Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

CompactVMatrixGaussianKernel.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio and University of Montreal 00006 // 00007 00008 // Redistribution and use in source and binary forms, with or without 00009 // modification, are permitted provided that the following conditions are met: 00010 // 00011 // 1. Redistributions of source code must retain the above copyright 00012 // notice, this list of conditions and the following disclaimer. 00013 // 00014 // 2. Redistributions in binary form must reproduce the above copyright 00015 // notice, this list of conditions and the following disclaimer in the 00016 // documentation and/or other materials provided with the distribution. 00017 // 00018 // 3. The name of the authors may not be used to endorse or promote 00019 // products derived from this software without specific prior written 00020 // permission. 00021 // 00022 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00023 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00024 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00025 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00026 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00027 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00028 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00029 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00030 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00031 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00032 // 00033 // This file is part of the PLearn library. For more information on the PLearn 00034 // library, go to the PLearn Web site at www.plearn.org 00035 00036 00037 /* ******************************************************* 00038 * $Id: CompactVMatrixGaussianKernel.cc,v 1.4 2004/04/07 23:15:58 morinf Exp $ 00039 * This file is part of the PLearn library. 00040 ******************************************************* */ 00041 00042 #include "CompactVMatrixGaussianKernel.h" 00043 00044 namespace PLearn { 00045 using namespace std; 00046 00047 // ** CompactVMatrixGaussianKernel ** 00048 00049 PLEARN_IMPLEMENT_OBJECT(CompactVMatrixGaussianKernel, "ONE LINE DESCR", "NO HELP"); 00050 00051 real CompactVMatrixGaussianKernel::evaluate(const Vec& x1, const Vec& x2) const 00052 { 00053 // return exp(-powdistance(x1, x2, 2.0)/(sigma*sigma)); 00054 real sqdiff=0; 00055 if (m) 00056 { 00057 sqdiff=m->squareDifference(int(x1[0]),int(x2[0])); 00058 /* 00059 #ifdef BOUNDCHECK 00060 m->setNormalMode(); 00061 int actual_n_inputs = m->width()-1; 00062 Vec actual_x1(actual_n_inputs); 00063 Vec actual_x2(actual_n_inputs); 00064 m->getRow(int(x1[0]),actual_x1); 00065 m->getRow(int(x2[0]),actual_x2); 00066 m->setIndicesMode(); 00067 real actual_sqdiff= powdistance(actual_x1, actual_x2, 2.0); 00068 if (fabs(sqdiff-actual_sqdiff)>0.1) 00069 PLWARNING("something wrong in CompactVMatrixGaussianKernel"); 00070 #endif 00071 */ 00072 } 00073 else 00074 sqdiff= powdistance(x1, x2, real(2.0)); 00075 return exp(-sqdiff/(sigma*sigma)); 00076 00077 } 00078 00079 void CompactVMatrixGaussianKernel::setParameters(Vec paramvec) 00080 { sigma = paramvec[0]; } 00081 00082 00083 void CompactVMatrixGaussianKernel::declareOptions(OptionList &ol) 00084 { 00085 declareOption(ol, "sigma", &CompactVMatrixGaussianKernel::sigma, OptionBase::buildoption, 00086 "TODO: Some comments"); 00087 declareOption(ol, "m", &CompactVMatrixGaussianKernel::m, OptionBase::buildoption, ""); 00088 inherited::declareOptions(ol); 00089 } 00090 00091 } // end of namespace PLearn

Generated on Tue Aug 17 15:49:31 2004 for PLearn by doxygen 1.3.7