__attribute__ | |
PLearn::_plearn_nan_type | |
PLearn::AbsVariable | |
PLearn::AdaBoost | |
PLearn::AdaptGradientOptimizer | |
PLearn::AddCostToLearner | |
PLearn::AdditiveNormalizationKernel | |
PLearn::AffineTransformVariable | Affine transformation of a vector variable |
PLearn::AffineTransformWeightPenalty | Weight decay terms for affine transforms |
PLearn::ArgmaxVariable | |
PLearn::ArgminOfVariable | |
PLearn::ArgminVariable | |
PLearn::Array< T > | |
PLearn::Array2ArrayMap< T > | |
PLearn::ArrayAllocator< T, SizeBits > | |
PLearn::ArrayAllocatorIndex< IndexBase, SizeBits > | This type represents an index into the allocated memory, as a bit-field parameterized by the template argument SizeBits |
PLearn::ArrayAllocatorOptions | |
PLearn::ArrayAllocatorTrivial< T, SizeBits > | This allocator solely performs allocation |
PLearn::AsciiVMatrix | |
PLearn::AutoRunCommand | |
PLearn::AutoSDBVMatrix | A VMatrix view of a SimpleDB: columns whose type is string are removed from the view, all others are converted to real (characters to their ascii code, and dates to the float date format: 990324) |
PLearn::AutoVMatrix | This class is a simple wrapper to an underlying VMatrix of another type All it does is forward the method calls |
PLearn::BatchVMatrix | VMat class that replicates small parts of a matrix (mini-batches), so that each mini-batch appears twice (consecutively) |
PLearn::BinaryClassificationLossVariable | For one-dimensional output: class is 0 if output < 0.5, and 1 if >= 0.5 |
PLearn::BinarySampleVariable | |
PLearn::BinaryVariable | |
PLearn::Binner | |
PLearn::BootstrapSplitter | |
PLearn::BootstrapVMatrix | |
PLearn::BottomNI< T > | |
PLearn::ByteMemoryVMatrix | |
PLearn::CallbackMeasurer | |
PLearn::CenteredVMatrix | |
PLearn::ClassDistanceProportionCostFunction | |
PLearn::ClassErrorCostFunction | |
PLearn::ClassificationLossVariable | Indicator(classnum==argmax(netout)) |
PLearn::ClassifierFromDensity | |
PLearn::ClassMarginCostFunction | |
PLearn::ColumnIndexVariable | |
PLearn::ColumnSumVariable | Result is a single row that contains the sum of each column of the input |
PLearn::CompactVMatrix | |
PLearn::CompactVMatrixGaussianKernel | |
PLearn::CompactVMatrixPolynomialKernel | |
PLearn::ComplementedProbSparseMatrix | |
PLearn::CompressedVMatrix | |
PLearn::ConcatColumnsRandomVariable | Concatenate the columns of the matrix arguments, just like the hconcat function (PLearn.h) on Vars |
PLearn::ConcatColumnsVariable | Concatenation of the columns of several variables |
PLearn::ConcatColumnsVMatrix | |
PLearn::ConcatOfVariable | |
PLearn::ConcatRowsSubVMatrix | |
PLearn::ConcatRowsVariable | Concatenation of the rows of several variables |
PLearn::ConcatRowsVMatrix | |
PLearn::ConditionalCDFSmoother | |
PLearn::ConditionalDensityNet | |
PLearn::ConditionalDistribution | |
PLearn::ConditionalExpression | |
PLearn::ConditionalGaussianDistribution | |
PLearn::ConditionalStatsCollector | |
PLearn::ConjGradientOptimizer | |
PLearn::ConstantRegressor | |
PLearn::ConvexBasisKernel | Returns prod_i log(1+exp(c*(x1[i]-x2[i]))) NOTE: IT IS NOT SYMMETRIC! |
PLearn::ConvolveVariable | A convolve var; equals convolve(input, mask) |
PLearn::CountEventsSemaphore | |
PLearn::CrossEntropyVariable | Cost = - sum_i {target_i * log(output_i) + (1-target_i) * log(1-output_i)} |
PLearn::CrossReferenceVMatrix | |
PLearn::CumVMatrix | |
PLearn::CutAboveThresholdVariable | |
PLearn::CutBelowThresholdVariable | |
PLearn::DatedJoinVMatrix | |
PLearn::DatedVMatrix | |
PLearn::DBSplitter | |
PLearn::DeterminantVariable | The argument must be a square matrix Var and the result is its determinant |
PLearn::DiagonalizedFactorsProductVariable | |
PLearn::DiagonalNormalRandomVariable | |
PLearn::DiagonalNormalSampleVariable | |
PLearn::Dictionary | |
PLearn::DifferenceKernel | Returns sum_i[x1_i-x2_i] |
PLearn::DilogarithmVariable | This is the primitive of a sigmoid: log(1+exp(x)) |
PLearn::DirectNegativeCostFunction | |
PLearn::DiskVMatrix | A VMatrix whose (compressed) data resides in a directory and can span several files |
PLearn::DistanceKernel | This class implements an Ln distance (defaults to L2 i.e. euclidean distance) |
PLearn::Distribution | |
PLearn::DivisiveNormalizationKernel | |
PLearn::DivVariable | Divides 2 matrix vars of same size elementwise |
PLearn::DotProductKernel | Returns <x1,x2> |
PLearn::DotProductVariable | Dot product between 2 vectors (or possibly 2 matrices, which are then simply seen as vectors) |
PLearn::DoubleAccessSparseMatrix< T > | |
PLearn::DuplicateColumnVariable | |
PLearn::DuplicateRowVariable | |
PLearn::DuplicateScalarVariable | |
PLearn::ElementAtPositionVariable | |
PLearn::ElementWiseDivisionRandomVariable | |
PLearn::EmbeddedLearner | |
PLearn::EmbeddedSequentialLearner | |
PLearn::EmpiricalDistribution | |
PLearn::EntropyContrast | |
PLearn::EqualConstantVariable | A scalar var; equal 1 if input1==input2, 0 otherwise |
PLearn::EqualScalarVariable | A scalar var; equal 1 if input1==input2, 0 otherwise |
PLearn::EqualVariable | A scalar var; equal 1 if input1==input2, 0 otherwise |
PLearn::ErfVariable | |
PLearn::Experiment | |
PLearn::ExplicitSplitter | |
PLearn::ExpMeanStatsIterator | |
PLearn::ExpRandomVariable | |
PLearn::ExpVariable | |
PLearn::ExtendedRandomVariable | |
PLearn::ExtendedVariable | |
PLearn::ExtendedVMatrix | |
PLearn::Field | |
PLearn::FieldConvertCommand | |
PLearn::FieldPtr | |
PLearn::FieldRowRef | |
PLearn::FieldStat | |
PLearn::FieldValue | |
PLearn::FieldValue::DateVal_t | |
PLearn::FilePStreamBuf | |
PLearn::FilesIntStream | |
PLearn::FileVMatrix | A VMatrix that exists in a .pmat file (native plearn matrix format, same as for Mat) |
PLearn::FilteredVMatrix | |
PLearn::FilterSplitter | |
PLearn::FinancePreprocVMatrix | |
PLearn::ForwardVMatrix | This class is a simple wrapper to an underlying VMatrix of another type All it does is forward the method calls |
PLearn::FractionSplitter | |
PLearn::Func | |
PLearn::Function | |
PLearn::FunctionalRandomVariable | |
PLearn::GaussianContinuum | |
PLearn::GaussianDensityKernel | |
PLearn::GaussianDistribution | |
PLearn::GaussianKernel | Returns exp(-norm_2(x1-x2)^2/sigma^2) |
PLearn::GaussianProcessRegressor | |
PLearn::GaussMix | |
PLearn::GeneralizedDistanceRBFKernel | Returns exp(-phi*(sum_i[abs(x1_i^a - x2_i^a)^b])^c) |
PLearn::GeneralizedOneHotVMatrix | This VMat is a generalization of OneHotVMatrix where all columns (given by the Vec index) are mapped, instead of just the last one |
PLearn::GenerateDecisionPlot | |
PLearn::GeodesicDistanceKernel | |
PLearn::GetInputVMatrix | |
PLearn::GhostScript | |
PLearn::Gnuplot | |
PLearn::GradientOptimizer | |
PLearn::GramVMatrix | |
PLearn::Grapher | |
PLearn::GraphicalBiText | |
PLearn::HardSlopeVariable | |
PLearn::Hash< KeyType, DataType > | |
PLearn::HashKeyDataPair< KeyType, DataType > | |
PLearn::HCoordinateDescent | |
PLearn::HelpCommand | |
PLearn::HistogramDistribution | |
PLearn::HSetVal | |
PLearn::HSV | |
PLearn::HTryAll | |
PLearn::HTryCombinations | |
PLearn::HyperOptimizer | |
PLearn::IfThenElseVariable | |
PLearn::IndexAtPositionVariable | |
PLearn::IndexedVMatrix | VMat class that sees a matrix as a collection of triplets (row, column, value) Thus it is a N x 3 matrix, with N = the number of elements in the original matrix |
PLearn::InMemoryIntStream | |
PLearn::InterleaveVMatrix | |
PLearn::InterValuesVariable | If values = [x1,x2,...,x10], the resulting variable is [(x1+x2)/2,(x2+x3)/2, .. |
PLearn::IntPair | Example of class that can be used as key |
PLearn::IntStream | |
PLearn::IntStreamVMatrix | |
PLearn::IntVecFile | |
PLearn::InvertElementsVariable | |
iostream | |
PLearn::IPopen | |
PLearn::IPServer | |
PLearn::IsAboveThresholdVariable | Does elementwise newx_i = (x_i>=threshold ?truevalue :falsevalue); |
PLearn::IsLargerVariable | ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
PLearn::IsMissingVariable | A scalar var; equal 1 if input1!=c, 0 otherwise |
PLearn::Isomap | |
PLearn::IsomapTangentLearner | |
PLearn::IsSmallerVariable | |
PLearn::JoinFieldStat | |
PLearn::JointRandomVariable | |
PLearn::JoinVMatrix | |
PLearn::JulianDateCommand | |
PLearn::JulianizeVMatrix | |
PLearn::Ker | |
PLearn::Kernel | |
PLearn::KernelPCA | |
PLearn::KernelProjection | |
PLearn::KernelVMatrix | |
PLearn::KFoldSplitter | |
PLearn::KNNVMatrix | |
PLearn::KolmogorovSmirnovCommand | |
PLearn::KPCATangentLearner | |
PLearn::LaplacianKernel | Returns exp(-phi*(sum_i[abs(x1_i - x2_i)])) |
PLearn::Learner | |
PLearn::LearnerCommand | |
PLearn::LearnerProcessedVMatrix | |
PLearn::LeftPseudoInverseVariable | |
PLearn::LiftBinaryCostFunction | |
PLearn::LiftOutputVariable | |
PLearn::LiftStatsCollector | |
PLearn::LiftStatsIterator | |
PLearn::LimitedGaussianSmoother | |
PLearn::LinearRegressor | |
PLearn::LLE | |
PLearn::LLEKernel | |
PLearn::LocallyWeightedDistribution | |
PLearn::LocalNeighborsDifferencesVMatrix | |
PLearn::LogAddVariable | Output = log(exp(input1)+exp(input2)) but it is computed in such a way as to preserve precision |
PLearn::LogOfGaussianDensityKernel | |
PLearn::LogRandomVariable | |
PLearn::LogSoftmaxVariable | |
PLearn::LogSumVariable | |
PLearn::LogVariable | |
PLearn::ManifoldParzen2 | |
PLearn::ManualBinner | |
PLearn::MarginPerceptronCostVariable | |
PLearn::MatlabInterface | |
PLearn::MatrixAffineTransformFeedbackVariable | Affine transformation of a MATRIX variable |
PLearn::MatrixAffineTransformVariable | Affine transformation of a MATRIX variable |
PLearn::MatrixElementsVariable | |
PLearn::MatrixInverseVariable | |
PLearn::MatrixOneHotSquaredLoss | |
PLearn::MatrixSoftmaxLossVariable | |
PLearn::MatrixSoftmaxVariable | |
PLearn::MatrixSumOfVariable | |
PLearn::MatRowVariable | Variable that is the row of matrix mat indexed by variable input |
PLearn::Max2Variable | |
PLearn::MaxStatsIterator | |
PLearn::MaxVariable | |
PLearn::MeanStatsIterator | |
PLearn::Measurer | |
PLearn::MemoryVMatrix | |
PLearn::MiniBatchClassificationLossVariable | |
PLearn::MinStatsIterator | |
PLearn::MinusColumnVariable | |
PLearn::MinusRandomVariable | |
PLearn::MinusRowVariable | |
PLearn::MinusScalarVariable | |
PLearn::MinusTransposedColumnVariable | |
PLearn::MinusVariable | |
PLearn::MinVariable | |
PLearn::MixtureRandomVariable | |
PLearn::MovingAverage | This SequentialLearner only takes the n previous target to predict the next one |
PLearn::MovingAverageVMatrix | |
PLearn::MRUFileList | |
PLearn::MulticlassErrorCostFunction | |
PLearn::MulticlassLossVariable | Cost = sum_i {cost_i}, with cost_i = 1 if (target_i == 1 && output_i < 1/2) cost_i = 1 if (target_i == 0 && output_i > 1/2) cost_i = 0 otherwise |
PLearn::MultiInstanceNNet | |
PLearn::MultiInstanceVMatrix | |
PLearn::MultiMap< A, B > | |
PLearn::MultinomialRandomVariable | |
PLearn::MultinomialSampleVariable | |
PLearn::NaryVariable | |
PLearn::NearestNeighborPredictionCost | |
PLearn::NegateElementsVariable | |
PLearn::NegCrossEntropySigmoidVariable | |
PLearn::NegKernel | |
PLearn::NegLogProbCostFunction | |
PLearn::NegOutputCostFunction | This simply returns -output[0] (target should usually have a length of 0) This is used for density estimators whose use(x) method typically computes log(p(x)) |
PLearn::NegRandomVariable | |
PLearn::NeighborhoodSmoothnessNNet | |
PLearn::NeuralNet | |
PLearn::NistDB | |
PLearn::NllSemisphericalGaussianVariable | This class implements the negative log-likelihood cost of a Markov chain that uses semispherical gaussian transition probabilities |
PLearn::NNet | |
PLearn::Node | |
PLearn::NonRandomVariable | |
PLearn::NormalizedDotProductKernel | |
PLearn::NullProgressBarPlugin | Simpler plugin that doesn't display a progress bar at all |
PLearn::NumToStringMapping | |
PLearn::Object | The Object class |
PLearn::ObjectGenerator | |
PLearn::OneHotSquaredLoss | Computes sum(square_i(netout[i]-(i==classnum ?hotval :coldval)) This is used typically in a classification setting where netout is a Var of network outputs, and classnum is the target class number |
PLearn::OneHotVariable | Represents a vector of a given lenth, that has value 1 at the index given by another variable and 0 everywhere else |
PLearn::OneHotVMatrix | |
PLearn::Optimizer | |
PLearn::Option< T, Enclosing > | Template class for option definitions |
PLearn::OptionBase | Base class for option definitions |
PLearn::PairsVMatrix | |
PLearn::PCA | |
PLearn::PConditionalDistribution | |
PLearn::PDate | |
PLearn::PDateTime | |
PLearn::PDistribution | |
PLearn::PDistributionVariable | |
PLearn::PIFStream | |
PLearn::PIStringStream | |
PLearn::pl_fdstream | |
PLearn::pl_fdstreambuf | Pl_fdstreambuf: stream buffer that acts on a POSIX file descriptor |
PLearn::pl_nullstreambuf | |
PLearn::pl_stream_clear_flags | |
PLearn::pl_stream_initiate | |
PLearn::pl_stream_raw | |
PLearn::pl_streambuf | |
PLearn::pl_streammarker | |
PLearn::PLearnCommand | This is the base class for all PLearn commands (those that can be issued in the plearn program) |
PLearn::PLearnCommandRegistry | |
PLearn::PLearner | |
PLearn::PLearnerOutputVMatrix | |
PLearn::PLearnError | |
PLearn::PLearnInit | |
PLearn::PLMathInitializer | |
PLearn::PLMPI | ** PLMPI is just a "namespace holder" (because we're not actually using namespaces) for a few MPI related variables. All members are static ** |
PLearn::PLogPVariable | Returns the elementwise x*log(x) in a (hopefully!) numerically stable way This can be used to compute the Entropy for instance |
PLearn::PLS | |
PLearn::PlusColumnVariable | Adds a single-column var to each column of a matrix var |
PLearn::PlusConstantVariable | Adds a scalar constant to a matrix var |
PLearn::PlusRandomVariable | |
PLearn::PlusRowVariable | Adds a single-row var to each row of a matrix var |
PLearn::PlusScalarVariable | Adds a scalar var to a matrix var |
PLearn::PlusVariable | Adds 2 matrix vars of same size |
PLearn::POFStream | |
PLearn::PolynomialKernel | Returns (beta*dot(x1,x2)+1)^n |
PLearn::Popen | |
PLearn::PowDistanceKernel | |
PLearn::PowVariable | Elementwise pow (returns 0 wherever input is negative) |
PLearn::PowVariableVariable | |
PLearn::PP< T > | |
PLearn::PPointable | |
PLearn::PPointableSet | |
PLearn::PrecomputedKernel | A kernel that precomputes the kernel matrix as soon as setDataForKernelMatrix is called |
PLearn::PrecomputedVMatrix | |
PLearn::PreprocessingVMatrix | |
PLearn::PricingTransactionPairProfitFunction | |
PLearn::ProbabilitySparseMatrix | |
PLearn::ProbSparseMatrix | |
PLearn::ProbVector | |
PLearn::ProcessingVMatrix | |
PLearn::ProductRandomVariable | |
PLearn::ProductTransposeVariable | Matrix product between matrix1 and transpose of matrix2 |
PLearn::ProductVariable | Matrix product |
PLearn::Profiler | |
PLearn::Profiler::Stats | |
PLearn::ProgressBar | This class will help you display progress of a calculation |
PLearn::ProgressBarPlugin | Base class for pb plugins |
PLearn::ProjectionErrorVariable | The first input is a set of n_dim vectors (possibly seen as a single vector of their concatenation) f_i, each in R^n The second input is a set of T vectors (possibly seen as a single vector of their concatenation) t_j, each in R^n The output is the following: sum_j min_{w_j} || t_j - sum_i w_{ji} f_i ||^2 where row w_j of w is optmized analytically and separately for each j |
PLearn::PSMat | |
PLearn::PStream | |
PLearn::PStreamBuf | |
PLearn::PTester | This code is deprecated, use PTester.h and PTester.cc instead |
PLearn::QuadraticUtilityCostFunction | |
PLearn::QuantilesStatsIterator | |
PLearn::RandomElementOfRandomVariable | RandomVariable that is the element of the first parent RandomVariable indexed by the second parent RandomVariable |
PLearn::RandomVar | We follow the same pattern as Var & Variable |
PLearn::RandomVariable | |
PLearn::RandomVarVMatrix | This is a convenient wrapping around the required data structures for efficient repeated sampling from a RandomVar |
PLearn::Range | |
PLearn::RangeVMatrix | Outputs scalar samples (length 1) starting at start, up to end (inclusive) with step. When end is reached it starts over again |
PLearn::ReadAndWriteCommand | |
PLearn::RealMapping | |
PLearn::RealRange | Real range: i.e. one of ]low,high[ ; [low,high[; [low,high]; ]low,high] |
PLearn::ReconstructionWeightsKernel | |
PLearn::RegularGridVMatrix | |
PLearn::RemapLastColumnVMatrix | |
PLearn::RemoveDuplicateVMatrix | |
PLearn::RemoveRowsVMatrix | Sees an underlying VMat with the specified rows excluded |
PLearn::RepeatSplitter | |
PLearn::ReshapeVariable | Variable that views another variable, but with a different length() and width() (the only restriction being that length()*width() remain the same) |
PLearn::ResourceSemaphore | |
PLearn::RGB | |
PLearn::RGBImage | Uses top left coordinate system Pixel (i,j) is at row i, column j |
PLearn::RGBImageDB | |
PLearn::RGBImagesVMatrix | |
PLearn::RGBImageVMatrix | |
PLearn::RightPseudoInverseVariable | |
PLearn::Row | |
PLearn::RowAtPositionVariable | |
PLearn::RowBufferedVMatrix | |
PLearn::RowIterator | |
PLearn::RowMapSparseMatrix< T > | |
PLearn::RowMapSparseValueMatrix< T > | |
PLearn::RowsSubVMatrix | |
PLearn::RowSumVariable | Result is a single column that contains the sum of each row of the input |
PLearn::RunCommand | |
PLearn::RunObject | |
PLearn::RVArray | An RVArray stores a table of RandomVar's |
PLearn::RVArrayRandomElementRandomVariable | |
PLearn::RVInstance | RVInstance represents a RandomVariable V along with a "value" v |
PLearn::RVInstanceArray | |
PLearn::ScaledConditionalCDFSmoother | |
PLearn::ScaledGaussianKernel | Returns exp(-sum_i[(phi_i*(x1_i - x2_i))^2]/sigma^2) |
PLearn::ScaledGeneralizedDistanceRBFKernel | Returns exp(-(sum_i phi_i*[abs(x1_i^a - x2_i^a)^b])^c) |
PLearn::ScaledGradientOptimizer | |
PLearn::ScaledLaplacianKernel | Returns exp(-(sum_i[abs(x1_i - x2_i)*phi_i])) |
PLearn::Schema | |
PLearn::SDBVMatrix | |
PLearn::SDBVMField | |
PLearn::SDBVMFieldAffine | Apply an affine transformation to the field: y = a*x+b |
PLearn::SDBVMFieldAsIs | Pass through the value within the SDB (after conversion to real of the underlying SDB type) |
PLearn::SDBVMFieldCodeAsIs | |
PLearn::SDBVMFieldDate | Convert a date to fill 3 columns in the VMat: YYYY, MM, DD |
PLearn::SDBVMFieldDateDiff | Difference between two dates ("source1-source2" expressed as an integer number of days, months, or years) |
PLearn::SDBVMFieldDateGreater | Verifies if the date within the row is greater than a threshold date |
PLearn::SDBVMFieldDay | |
PLearn::SDBVMFieldDiscrete | A field that recodes its source field according to an OutputCoder object |
PLearn::SDBVMFieldDivSigma | Just divide by standard deviation |
PLearn::SDBVMFieldFunc1 | |
PLearn::SDBVMFieldFunc2 | |
PLearn::SDBVMFieldHasClaim | |
PLearn::SDBVMFieldICBCClassification | |
PLearn::SDBVMFieldICBCTargets | |
PLearn::SDBVMFieldMonths | Computed year*12+(month-1) |
PLearn::SDBVMFieldMultiDiscrete | |
PLearn::SDBVMFieldNormalize | Normalize the field (subtract the mean then divide by standard dev) |
PLearn::SDBVMFieldPosAffine | Take the positive part of the field, followed by affine transformation: y = a*max(x,0)+b |
PLearn::SDBVMFieldRemapIntervals | |
PLearn::SDBVMFieldRemapReals | |
PLearn::SDBVMFieldRemapStrings | |
PLearn::SDBVMFieldSignedPower | Do the following : y = x^a |
PLearn::SDBVMFieldSource1 | A field that maps exactly 1 SDB field to a VMatrix segment (abstract) |
PLearn::SDBVMFieldSource2 | A field that maps exactly 2 SDB fields to a VMatrix segment (abstract) |
PLearn::SDBVMFieldSumClaims | |
PLearn::SDBVMOutputCoder | |
PLearn::SDBVMSource | A SDBVMSource represents a source for a value that can be either directly a field from a SDB or an already processed SDBVMField |
PLearn::SDBWithStats | |
PLearn::SelectColumnsVMatrix | Selects variables (columns) from a source matrix according to given vector of indices |
PLearn::SelectedIndicesCmp< T > | |
PLearn::SelectedOutputCostFunction | This allows to apply a costfunction on a single output element (and correponding target element) of a larger output vector, rather than on the whole vector |
PLearn::SelectInputSubsetLearner | |
PLearn::SelectRowsFileIndexVMatrix | |
PLearn::SelectRowsVMatrix | Selects samples from a source matrix according to given vector of indices |
PLearn::SemId | This class is defined in order to distinguish semaphore and shared memory id's from plain integers when constructing a Semaphore or a SharedMemory object |
PLearn::SemiSupervisedProbClassCostVariable | |
PLearn::semun | |
PLearn::SentencesBlocks | |
PLearn::SequentialLearner | |
PLearn::SequentialModelSelector | |
PLearn::SequentialSplitter | |
PLearn::SequentialValidation | |
PLearn::Set | |
set | |
PLearn::SetOption | |
PLearn::SharedMemory< T > | |
PLearn::SharpeRatioStatsIterator | |
PLearn::ShellProgressBar | |
PLearn::ShellScript | |
PLearn::ShiftAndRescaleVMatrix | |
PLearn::short_and_twobytes | |
PLearn::SigmoidalKernel | Returns sigmoid(c*x1.x2) |
PLearn::SigmoidPrimitiveKernel | Returns log(1+exp(c*x1.x2)) = primitive of sigmoidal kernel |
PLearn::SigmoidVariable | |
PLearn::SignVariable | Sign(x) = 1 if x>0, -1 if x<0, 0 if x=0, all done element by element |
PLearn::SimpleDB< KeyType, QueryResult > | |
PLearn::SimpleDBIndexKey< KeyType > | |
PLearn::SmallVector< T, SizeBits, Allocator > | |
PLearn::SMat< T > | |
PLearn::SmoothedProbSparseMatrix | |
PLearn::Smoother | |
PLearn::SoftmaxLossVariable | |
PLearn::SoftmaxVariable | |
PLearn::SoftplusVariable | This is the primitive of a sigmoid: log(1+exp(x)) |
PLearn::SoftSlopeIntegralVariable | |
PLearn::SoftSlopeVariable | |
PLearn::SortRowsVMatrix | Sort the samples of a VMatrix according to one (or more) given columns |
PLearn::SourceKernel | |
PLearn::SourceSampleVariable | |
PLearn::SourceVariable | |
PLearn::SourceVMatrix | |
PLearn::SourceVMatrixSplitter | |
PLearn::SparseMatrix | |
PLearn::SparseVMatrix | |
PLearn::SparseVMatrixRow | |
PLearn::SpectralClustering | |
PLearn::SpiralDistribution | |
PLearn::Splitter | |
PLearn::SquaredErrorCostFunction | ********************************************************* The following 'kernels' are rather used as cost functions |
PLearn::SquareRootVariable | |
PLearn::SquareVariable | |
PLearn::StackedLearner | |
PLearn::StatefulLearner | |
PLearn::StaticInitializer | A StaticInitializer is typically declared as a static member of a class, and given a parameter that is a static initialization function for said class |
PLearn::StatsCollector | |
PLearn::StatsCollectorCounts | |
PLearn::StatsItArray | |
PLearn::StatsIterator | |
PLearn::StatSpec | The specification of a statistic to compute (as can be specified as a string in PTester) |
PLearn::StddevStatsIterator | |
PLearn::StderrStatsIterator | |
PLearn::StdPStreamBuf | |
PLearn::StochasticRandomVariable | |
PLearn::Storage< T > | |
streambuf | |
PLearn::StringFieldMapping | |
PLearn::StringTable | |
PLearn::StrTableVMatrix | |
PLearn::SubInputVMatrix | |
PLearn::SubMatTransposeVariable | |
PLearn::SubMatVariable | |
PLearn::SubsampleVariable | A subsample var; equals subrample(input, the_subsamplefactor) |
PLearn::SubVecRandomVariable | Y = sub-vector of X starting at position "start", of length "value->length()" |
PLearn::SubVMatrix | |
PLearn::SumAbsVariable | |
PLearn::SumOfVariable | |
PLearn::SumOverBagsVariable | |
PLearn::SumSquareVariable | |
PLearn::SumVariable | |
PLearn::Symbol | |
PLearn::TangentLearner | |
PLearn::TanhVariable | |
PLearn::TemporalHorizonVMatrix | This VMat delay the last targetsize entries of an underlying VMat by a certain horizon |
PLearn::TestDependenciesCommand | |
PLearn::TestDependencyCommand | |
PLearn::TestingLearner | |
PLearn::TestInTrainSplitter | |
PLearn::TestMethod | |
PLearn::TextProgressBarPlugin | Simple plugin for displaying text progress bar |
PLearn::TextSenseSequenceVMatrix | This class handles a sequence of words/sense tag/POS triplets to present it as target words and their context |
PLearn::ThresholdVMatrix | |
PLearn::TimesColumnVariable | Multiplies each column of a matrix var elementwise with a single column variable |
PLearn::TimesConstantVariable | Multiplies a matrix var by a scalar constant |
PLearn::TimesRowVariable | Multiplies each row of a matrix var elementwise with a single row variable |
PLearn::TimesScalarVariable | Multiplies a matrix var by a scalar var |
PLearn::TimesVariable | Multiplies 2 matrix vars of same size elementwise |
PLearn::TinyVector< T, N, TTrait > | |
PLearn::TinyVectorTrait< T > | |
PLearn::TinyVectorTrait< char > | |
PLearn::TinyVectorTrait< int > | |
PLearn::TinyVectorTrait< unsigned char > | |
PLearn::TinyVectorTrait< unsigned int > | |
PLearn::TMat< T > | |
PLearn::TMatColRowsIterator< T > | Model of the Random Access Iterator concept for iterating through a single column of a TMat, one row at a time |
PLearn::TMatElementIterator< T > | |
PLearn::TMatRowsAsArraysIterator< T > | Model of the Random Access Iterator concept for iterating through the ROWS of a TMat |
PLearn::TMatRowsIterator< T > | Model of the Random Access Iterator concept for iterating through the ROWS of a TMat |
PLearn::TmpFilenames | |
PLearn::ToBagSplitter | |
PLearn::TopNI< T > | |
PLearn::Train | |
PLearn::TrainTestBagsSplitter | |
PLearn::TrainTestSplitter | |
PLearn::TrainValidTestSplitter | |
PLearn::TransposeProductVariable | Matrix product between transpose of matrix1 and matrix2 |
PLearn::TransposeVMatrix | |
PLearn::tRule | |
PLearn::TTensor< T > | |
PLearn::TTensorElementIterator< T > | |
PLearn::TTensorSubTensorIterator< T > | |
PLearn::TVec< T > | |
PLearn::TypeFactory | |
PLearn::TypeMapEntry | |
PLearn::TypeTraits< T > | |
PLearn::TypeTraits< Array< T > > | |
PLearn::TypeTraits< list< T > > | |
PLearn::TypeTraits< map< T, U > > | |
PLearn::TypeTraits< pair< T, U > > | |
PLearn::TypeTraits< PP< T > > | |
PLearn::TypeTraits< RealMapping > | |
PLearn::TypeTraits< SetOption > | |
PLearn::TypeTraits< string > | |
PLearn::TypeTraits< T * > | |
PLearn::TypeTraits< TMat< T > > | |
PLearn::TypeTraits< TVec< T > > | |
PLearn::TypeTraits< vector< T > > | |
PLearn::UCISpecification | |
PLearn::UnaryHardSlopeVariable | |
PLearn::UnarySampleVariable | |
PLearn::UnaryVariable | |
PLearn::UnconditionalDistribution | |
PLearn::UnequalConstantVariable | A scalar var; equal 1 if input1!=c, 0 otherwise |
PLearn::UnfoldedFuncVariable | |
PLearn::UnfoldedSumOfVariable | |
PLearn::UniformDistribution | |
PLearn::UniformizeVMatrix | |
PLearn::UniformSampleVariable | |
PLearn::UniformVMatrix | |
PLearn::UpsideDownVMatrix | |
PLearn::Var | |
PLearn::VarArray | |
PLearn::VarArrayElementVariable | Variable that is the element of the input1 VarArray indexed by the input2 variable |
PLearn::VarColumnsVariable | |
PLearn::VarElementVariable | |
PLearn::Variable | |
PLearn::VarMeasurer | |
PLearn::VarRowsVariable | |
PLearn::VarRowVariable | Variable that is the row of the input1 variable indexed by the input2 variable |
PLearn::VecCompressor | |
PLearn::VecElementVariable | Variable that is the element of vector vec indexed by variable input |
PLearn::VecExtendedVMatrix | |
PLearn::VecStatsCollector | |
vector | |
PLearn::VMat | |
PLearn::VMatCommand | |
PLearn::VMatLanguage | |
PLearn::VMatrix | |
PLearn::VMatrixFromDistribution | |
PLearn::VMField | VMField contains a fieldname and a fieldtype |
PLearn::VMFieldStat | This class holds simple statistics about a field |
PLearn::VVec | A VVec is a reference to a row or part of a row (a subrow) of a VMatrix |
PLearn::VVMatrix | This class is a wrapper for a .vmat VMatrix |
PLearn::WeightedCostFunction | A costfunction that allows to reweight another costfunction (weight being last element of target) Returns target.lastElement() * costfunc(output,target.subVec(0,target.length()-1)); |
PLearn::WeightedSumSquareVariable | |
PLearn::WordNetOntology | |
PLearn::YMDDatedVMatrix | |