00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
#include "DistanceKernel.h"
00044
#include "SelectedOutputCostFunction.h"
00045
00046
namespace PLearn {
00047
using namespace std;
00048
00049
00050
PLEARN_IMPLEMENT_OBJECT(DistanceKernel,
"ONE LINE DESCR",
"NO HELP");
00051
00053
00055 DistanceKernel::DistanceKernel(
real the_Ln)
00056 : n(the_Ln),
00057 pow_distance(false)
00058 {}
00059
00061
00063 void DistanceKernel::declareOptions(
OptionList& ol)
00064 {
00065
00066
declareOption(ol,
"n", &DistanceKernel::n, OptionBase::buildoption,
00067
"This class implements a Ln distance (L2, the default is the usual euclidean distance).");
00068
00069
declareOption(ol,
"pow_distance", &DistanceKernel::pow_distance, OptionBase::buildoption,
00070
"If set to 1, the distance computed will be elevated to power n.");
00071
00072 inherited::declareOptions(ol);
00073 }
00074
00076
00078 real DistanceKernel::evaluate(
const Vec& x1,
const Vec& x2)
const {
00079
if (
pow_distance) {
00080
return powdistance(x1, x2,
n);
00081 }
else {
00082
return dist(x1, x2,
n);
00083 }
00084 }
00085
00087
00089 real DistanceKernel::evaluate_i_j(
int i,
int j)
const {
00090
static real d;
00091
if (
n == 2.0) {
00092
if (i == j)
00093
00094
00095
return 0;
00096 d =
squarednorms[i] + squarednorms[j] - 2 * data->dot(i, j, data_inputsize);
00097
if (d < 0) {
00098
00099
00100
if (d < -1e-2)
00101
00102
PLERROR(
"In DistanceKernel::evaluate_i_j - Found a (significantly) negative distance (%f), "
00103
"i = %d, j = %d, squarednorms[i] = %f, squarednorms[j] = %f, dot = %f",
00104 d, i, j, squarednorms[i], squarednorms[j], data->dot(i, j, data_inputsize));
00105 d = 0;
00106 }
00107
if (
pow_distance)
00108
return d;
00109
else
00110
return sqrt(d);
00111 }
else {
00112
return inherited::evaluate_i_j(i,j);
00113 }
00114 }
00115
00117
00119 void DistanceKernel::setDataForKernelMatrix(
VMat the_data)
00120 {
00121 inherited::setDataForKernelMatrix(the_data);
00122
if (
n == 2.0) {
00123
squarednorms.
resize(data.
length());
00124
for(
int index=0; index<data.
length(); index++) {
00125
squarednorms[index] = data->dot(index, index, data_inputsize);
00126 }
00127 }
00128 }
00129
00131
00133 CostFunc absolute_deviation(
int singleoutputindex)
00134 {
00135
if(singleoutputindex>=0)
00136
return new SelectedOutputCostFunction(
new DistanceKernel(1.0),singleoutputindex);
00137
else
00138
return new DistanceKernel(1.0);
00139 }
00140
00141 }
00142