00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: MatrixAffineTransformVariable.cc,v 1.4 2004/04/27 16:02:26 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "MatrixAffineTransformVariable.h" 00044 #include "SubMatVariable.h" 00045 #include "ProductVariable.h" 00046 #include "MatrixAffineTransformFeedbackVariable.h" 00047 00048 namespace PLearn { 00049 using namespace std; 00050 00051 00052 PLEARN_IMPLEMENT_OBJECT(MatrixAffineTransformVariable, 00053 "ONE LINE DESCR", 00054 "NO HELP"); 00055 00056 void MatrixAffineTransformVariable::recomputeSize(int& l, int& w) const 00057 { 00058 if (input1 && input2) { 00059 l = input2->width(); 00060 w = input1->width(); 00061 } else 00062 l = w = 0; 00063 } 00064 00065 00066 void MatrixAffineTransformVariable::fprop() 00067 { 00068 Mat lintransform = input2->matValue.subMatRows(1,input2->length()-1); 00069 for (int i = 0; i < length(); i++) 00070 for (int j = 0; j < width(); j++) 00071 matValue[i][j] = input2->matValue[0][i]; 00072 transposeProductAcc(matValue,lintransform, input1->matValue); 00073 } 00074 00075 00076 void MatrixAffineTransformVariable::bprop() 00077 { 00078 Mat& afftr = input2->matValue; 00079 int l = afftr.length(); 00080 Mat lintr = afftr.subMatRows(1,l-1); 00081 00082 Mat& afftr_g = input2->matGradient; 00083 Vec bias_g = afftr_g.firstRow(); 00084 Mat lintr_g = afftr_g.subMatRows(1,l-1); 00085 00086 for (int i = 0; i < length(); i++) 00087 for (int j = 0; j < width(); j++) 00088 { 00089 bias_g[i] += matGradient[i][j]; 00090 } 00091 if(!input1->dont_bprop_here) 00092 productAcc(input1->matGradient, lintr, matGradient); 00093 productTransposeAcc(lintr_g, input1->matValue, matGradient); 00094 } 00095 00096 00097 void MatrixAffineTransformVariable::symbolicBprop() 00098 { 00099 Var lintr = new SubMatVariable(input2,0,0,input2->length()-1,input2->width()); 00100 //Var bias = new SubMatVariable(input2,length()-1,0,1,width()); 00101 00102 if(!input1->dont_bprop_here) 00103 input1->accg(new ProductVariable(lintr,g)); 00104 input2->accg(new MatrixAffineTransformFeedbackVariable(input1,g)); 00105 } 00106 00107 00108 00109 } // end of namespace PLearn 00110 00111