value" v
PLearn::RVInstanceArray
PLearn::ScaledConditionalCDFSmoother
PLearn::ScaledGaussianKernelReturns exp(-sum_i[(phi_i*(x1_i - x2_i))^2]/sigma^2)
PLearn::ScaledGeneralizedDistanceRBFKernelReturns exp(-(sum_i phi_i*[abs(x1_i^a - x2_i^a)^b])^c)
PLearn::ScaledGradientOptimizer
PLearn::ScaledLaplacianKernelReturns exp(-(sum_i[abs(x1_i - x2_i)*phi_i]))
PLearn::Schema
PLearn::SDBVMatrix
PLearn::SDBVMField
PLearn::SDBVMFieldAffineApply an affine transformation to the field: y = a*x+b
PLearn::SDBVMFieldAsIsPass through the value within the SDB (after conversion to real of the underlying SDB type)
PLearn::SDBVMFieldCodeAsIs
PLearn::SDBVMFieldDateConvert a date to fill 3 columns in the VMat: YYYY, MM, DD
PLearn::SDBVMFieldDateDiffDifference between two dates ("source1-source2" expressed as an integer number of days, months, or years)
PLearn::SDBVMFieldDateGreaterVerifies if the date within the row is greater than a threshold date
PLearn::SDBVMFieldDay
PLearn::SDBVMFieldDiscreteA field that recodes its source field according to an OutputCoder object
PLearn::SDBVMFieldDivSigmaJust divide by standard deviation
PLearn::SDBVMFieldFunc1
PLearn::SDBVMFieldFunc2
PLearn::SDBVMFieldHasClaim
PLearn::SDBVMFieldICBCClassification
PLearn::SDBVMFieldICBCTargets
PLearn::SDBVMFieldMonthsComputed year*12+(month-1)
PLearn::SDBVMFieldMultiDiscrete
PLearn::SDBVMFieldNormalizeNormalize the field (subtract the mean then divide by standard dev)
PLearn::SDBVMFieldPosAffineTake the positive part of the field, followed by affine transformation: y = a*max(x,0)+b
PLearn::SDBVMFieldRemapIntervals
PLearn::SDBVMFieldRemapReals
PLearn::SDBVMFieldRemapStrings
PLearn::SDBVMFieldSignedPowerDo the following : y = x^a
PLearn::SDBVMFieldSource1A field that maps exactly 1 SDB field to a VMatrix segment (abstract)
PLearn::SDBVMFieldSource2A field that maps exactly 2 SDB fields to a VMatrix segment (abstract)
PLearn::SDBVMFieldSumClaims
PLearn::SDBVMOutputCoder
PLearn::SDBVMSourceA SDBVMSource represents a source for a value that can be either directly a field from a SDB or an already processed SDBVMField
PLearn::SDBWithStats
PLearn::SelectColumnsVMatrixSelects variables (columns) from a source matrix according to given vector of indices
PLearn::SelectedIndicesCmp< T >
PLearn::SelectedOutputCostFunctionThis allows to apply a costfunction on a single output element (and correponding target element) of a larger output vector, rather than on the whole vector
PLearn::SelectInputSubsetLearner
PLearn::SelectRowsFileIndexVMatrix
PLearn::SelectRowsVMatrixSelects samples from a source matrix according to given vector of indices
PLearn::SemIdThis class is defined in order to distinguish semaphore and shared memory id's from plain integers when constructing a Semaphore or a SharedMemory object
PLearn::SemiSupervisedProbClassCostVariable
PLearn::semun
PLearn::SentencesBlocks
PLearn::SequentialLearner
PLearn::SequentialModelSelector
PLearn::SequentialSplitter
PLearn::SequentialValidation
PLearn::Set
set
PLearn::SetOption
PLearn::SharedMemory< T >
PLearn::SharpeRatioStatsIterator
PLearn::ShellProgressBar
PLearn::ShellScript
PLearn::ShiftAndRescaleVMatrix
PLearn::short_and_twobytes
PLearn::SigmoidalKernelReturns sigmoid(c*x1.x2)
PLearn::SigmoidPrimitiveKernelReturns log(1+exp(c*x1.x2)) = primitive of sigmoidal kernel
PLearn::SigmoidVariable
PLearn::SignVariableSign(x) = 1 if x>0, -1 if x<0, 0 if x=0, all done element by element
PLearn::SimpleDB< KeyType, QueryResult >
PLearn::SimpleDBIndexKey< KeyType >
PLearn::SmallVector< T, SizeBits, Allocator >
PLearn::SMat< T >
PLearn::SmoothedProbSparseMatrix
PLearn::Smoother
PLearn::SoftmaxLossVariable
PLearn::SoftmaxVariable
PLearn::SoftplusVariableThis is the primitive of a sigmoid: log(1+exp(x))
PLearn::SoftSlopeIntegralVariable
PLearn::SoftSlopeVariable
PLearn::SortRowsVMatrixSort the samples of a VMatrix according to one (or more) given columns
PLearn::SourceKernel
PLearn::SourceSampleVariable
PLearn::SourceVariable
PLearn::SourceVMatrix
PLearn::SourceVMatrixSplitter
PLearn::SparseMatrix
PLearn::SparseVMatrix
PLearn::SparseVMatrixRow
PLearn::SpectralClustering
PLearn::SpiralDistribution
PLearn::Splitter
PLearn::SquaredErrorCostFunction********************************************************* The following 'kernels' are rather used as cost functions
PLearn::SquareRootVariable
PLearn::SquareVariable
PLearn::StackedLearner
PLearn::StatefulLearner
PLearn::StaticInitializerA StaticInitializer is typically declared as a static member of a class, and given a parameter that is a static initialization function for said class
PLearn::StatsCollector
PLearn::StatsCollectorCounts
PLearn::StatsItArray
PLearn::StatsIterator
PLearn::StatSpecThe specification of a statistic to compute (as can be specified as a string in PTester)
PLearn::StddevStatsIterator
PLearn::StderrStatsIterator
PLearn::StdPStreamBuf
PLearn::StochasticRandomVariable
PLearn::Storage< T >
streambuf
PLearn::StringFieldMapping
PLearn::StringTable
PLearn::StrTableVMatrix
PLearn::SubInputVMatrix
PLearn::SubMatTransposeVariable
PLearn::SubMatVariable
PLearn::SubsampleVariableA subsample var; equals subrample(input, the_subsamplefactor)
PLearn::SubVecRandomVariableY = sub-vector of X starting at position "start", of length "value->length()"
PLearn::SubVMatrix
PLearn::SumAbsVariable
PLearn::SumOfVariable
PLearn::SumOverBagsVariable
PLearn::SumSquareVariable
PLearn::SumVariable
PLearn::Symbol
PLearn::TangentLearner
PLearn::TanhVariable
PLearn::TemporalHorizonVMatrixThis VMat delay the last targetsize entries of an underlying VMat by a certain horizon
PLearn::TestDependenciesCommand
PLearn::TestDependencyCommand
PLearn::TestingLearner
PLearn::TestInTrainSplitter
PLearn::TestMethod
PLearn::TextProgressBarPluginSimple plugin for displaying text progress bar
PLearn::TextSenseSequenceVMatrixThis class handles a sequence of words/sense tag/POS triplets to present it as target words and their context
PLearn::ThresholdVMatrix
PLearn::TimesColumnVariableMultiplies each column of a matrix var elementwise with a single column variable
PLearn::TimesConstantVariableMultiplies a matrix var by a scalar constant
PLearn::TimesRowVariableMultiplies each row of a matrix var elementwise with a single row variable
PLearn::TimesScalarVariableMultiplies a matrix var by a scalar var
PLearn::TimesVariableMultiplies 2 matrix vars of same size elementwise
PLearn::TinyVector< T, N, TTrait >
PLearn::TinyVectorTrait< T >
PLearn::TinyVectorTrait< char >
PLearn::TinyVectorTrait< int >
PLearn::TinyVectorTrait< unsigned char >
PLearn::TinyVectorTrait< unsigned int >
PLearn::TMat< T >
PLearn::TMatColRowsIterator< T >Model of the Random Access Iterator concept for iterating through a single column of a TMat, one row at a time
PLearn::TMatElementIterator< T >
PLearn::TMatRowsAsArraysIterator< T >Model of the Random Access Iterator concept for iterating through the ROWS of a TMat
PLearn::TMatRowsIterator< T >Model of the Random Access Iterator concept for iterating through the ROWS of a TMat
PLearn::TmpFilenames
PLearn::ToBagSplitter
PLearn::TopNI< T >
PLearn::Train
PLearn::TrainTestBagsSplitter
PLearn::TrainTestSplitter
PLearn::TrainValidTestSplitter
PLearn::TransposeProductVariableMatrix product between transpose of matrix1 and matrix2
PLearn::TransposeVMatrix
PLearn::tRule
PLearn::TTensor< T >
PLearn::TTensorElementIterator< T >
PLearn::TTensorSubTensorIterator< T >
PLearn::TVec< T >
PLearn::TypeFactory
PLearn::TypeMapEntry
PLearn::TypeTraits< T >
PLearn::TypeTraits< Array< T > >
PLearn::TypeTraits< list< T > >
PLearn::TypeTraits< map< T, U > >
PLearn::TypeTraits< pair< T, U > >
PLearn::TypeTraits< PP< T > >
PLearn::TypeTraits< RealMapping >
PLearn::TypeTraits< SetOption >
PLearn::TypeTraits< string >
PLearn::TypeTraits< T * >
PLearn::TypeTraits< TMat< T > >
PLearn::TypeTraits< TVec< T > >
PLearn::TypeTraits< vector< T > >
PLearn::UCISpecification
PLearn::UnaryHardSlopeVariable
PLearn::UnarySampleVariable
PLearn::UnaryVariable
PLearn::UnconditionalDistribution
PLearn::UnequalConstantVariableA scalar var; equal 1 if input1!=c, 0 otherwise
PLearn::UnfoldedFuncVariable
PLearn::UnfoldedSumOfVariable
PLearn::UniformDistribution
PLearn::UniformizeVMatrix
PLearn::UniformSampleVariable
PLearn::UniformVMatrix
PLearn::UpsideDownVMatrix
PLearn::Var
PLearn::VarArray
PLearn::VarArrayElementVariableVariable that is the element of the input1 VarArray indexed by the input2 variable
PLearn::VarColumnsVariable
PLearn::VarElementVariable
PLearn::Variable
PLearn::VarMeasurer
PLearn::VarRowsVariable
PLearn::VarRowVariableVariable that is the row of the input1 variable indexed by the input2 variable
PLearn::VecCompressor
PLearn::VecElementVariableVariable that is the element of vector vec indexed by variable input
PLearn::VecExtendedVMatrix
PLearn::VecStatsCollector
vector
PLearn::VMat
PLearn::VMatCommand
PLearn::VMatLanguage
PLearn::VMatrix
PLearn::VMatrixFromDistribution
PLearn::VMFieldVMField contains a fieldname and a fieldtype
PLearn::VMFieldStatThis class holds simple statistics about a field
PLearn::VVecA VVec is a reference to a row or part of a row (a subrow) of a VMatrix
PLearn::VVMatrixThis class is a wrapper for a .vmat VMatrix
PLearn::WeightedCostFunctionA costfunction that allows to reweight another costfunction (weight being last element of target) Returns target.lastElement() * costfunc(output,target.subVec(0,target.length()-1));
PLearn::WeightedSumSquareVariable
PLearn::WordNetOntology
PLearn::YMDDatedVMatrix

Generated on Tue Aug 17 16:22:29 2004 for PLearn by doxygen 1.3.7