Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

PLearn::GaussianProcessRegressor Member List

This is the complete list of members for PLearn::GaussianProcessRegressor, including all inherited members.

_classname_()PLearn::Object [static]
_getOptionList_()PLearn::Object [static]
_isa_(Object *o)PLearn::Object [static]
_new_instance_for_typemap_()PLearn::Object [static]
_static_initialize_()PLearn::Object [static]
_static_initializer_PLearn::Object [static]
alphaPLearn::GaussianProcessRegressor
already_sortedPLearn::PDistribution [protected]
BayesianCost()PLearn::GaussianProcessRegressor [protected]
build()PLearn::GaussianProcessRegressor [virtual]
build_()PLearn::GaussianProcessRegressor [private]
build_from_train_set()PLearn::PLearner [inline, protected, virtual]
call(const string &methodname, int nargs, PStream &in_parameters, PStream &out_results)PLearn::Object [virtual]
cdf(const Vec &y) constPLearn::PDistribution [virtual]
changeOption(const string &optionname, const string &value)PLearn::Object
changeOptions(const map< string, string > &name_value)PLearn::Object [virtual]
classname() constPLearn::Object [virtual]
computeCostsFromOutputs(const Vec &input, const Vec &output, const Vec &target, Vec &costs) constPLearn::GaussianProcessRegressor [virtual]
computeCostsOnly(const Vec &input, const Vec &target, Vec &costs) constPLearn::GaussianProcessRegressor [virtual]
computeOutput(const Vec &input, Vec &output) constPLearn::GaussianProcessRegressor [virtual]
computeOutputAndCosts(const Vec &input, const Vec &target, Vec &output, Vec &costs) constPLearn::GaussianProcessRegressor [virtual]
cond_sortPLearn::PDistribution [protected]
cond_swapPLearn::PDistribution [protected]
conditional_flagsPLearn::PDistribution
declareOptions(OptionList &ol)PLearn::GaussianProcessRegressor [protected, static]
deepCopy(CopiesMap &copies) constPLearn::Object [virtual]
delta_curvePLearn::PDistribution [protected]
density(const Vec &y) constPLearn::PDistribution [virtual]
eigenvaluesPLearn::GaussianProcessRegressor
eigenvectorsPLearn::GaussianProcessRegressor
ensureFullJointDistribution(TVec< int > &old_flags)PLearn::PDistribution [protected]
expdirPLearn::PLearner
expectation() constPLearn::GaussianProcessRegressor [virtual]
expectation(Vec expected_y) constPLearn::GaussianProcessRegressor [virtual]
PLearn::PConditionalDistribution::expectation(Vec &mu) constPLearn::PDistribution [virtual]
finishConditionalBuild()PLearn::PDistribution [protected]
forget()PLearn::GaussianProcessRegressor [virtual]
full_joint_distributionPLearn::PDistribution [protected]
GaussianProcessRegressor()PLearn::GaussianProcessRegressor
generate(Vec &y) constPLearn::PDistribution [virtual]
generateN(const Mat &Y) constPLearn::PDistribution
getExperimentDirectory() constPLearn::PLearner [inline]
getOption(const string &optionname) constPLearn::Object
getOptionList() constPLearn::Object [virtual]
getOptionsToSave() constPLearn::Object [virtual]
getTestCostIndex(const string &costname) constPLearn::GaussianProcessRegressor
getTestCostNames() constPLearn::GaussianProcessRegressor [virtual]
getTrainCostIndex(const string &costname) constPLearn::GaussianProcessRegressor
getTrainCostNames() constPLearn::GaussianProcessRegressor [virtual]
getTrainingSet() constPLearn::PLearner [inline]
getTrainStatsCollector()PLearn::PLearner [inline]
getValidationSet() constPLearn::PLearner [inline]
Gram_matrix_normalizationPLearn::GaussianProcessRegressor
info() constPLearn::Object [virtual]
inherited typedefPLearn::GaussianProcessRegressor
input_partPLearn::PDistribution [mutable, protected]
input_part_sizePLearn::PConditionalDistribution
inputsize() constPLearn::PLearner [virtual]
inputsize_PLearn::PLearner [protected]
inverseCovTimesVec(real sigma, Vec v, Vec Cinv_v) constPLearn::GaussianProcessRegressor [protected]
isStatefulLearner() constPLearn::PLearner [virtual]
KPLearn::GaussianProcessRegressor
kernelPLearn::GaussianProcessRegressor
KxxPLearn::GaussianProcessRegressor [mutable]
KxxiPLearn::GaussianProcessRegressor [mutable]
load(const string &filename)PLearn::Object [virtual]
log_density(const Vec &x) constPLearn::GaussianProcessRegressor [virtual]
lower_boundPLearn::PDistribution
makeDeepCopyFromShallowCopy(map< const void *, void * > &copies)PLearn::GaussianProcessRegressor [virtual]
PLearn::PLearner::makeDeepCopyFromShallowCopy(CopiesMap &copies)PLearn::PLearner [protected, virtual]
matlabSave(const string &matlab_subdir)PLearn::PLearner [inline, virtual]
max_nb_evectorsPLearn::GaussianProcessRegressor
mean_allKPLearn::GaussianProcessRegressor
meanKPLearn::GaussianProcessRegressor
n_curve_pointsPLearn::PDistribution
n_examplesPLearn::PLearner [protected]
n_inputPLearn::PDistribution [protected]
n_marginPLearn::PDistribution [protected]
n_outputsPLearn::GaussianProcessRegressor
n_targetPLearn::PDistribution [protected]
need_set_inputPLearn::PDistribution [mutable, protected]
newread(PStream &in)PLearn::Object
newwrite(PStream &out) constPLearn::Object
noise_sdPLearn::GaussianProcessRegressor
nstagesPLearn::PLearner
nTestCosts() constPLearn::GaussianProcessRegressor [inline, virtual]
nTrainCosts() constPLearn::GaussianProcessRegressor [inline, virtual]
Object()PLearn::Object
oldread(istream &in)PLearn::Object [virtual]
outputs_defPLearn::PDistribution
outputsize() constPLearn::GaussianProcessRegressor [virtual]
PConditionalDistribution()PLearn::PConditionalDistribution
PDistribution()PLearn::PDistribution
PLEARN_DECLARE_ABSTRACT_OBJECT(PLearner)PLearn::PLearner
PLEARN_DECLARE_OBJECT(GaussianProcessRegressor)PLearn::GaussianProcessRegressor
PLearn::PConditionalDistribution::PLEARN_DECLARE_OBJECT(PConditionalDistribution)PLearn::PConditionalDistribution
PLearn::PDistribution::PLEARN_DECLARE_OBJECT(PDistribution)PLearn::PDistribution
PLearner()PLearn::PLearner
PPointable()PLearn::PPointable [inline]
PPointable(const PPointable &other)PLearn::PPointable [inline]
prepareToSendResults(PStream &out, int nres)PLearn::Object [inline, protected]
print(ostream &out) constPLearn::Object [virtual]
provide_inputPLearn::PDistribution
QFormInverse(real sigma2, Vec u) constPLearn::GaussianProcessRegressor [protected]
read(istream &in)PLearn::Object [virtual]
readOptionVal(PStream &in, const string &optionname)PLearn::Object
ref() constPLearn::PPointable [inline]
report_progressPLearn::PLearner
resetGenerator(long g_seed) constPLearn::PDistribution [virtual]
resetInternalState()PLearn::PLearner [virtual]
resizeParts()PLearn::PDistribution [protected]
run()PLearn::Object [virtual]
save(const string &filename) constPLearn::Object [virtual]
seed_PLearn::PLearner
setConditionalFlags(TVec< int > &flags)PLearn::PDistribution
setExperimentDirectory(const string &the_expdir)PLearn::PLearner [virtual]
setInput(const Vec &input)PLearn::GaussianProcessRegressor [virtual]
PLearn::PConditionalDistribution::setInput(const Vec &input) constPLearn::PConditionalDistribution [virtual]
setInput_const(const Vec &input) constPLearn::GaussianProcessRegressor [virtual]
setOption(const string &optionname, const string &value)PLearn::Object
setTrainingSet(VMat training_set, bool call_forget=true)PLearn::PDistribution [virtual]
setTrainStatsCollector(PP< VecStatsCollector > statscol)PLearn::PLearner [virtual]
setValidationSet(VMat validset)PLearn::PLearner [virtual]
sortFromFlags(Vec &v)PLearn::PDistribution [protected]
sortFromFlags(Mat &m, bool sort_columns=true, bool sort_rows=false)PLearn::PDistribution [protected]
splitCond(const Vec &input) constPLearn::PDistribution [protected]
stagePLearn::PLearner
survival_fn(const Vec &y) constPLearn::PDistribution [virtual]
target_partPLearn::PDistribution [mutable, protected]
targetsize() constPLearn::PLearner [virtual]
targetsize_PLearn::PLearner [protected]
test(VMat testset, PP< VecStatsCollector > test_stats, VMat testoutputs=0, VMat testcosts=0) constPLearn::PLearner [virtual]
train()PLearn::GaussianProcessRegressor [virtual]
train_setPLearn::PLearner [protected]
train_statsPLearn::PLearner [protected]
unref() constPLearn::PPointable [inline]
updateFromConditionalSorting()PLearn::PDistribution [protected, virtual]
upper_boundPLearn::PDistribution
usage() constPLearn::PPointable [inline]
use(VMat testset, VMat outputs) constPLearn::PLearner [virtual]
useOnTrain(Mat &outputs) constPLearn::PLearner [virtual]
validation_setPLearn::PLearner [protected]
variance() constPLearn::GaussianProcessRegressor [virtual]
variance(Vec diag_variances) constPLearn::GaussianProcessRegressor [virtual]
PLearn::PConditionalDistribution::variance(Mat &cov) constPLearn::PDistribution [virtual]
verbosityPLearn::PLearner
weightsize_PLearn::PLearner [protected]
write(ostream &out) constPLearn::Object [virtual]
writeOptionVal(PStream &out, const string &optionname) constPLearn::Object
~GaussianProcessRegressor()PLearn::GaussianProcessRegressor [virtual]
~Object()PLearn::Object [virtual]
~PLearner()PLearn::PLearner [virtual]
~PPointable()PLearn::PPointable [inline, virtual]


Generated on Tue Aug 17 16:27:14 2004 for PLearn by doxygen 1.3.7