_classname_() | PLearn::Object | [static] |
_getOptionList_() | PLearn::Object | [static] |
_isa_(Object *o) | PLearn::Object | [static] |
_new_instance_for_typemap_() | PLearn::Object | [static] |
_static_initialize_() | PLearn::Object | [static] |
_static_initializer_ | PLearn::Object | [static] |
alpha | PLearn::GaussMix | |
alpha_min | PLearn::GaussMix | |
already_sorted | PLearn::PDistribution | [protected] |
build() | PLearn::GaussMix | [virtual] |
build_() | PLearn::GaussMix | [private] |
build_from_train_set() | PLearn::PLearner | [inline, protected, virtual] |
call(const string &methodname, int nargs, PStream &in_parameters, PStream &out_results) | PLearn::Object | [virtual] |
cdf(const Vec &y) const | PLearn::GaussMix | [virtual] |
changeOption(const string &optionname, const string &value) | PLearn::Object | |
changeOptions(const map< string, string > &name_value) | PLearn::Object | [virtual] |
classname() const | PLearn::Object | [virtual] |
computeCostsFromOutputs(const Vec &input, const Vec &output, const Vec &target, Vec &costs) const | PLearn::PDistribution | [virtual] |
computeCostsOnly(const Vec &input, const Vec &target, Vec &costs) const | PLearn::PLearner | [virtual] |
computeLogLikelihood(const Vec &y, int j, bool is_input=false) const | PLearn::GaussMix | [protected, virtual] |
computeMeansAndCovariances() | PLearn::GaussMix | [protected, virtual] |
computeOutput(const Vec &input, Vec &output) const | PLearn::PDistribution | [virtual] |
computeOutputAndCosts(const Vec &input, const Vec &target, Vec &output, Vec &costs) const | PLearn::PLearner | [virtual] |
computePosteriors() | PLearn::GaussMix | [protected, virtual] |
computeWeights() | PLearn::GaussMix | [protected, virtual] |
cond_sort | PLearn::PDistribution | [protected] |
cond_swap | PLearn::PDistribution | [protected] |
conditional_flags | PLearn::PDistribution | |
cov_x | PLearn::GaussMix | [protected] |
cov_y_x | PLearn::GaussMix | [protected] |
D | PLearn::GaussMix | [protected] |
declareOptions(OptionList &ol) | PLearn::GaussMix | [protected, static] |
deepCopy(CopiesMap &copies) const | PLearn::Object | [virtual] |
delta_curve | PLearn::PDistribution | [protected] |
density(const Vec &y) const | PLearn::PDistribution | [virtual] |
diags | PLearn::GaussMix | [protected] |
eigenvalues | PLearn::GaussMix | [protected] |
eigenvalues_x | PLearn::GaussMix | [protected] |
eigenvalues_y_x | PLearn::GaussMix | [protected] |
eigenvectors | PLearn::GaussMix | [protected] |
eigenvectors_x | PLearn::GaussMix | [protected] |
eigenvectors_y_x | PLearn::GaussMix | [protected] |
ensureFullJointDistribution(TVec< int > &old_flags) | PLearn::PDistribution | [protected] |
epsilon | PLearn::GaussMix | |
expdir | PLearn::PLearner | |
expectation(Vec &mu) const | PLearn::GaussMix | [virtual] |
finishConditionalBuild() | PLearn::PDistribution | [protected] |
forget() | PLearn::GaussMix | [virtual] |
full_cov | PLearn::GaussMix | [protected] |
full_joint_distribution | PLearn::PDistribution | [protected] |
GaussMix() | PLearn::GaussMix | |
generate(Vec &s) const | PLearn::GaussMix | [virtual] |
generateFromGaussian(Vec &s, int given_gaussian) const | PLearn::GaussMix | [protected, virtual] |
generateN(const Mat &Y) const | PLearn::PDistribution | |
getEigenvals(int j) const | PLearn::GaussMix | |
getEigenvectors(int j) const | PLearn::GaussMix | |
getExperimentDirectory() const | PLearn::PLearner | [inline] |
getNEigenComputed() const | PLearn::GaussMix | |
getOption(const string &optionname) const | PLearn::Object | |
getOptionList() const | PLearn::Object | [virtual] |
getOptionsToSave() const | PLearn::Object | [virtual] |
getTestCostIndex(const string &costname) const | PLearn::PLearner | |
getTestCostNames() const | PLearn::PDistribution | [virtual] |
getTrainCostIndex(const string &costname) const | PLearn::PLearner | |
getTrainCostNames() const | PLearn::PDistribution | [virtual] |
getTrainingSet() const | PLearn::PLearner | [inline] |
getTrainStatsCollector() | PLearn::PLearner | [inline] |
getValidationSet() const | PLearn::PLearner | [inline] |
info() const | PLearn::Object | [virtual] |
inherited typedef | PLearn::GaussMix | [private] |
initial_weights | PLearn::GaussMix | [protected] |
input_part | PLearn::PDistribution | [mutable, protected] |
inputsize() const | PLearn::PLearner | [virtual] |
inputsize_ | PLearn::PLearner | [protected] |
isStatefulLearner() const | PLearn::PLearner | [virtual] |
kmeans(VMat samples, int nclust, TVec< int > &clust_idx, Mat &clust, int maxit=9999) | PLearn::GaussMix | [protected] |
kmeans_iterations | PLearn::GaussMix | |
L | PLearn::GaussMix | |
load(const string &filename) | PLearn::Object | [virtual] |
log_coeff | PLearn::GaussMix | [protected] |
log_density(const Vec &y) const | PLearn::GaussMix | [virtual] |
log_likelihood_dens | PLearn::GaussMix | [mutable, private] |
log_likelihood_post | PLearn::GaussMix | [private] |
log_p_j_x | PLearn::GaussMix | [protected] |
log_p_x_j_alphaj | PLearn::GaussMix | [protected] |
lower_bound | PLearn::PDistribution | |
makeDeepCopyFromShallowCopy(map< const void *, void * > &copies) | PLearn::GaussMix | [virtual] |
PLearn::PLearner::makeDeepCopyFromShallowCopy(CopiesMap &copies) | PLearn::PLearner | [protected, virtual] |
matlabSave(const string &matlab_subdir) | PLearn::PLearner | [inline, virtual] |
mu | PLearn::GaussMix | |
mu_target | PLearn::GaussMix | [mutable, private] |
mu_y_x | PLearn::GaussMix | [protected] |
n_curve_points | PLearn::PDistribution | |
n_eigen | PLearn::GaussMix | |
n_eigen_computed | PLearn::GaussMix | [protected] |
n_examples | PLearn::PLearner | [protected] |
n_input | PLearn::PDistribution | [protected] |
n_margin | PLearn::PDistribution | [protected] |
n_target | PLearn::PDistribution | [protected] |
need_set_input | PLearn::PDistribution | [mutable, protected] |
newread(PStream &in) | PLearn::Object | |
newwrite(PStream &out) const | PLearn::Object | |
nsamples | PLearn::GaussMix | [protected] |
nstages | PLearn::PLearner | |
nTestCosts() const | PLearn::PLearner | [virtual] |
nTrainCosts() const | PLearn::PLearner | [virtual] |
Object() | PLearn::Object | |
oldread(istream &in) | PLearn::Object | [virtual] |
outputs_def | PLearn::PDistribution | |
outputsize() const | PLearn::PDistribution | [virtual] |
p_j_x | PLearn::GaussMix | [protected] |
PDistribution() | PLearn::PDistribution | |
PLEARN_DECLARE_ABSTRACT_OBJECT(PLearner) | PLearn::PLearner | |
PLEARN_DECLARE_OBJECT(GaussMix) | PLearn::GaussMix | |
PLearn::PDistribution::PLEARN_DECLARE_OBJECT(PDistribution) | PLearn::PDistribution | |
PLearner() | PLearn::PLearner | |
posteriors | PLearn::GaussMix | [protected] |
PPointable() | PLearn::PPointable | [inline] |
PPointable(const PPointable &other) | PLearn::PPointable | [inline] |
precomputeStuff() | PLearn::GaussMix | [protected, virtual] |
prepareToSendResults(PStream &out, int nres) | PLearn::Object | [inline, protected] |
print(ostream &out) const | PLearn::Object | [virtual] |
provide_input | PLearn::PDistribution | |
read(istream &in) | PLearn::Object | [virtual] |
readOptionVal(PStream &in, const string &optionname) | PLearn::Object | |
ref() const | PLearn::PPointable | [inline] |
replaceGaussian(int j) | PLearn::GaussMix | [protected, virtual] |
report_progress | PLearn::PLearner | |
resetGenerator(long g_seed) const | PLearn::GaussMix | [virtual] |
resetInternalState() | PLearn::PLearner | [virtual] |
resizeParts() | PLearn::PDistribution | [protected] |
resizeStuffBeforeTraining() | PLearn::GaussMix | [protected] |
run() | PLearn::Object | [virtual] |
sample_row | PLearn::GaussMix | [private] |
save(const string &filename) const | PLearn::Object | [virtual] |
seed_ | PLearn::PLearner | |
setConditionalFlags(TVec< int > &flags) | PLearn::PDistribution | |
setExperimentDirectory(const string &the_expdir) | PLearn::PLearner | [virtual] |
setInput(const Vec &input) const | PLearn::GaussMix | [virtual] |
setOption(const string &optionname, const string &value) | PLearn::Object | |
setTrainingSet(VMat training_set, bool call_forget=true) | PLearn::PDistribution | [virtual] |
setTrainStatsCollector(PP< VecStatsCollector > statscol) | PLearn::PLearner | [virtual] |
setValidationSet(VMat validset) | PLearn::PLearner | [virtual] |
sigma | PLearn::GaussMix | |
sigma_min | PLearn::GaussMix | |
sortFromFlags(Vec &v) | PLearn::PDistribution | [protected] |
sortFromFlags(Mat &m, bool sort_columns=true, bool sort_rows=false) | PLearn::PDistribution | [protected] |
splitCond(const Vec &input) const | PLearn::PDistribution | [protected] |
stage | PLearn::PLearner | |
survival_fn(const Vec &y) const | PLearn::GaussMix | [virtual] |
target_part | PLearn::PDistribution | [mutable, protected] |
targetsize() const | PLearn::PLearner | [virtual] |
targetsize_ | PLearn::PLearner | [protected] |
test(VMat testset, PP< VecStatsCollector > test_stats, VMat testoutputs=0, VMat testcosts=0) const | PLearn::PLearner | [virtual] |
train() | PLearn::GaussMix | [virtual] |
train_set | PLearn::PLearner | [protected] |
train_stats | PLearn::PLearner | [protected] |
type | PLearn::GaussMix | |
unref() const | PLearn::PPointable | [inline] |
updated_weights | PLearn::GaussMix | [protected] |
updateFromConditionalSorting() | PLearn::GaussMix | [virtual] |
updateSampleWeights() | PLearn::GaussMix | [protected] |
upper_bound | PLearn::PDistribution | |
usage() const | PLearn::PPointable | [inline] |
use(VMat testset, VMat outputs) const | PLearn::PLearner | [virtual] |
useOnTrain(Mat &outputs) const | PLearn::PLearner | [virtual] |
validation_set | PLearn::PLearner | [protected] |
variance(Mat &cov) const | PLearn::GaussMix | [virtual] |
verbosity | PLearn::PLearner | |
weightsize_ | PLearn::PLearner | [protected] |
write(ostream &out) const | PLearn::Object | [virtual] |
writeOptionVal(PStream &out, const string &optionname) const | PLearn::Object | |
x_minus_mu_x | PLearn::GaussMix | [mutable, private] |
y_x_mat | PLearn::GaussMix | [protected] |
~Object() | PLearn::Object | [virtual] |
~PLearner() | PLearn::PLearner | [virtual] |
~PPointable() | PLearn::PPointable | [inline, virtual] |