Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

CompressedVMatrix.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2001 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2002 Pascal Vincent, Julien Keable, Xavier Saint-Mleux 00007 // 00008 // Redistribution and use in source and binary forms, with or without 00009 // modification, are permitted provided that the following conditions are met: 00010 // 00011 // 1. Redistributions of source code must retain the above copyright 00012 // notice, this list of conditions and the following disclaimer. 00013 // 00014 // 2. Redistributions in binary form must reproduce the above copyright 00015 // notice, this list of conditions and the following disclaimer in the 00016 // documentation and/or other materials provided with the distribution. 00017 // 00018 // 3. The name of the authors may not be used to endorse or promote 00019 // products derived from this software without specific prior written 00020 // permission. 00021 // 00022 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00023 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00024 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00025 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00026 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00027 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00028 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00029 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00030 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00031 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00032 // 00033 // This file is part of the PLearn library. For more information on the PLearn 00034 // library, go to the PLearn Web site at www.plearn.org 00035 00036 00037 /* ******************************************************* 00038 * $Id: CompressedVMatrix.cc,v 1.7 2004/07/21 16:30:55 chrish42 Exp $ 00039 ******************************************************* */ 00040 00041 #include <plearn/math/VecCompressor.h> 00042 #include "CompressedVMatrix.h" 00043 00044 namespace PLearn { 00045 using namespace std; 00046 00047 00048 // ************************ 00049 // ** CompressedVMatrix ** 00050 00051 PLEARN_IMPLEMENT_OBJECT(CompressedVMatrix, "ONE LINE DESCR", "ONE LINE HELP"); 00052 00053 CompressedVMatrix::CompressedVMatrix() 00054 : data(0), rowstarts(0), dataend(0), curpos(0) 00055 { 00056 } 00057 00058 CompressedVMatrix::CompressedVMatrix(int the_max_length, int the_width, size_t memory_alloc) 00059 { init(the_max_length, the_width, 00060 memory_alloc!=0 ?memory_alloc :the_max_length*VecCompressor::worstCaseSize(the_width)); } 00061 00062 void CompressedVMatrix::init(int the_max_length, int the_width, size_t memory_alloc) 00063 { 00064 length_ = 0; 00065 width_ = the_width; 00066 max_length = the_max_length; 00067 data = new signed char[memory_alloc]; 00068 dataend = data+memory_alloc; 00069 curpos = data; 00070 rowstarts = new signed char*[max_length]; 00071 } 00072 00073 CompressedVMatrix::CompressedVMatrix(VMat m, size_t memory_alloc) 00074 { 00075 if(memory_alloc==0) 00076 init(m.length(), m.width(), m.length()*VecCompressor::worstCaseSize(m.width())); 00077 Vec v(m.width()); 00078 for(int i=0; i<m.length(); i++) 00079 { 00080 m->getRow(i,v); 00081 appendRow(v); 00082 } 00083 } 00084 00085 void CompressedVMatrix::getNewRow(int i, const Vec& v) const 00086 { 00087 #ifdef BOUNDCHECK 00088 if(v.length() != width_) 00089 PLERROR("In CompressedVMatrix::getNewRow length of v and width of matrix do not match"); 00090 if(i<0 || i>=length_) 00091 PLERROR("In CompressedVMatrix::getNewRow OUT OF BOUNDS row index"); 00092 #endif 00093 VecCompressor::uncompressVec(rowstarts[i],v); 00094 } 00095 00096 void CompressedVMatrix::appendRow(Vec v) 00097 { 00098 if(length_>=max_length) 00099 PLERROR("In CompressedVMatrix::appendRow, max_length exceeded"); 00100 rowstarts[length_] = curpos; 00101 curpos = VecCompressor::compressVec(v,curpos); 00102 if(curpos>dataend) 00103 PLERROR("In CompressedVMatrix::appendRow not enough space reserved for data"); 00104 ++length_; 00105 } 00106 00107 void CompressedVMatrix::compacify() 00108 { 00109 size_t datasize = curpos-data; 00110 signed char* old_data = data; 00111 signed char** old_rowstarts = rowstarts; 00112 data = new signed char[datasize]; 00113 dataend = data+datasize; 00114 curpos = dataend; 00115 rowstarts = new signed char*[length_]; 00116 memcpy(data, old_data, datasize); 00117 00118 for(int i=0; i<length_; i++) 00119 rowstarts[i] = data + (old_rowstarts[i]-old_data); 00120 max_length = length_; 00121 delete[] old_data; 00122 delete[] old_rowstarts; 00123 } 00124 00125 CompressedVMatrix::~CompressedVMatrix() 00126 { 00127 if(data) 00128 delete[] data; 00129 if(rowstarts) 00130 delete[] rowstarts; 00131 } 00132 00133 } // end of namespcae PLearn

Generated on Tue Aug 17 15:49:34 2004 for PLearn by doxygen 1.3.7