Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

DistanceKernel.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: DistanceKernel.cc,v 1.10 2004/08/05 13:48:42 tihocan Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "DistanceKernel.h" 00044 #include "SelectedOutputCostFunction.h" 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00049 00050 PLEARN_IMPLEMENT_OBJECT(DistanceKernel, "ONE LINE DESCR", "NO HELP"); 00051 00053 // DistanceKernel // 00055 DistanceKernel::DistanceKernel(real the_Ln) 00056 : n(the_Ln), 00057 pow_distance(false) 00058 {} 00059 00061 // declareOptions // 00063 void DistanceKernel::declareOptions(OptionList& ol) 00064 { 00065 00066 declareOption(ol, "n", &DistanceKernel::n, OptionBase::buildoption, 00067 "This class implements a Ln distance (L2, the default is the usual euclidean distance)."); 00068 00069 declareOption(ol, "pow_distance", &DistanceKernel::pow_distance, OptionBase::buildoption, 00070 "If set to 1, the distance computed will be elevated to power n."); 00071 00072 inherited::declareOptions(ol); 00073 } 00074 00076 // evaluate // 00078 real DistanceKernel::evaluate(const Vec& x1, const Vec& x2) const { 00079 if (pow_distance) { 00080 return powdistance(x1, x2, n); 00081 } else { 00082 return dist(x1, x2, n); 00083 } 00084 } 00085 00087 // evaluate_i_j // 00089 real DistanceKernel::evaluate_i_j(int i, int j) const { 00090 static real d; 00091 if (n == 2.0) { 00092 if (i == j) 00093 // The case 'i == j' can cause precision issues because of the optimized 00094 // formula below. Thus we make sure we always return 0. 00095 return 0; 00096 d = squarednorms[i] + squarednorms[j] - 2 * data->dot(i, j, data_inputsize); 00097 if (d < 0) { 00098 // This can happen (especially when compiled in -opt) if the two points 00099 // are the same, and the distance should be zero. 00100 if (d < -1e-2) 00101 // That should not happen. 00102 PLERROR("In DistanceKernel::evaluate_i_j - Found a (significantly) negative distance (%f), " 00103 "i = %d, j = %d, squarednorms[i] = %f, squarednorms[j] = %f, dot = %f", 00104 d, i, j, squarednorms[i], squarednorms[j], data->dot(i, j, data_inputsize)); 00105 d = 0; 00106 } 00107 if (pow_distance) 00108 return d; 00109 else 00110 return sqrt(d); 00111 } else { 00112 return inherited::evaluate_i_j(i,j); 00113 } 00114 } 00115 00117 // setDataForKernelMatrix // 00119 void DistanceKernel::setDataForKernelMatrix(VMat the_data) 00120 { 00121 inherited::setDataForKernelMatrix(the_data); 00122 if (n == 2.0) { 00123 squarednorms.resize(data.length()); 00124 for(int index=0; index<data.length(); index++) { 00125 squarednorms[index] = data->dot(index, index, data_inputsize); 00126 } 00127 } 00128 } 00129 00131 // absolute_deviation // 00133 CostFunc absolute_deviation(int singleoutputindex) 00134 { 00135 if(singleoutputindex>=0) 00136 return new SelectedOutputCostFunction(new DistanceKernel(1.0),singleoutputindex); 00137 else 00138 return new DistanceKernel(1.0); 00139 } 00140 00141 } // end of namespace PLearn 00142

Generated on Tue Aug 17 15:51:26 2004 for PLearn by doxygen 1.3.7