Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

SoftmaxLossVariable.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: SoftmaxLossVariable.cc,v 1.6 2004/04/27 16:02:26 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "ExpVariable.h" 00044 #include "RowAtPositionVariable.h" 00045 #include "SoftmaxLossVariable.h" 00046 #include "Var_operators.h" 00047 00048 namespace PLearn { 00049 using namespace std; 00050 00051 00054 PLEARN_IMPLEMENT_OBJECT(SoftmaxLossVariable, 00055 "ONE LINE DESCR", 00056 "NO HELP"); 00057 00058 SoftmaxLossVariable::SoftmaxLossVariable(Variable* input1, Variable* input2) 00059 : inherited(input1, input2, 1, 1) 00060 { 00061 build_(); 00062 } 00063 00064 void 00065 SoftmaxLossVariable::build() 00066 { 00067 inherited::build(); 00068 build_(); 00069 } 00070 00071 void 00072 SoftmaxLossVariable::build_() 00073 { 00074 if(input2 && !input2->isScalar()) 00075 PLERROR("In RowAtPositionVariable: position must be a scalar"); 00076 } 00077 00078 void SoftmaxLossVariable::recomputeSize(int& l, int& w) const 00079 { l=1; w=1; } 00080 00081 void SoftmaxLossVariable::fprop() 00082 { 00083 int classnum = (int)input2->valuedata[0]; 00084 real input_index = input1->valuedata[classnum]; 00085 real sum=0; 00086 for(int i=0; i<input1->nelems(); i++) 00087 sum += safeexp(input1->valuedata[i]-input_index); 00088 valuedata[0] = 1.0/sum; 00089 } 00090 00091 00092 void SoftmaxLossVariable::bprop() 00093 { 00094 int classnum = (int)input2->valuedata[0]; 00095 real input_index = input1->valuedata[classnum]; 00096 real vali = valuedata[0]; 00097 for(int i=0; i<input1->nelems(); i++) 00098 { 00099 if (i!=classnum) 00100 //input1->gradientdata[i] = -gradientdata[i]/*?*/*vali*vali*safeexp(input1->valuedata[i]-input_index); 00101 input1->gradientdata[i] = -gradientdata[i]*vali*vali*safeexp(input1->valuedata[i]-input_index); 00102 else 00103 input1->gradientdata[i] = gradientdata[i]*vali*(1.-vali); 00104 } 00105 } 00106 00107 00108 void SoftmaxLossVariable::bbprop() 00109 { 00110 PLERROR("SofmaxVariable::bbprop() not implemented"); 00111 } 00112 00113 00114 void SoftmaxLossVariable::symbolicBprop() 00115 { 00116 Var gi = -g * Var(this) * Var(this) * exp(input1-input1(input2)); 00117 Var gindex = new RowAtPositionVariable(g * Var(this), input2, input1->length()); 00118 input1->accg(gi+gindex); 00119 } 00120 00121 00122 // R{ s_i = exp(x_i) / sum_j exp(x_j) } = (s_i(1-s_i) - sum_{k!=i} s_i s_k) R(s_i) = s_i ((1-s_i) - sum_{k!=i} s_k) R(s_i) 00123 void SoftmaxLossVariable::rfprop() 00124 { 00125 if (rValue.length()==0) resizeRValue(); 00126 00127 int classnum = (int)input2->valuedata[0]; 00128 real input_index = input1->valuedata[classnum]; 00129 real vali = valuedata[0]; 00130 real sum = 0; 00131 for(int i=0; i<input1->nelems(); i++) 00132 { 00133 real res =vali * input1->rvaluedata[i]; 00134 if (i != classnum) 00135 sum -= res * vali* safeexp(input1->valuedata[i]-input_index); 00136 else sum += res * (1 - vali); 00137 } 00138 rvaluedata[0] = sum; 00139 } 00140 00141 00142 00143 } // end of namespace PLearn 00144 00145

Generated on Tue Aug 17 16:05:56 2004 for PLearn by doxygen 1.3.7