| _classname_() | PLearn::Object |  [static] | 
  | _getOptionList_() | PLearn::Object |  [static] | 
  | _isa_(Object *o) | PLearn::Object |  [static] | 
  | _new_instance_for_typemap_() | PLearn::Object |  [static] | 
  | _static_initialize_() | PLearn::Object |  [static] | 
  | _static_initializer_ | PLearn::Object |  [static] | 
  | appendMeasurer(Measurer &measurer) | PLearn::Learner |  [inline] | 
  | apply(const VMat &data, VMat outputs) | PLearn::Learner |  [virtual] | 
  | applyAndComputeCosts(const VMat &data, VMat outputs, VMat costs) | PLearn::Learner |  [virtual] | 
  | applyAndComputeCostsOnTestMat(const VMat &test_set, int i, const Mat &output_block, const Mat &cost_block) | PLearn::Learner |  [virtual] | 
  | avg_objective | PLearn::Learner |  | 
  | avgsq_objective | PLearn::Learner |  | 
  | basename() const | PLearn::Learner |  | 
  | best_step | PLearn::Learner |  | 
  | build() | PLearn::Distribution |  [virtual] | 
  | call(const string &methodname, int nargs, PStream &in_parameters, PStream &out_results) | PLearn::Object |  [virtual] | 
  | cdf(const Vec &x) const | PLearn::EmpiricalDistribution |  [virtual] | 
  | changeOption(const string &optionname, const string &value) | PLearn::Object |  | 
  | changeOptions(const map< string, string > &name_value) | PLearn::Object |  [virtual] | 
  | classname() const | PLearn::Object |  [virtual] | 
  | computeCost(const Vec &input, const Vec &target, const Vec &output, const Vec &cost) | PLearn::Learner |  [virtual] | 
  | computeCosts(const VVec &input, VVec &target, VVec &weight, Vec &costs) | PLearn::Learner |  [virtual] | 
  | computeCosts(const VMat &data, VMat costs) | PLearn::Learner |  [virtual] | 
  | computeCostsFromOutputs(const VVec &input, const Vec &output, const VVec &target, const VVec &weight, Vec &costs) | PLearn::Learner |  [virtual] | 
  | computeLeaveOneOutCosts(const VMat &data, VMat costs) | PLearn::Learner |  [virtual] | 
  | computeLeaveOneOutCosts(const VMat &data, VMat costsmat, CostFunc costf) | PLearn::Learner |  [virtual] | 
  | computeOutput(const VVec &input, Vec &output) | PLearn::Learner |  [virtual] | 
  | computeOutputAndCosts(const VVec &input, VVec &target, const VVec &weight, Vec &output, Vec &costs) | PLearn::Learner |  [virtual] | 
  | computeTestStatistics(const VMat &costs) | PLearn::Learner |  | 
  | costNames() const | PLearn::Learner |  [virtual] | 
  | costsize() const | PLearn::Learner |  [virtual] | 
  | current_sample_x | PLearn::EmpiricalDistribution |  [mutable] | 
  | current_sample_y | PLearn::EmpiricalDistribution |  [mutable] | 
  | data | PLearn::EmpiricalDistribution |  [protected] | 
  | declareOptions(OptionList &ol) | PLearn::EmpiricalDistribution |  [protected, static] | 
  | deepCopy(CopiesMap &copies) const | PLearn::Object |  [virtual] | 
  | default_vlog() | PLearn::Learner |  [static] | 
  | density(const Vec &x) const | PLearn::Distribution |  [virtual] | 
  | distributed_ | PLearn::Learner |  [protected] | 
  | Distribution() | PLearn::Distribution |  | 
  | dont_parallelize | PLearn::Learner |  | 
  | each_cpu_saves_its_errors | PLearn::Learner |  [protected] | 
  | earlystop_max_degradation | PLearn::Learner |  | 
  | earlystop_max_degraded_steps | PLearn::Learner |  | 
  | earlystop_min_improvement | PLearn::Learner |  | 
  | earlystop_min_value | PLearn::Learner |  | 
  | earlystop_minval | PLearn::Learner |  | 
  | earlystop_previousval | PLearn::Learner |  [protected] | 
  | earlystop_relative_changes | PLearn::Learner |  | 
  | earlystop_save_best | PLearn::Learner |  | 
  | earlystop_testresultindex | PLearn::Learner |  | 
  | earlystop_testsetnum | PLearn::Learner |  | 
  | EmpiricalDistribution() | PLearn::EmpiricalDistribution |  | 
  | EmpiricalDistribution(int inputsize, bool random_sample_=true) | PLearn::EmpiricalDistribution |  | 
  | epoch() const | PLearn::Learner |  [inline] | 
  | epoch_ | PLearn::Learner |  [protected] | 
  | expdir | PLearn::Learner |  [protected] | 
  | expectation() const | PLearn::EmpiricalDistribution |  [virtual] | 
  | experiment_name | PLearn::Learner |  | 
  | flip | PLearn::EmpiricalDistribution |  [mutable] | 
  | force_saving_on_all_processes | PLearn::Learner |  [static] | 
  | forget() | PLearn::Learner |  [virtual] | 
  | freeTestResultsStreams() | PLearn::Learner |  [protected] | 
  | generate(Vec &x) const | PLearn::EmpiricalDistribution |  [virtual] | 
  | getExperimentDirectory() const | PLearn::Learner |  [inline] | 
  | getOption(const string &optionname) const | PLearn::Object |  | 
  | getOptionList() const | PLearn::Object |  [virtual] | 
  | getOptionsToSave() const | PLearn::Object |  [virtual] | 
  | getTestDuringTrain() const | PLearn::Learner |  [inline] | 
  | getTestResultsStream(int k) | PLearn::Learner |  [protected] | 
  | getTrainCost() | PLearn::Learner |  [inline] | 
  | getTrainingSet() | PLearn::Learner |  [inline] | 
  | getTrainObjectiveStream() | PLearn::Learner |  [protected] | 
  | info() const | PLearn::Object |  [virtual] | 
  | inherited typedef | PLearn::EmpiricalDistribution |  [protected] | 
  | inputsize() const | PLearn::Learner |  [inline] | 
  | inputsize_ | PLearn::Learner |  | 
  | Learner(int the_inputsize=0, int the_targetsize=0, int the_outputsize=0) | PLearn::Learner |  | 
  | length | PLearn::EmpiricalDistribution |  | 
  | load(const string &filename="") | PLearn::Learner |  [virtual] | 
  | log_density(const Vec &x) const | PLearn::EmpiricalDistribution |  [virtual] | 
  | makeDeepCopyFromShallowCopy(CopiesMap &copies) | PLearn::EmpiricalDistribution |  [virtual] | 
  | PLearn::Distribution::makeDeepCopyFromShallowCopy(map< const void *, void * > &copies) | PLearn::Distribution |  [virtual] | 
  | measure(int step, const Vec &costs) | PLearn::Learner |  [virtual] | 
  | PLearn::Measurer::measure(int t) | PLearn::Measurer |  [inline, virtual] | 
  | measure_cpu_time_first | PLearn::Learner |  [protected] | 
  | measurers | PLearn::Learner |  [protected] | 
  | minibatch_size | PLearn::Learner |  | 
  | newread(PStream &in) | PLearn::Object |  | 
  | newtest(VMat testset, VecStatsCollector &test_stats, VMat testoutputs=0, VMat testcosts=0) | PLearn::Learner |  [virtual] | 
  | newtrain(VecStatsCollector &train_stats) | PLearn::Learner |  [virtual] | 
  | newwrite(PStream &out) const | PLearn::Object |  | 
  | Object() | PLearn::Object |  | 
  | objectiveout | PLearn::Learner |  | 
  | oldread(istream &in) | PLearn::Learner |  [virtual] | 
  | oldwrite(ostream &out) const | PLearn::Learner |  [virtual] | 
  | openTestResultsStreams() | PLearn::Learner |  [protected] | 
  | openTrainObjectiveStream() | PLearn::Learner |  [protected] | 
  | options | PLearn::Learner |  | 
  | outputResultLineToFile(const string &filename, const Vec &results, bool append, const string &names) | PLearn::Learner |  [protected] | 
  | outputsize() const | PLearn::Learner |  [inline] | 
  | outputsize_ | PLearn::Learner |  | 
  | PLEARN_DECLARE_ABSTRACT_OBJECT(Learner) | PLearn::Learner |  | 
  | PLEARN_DECLARE_OBJECT(EmpiricalDistribution) | PLearn::EmpiricalDistribution |  | 
  | PLearn::Distribution::PLEARN_DECLARE_OBJECT(Distribution) | PLearn::Distribution |  | 
  | PPointable() | PLearn::PPointable |  [inline] | 
  | PPointable(const PPointable &other) | PLearn::PPointable |  [inline] | 
  | prepareToSendResults(PStream &out, int nres) | PLearn::Object |  [inline, protected] | 
  | print(ostream &out) const | PLearn::Object |  [virtual] | 
  | random_sample | PLearn::EmpiricalDistribution |  | 
  | read(istream &in) | PLearn::Object |  [virtual] | 
  | readOptionVal(PStream &in, const string &optionname) | PLearn::Object |  | 
  | ref() const | PLearn::PPointable |  [inline] | 
  | report_test_progress_every | PLearn::Learner |  | 
  | run() | PLearn::Object |  [virtual] | 
  | save(const string &filename="") const | PLearn::Learner |  [virtual] | 
  | save_at_every_epoch | PLearn::Learner |  | 
  | save_objective | PLearn::Learner |  | 
  | setEarlyStopping(int which_testset, int which_testresult, real max_degradation, real min_value=-FLT_MAX, real min_improvement=0, bool relative_changes=true, bool save_best=true, int max_degraded_steps=-1) | PLearn::Learner |  | 
  | setExperimentDirectory(const string &the_expdir) | PLearn::Learner |  [virtual] | 
  | setModel(const Vec &new_options) | PLearn::Learner |  [virtual] | 
  | setOption(const string &optionname, const string &value) | PLearn::Object |  | 
  | setTestCostFunctions(Array< CostFunc > costfunctions) | PLearn::Learner |  [inline] | 
  | setTestDuringTrain(ostream &testout, int every, Array< VMat > testsets) | PLearn::Learner |  [virtual] | 
  | setTestDuringTrain(Array< VMat > testsets) | PLearn::Learner |  [virtual] | 
  | setTestStatistics(StatsItArray statistics) | PLearn::Learner |  [inline] | 
  | setTrainCost(Vec &cost) | PLearn::Learner |  [inline, protected] | 
  | setTrainingSet(VMat training_set) | PLearn::Learner |  [inline, virtual] | 
  | stop_if_wanted() | PLearn::Learner |  [virtual] | 
  | survival_fn(const Vec &x) const | PLearn::EmpiricalDistribution |  [virtual] | 
  | targetsize() const | PLearn::Learner |  [inline] | 
  | targetsize_ | PLearn::Learner |  | 
  | test(VMat test_set, const string &save_test_outputs="", const string &save_test_costs="") | PLearn::Learner |  [virtual] | 
  | test_costfuncs | PLearn::Learner |  | 
  | test_every | PLearn::Learner |  | 
  | test_results_streams | PLearn::Learner |  [protected] | 
  | test_sets | PLearn::Learner |  | 
  | test_statistics | PLearn::Learner |  | 
  | testout | PLearn::Learner |  | 
  | testResultsNames() const | PLearn::Learner |  [virtual] | 
  | tmpvec | PLearn::Learner |  [protected] | 
  | train(VMat training_set) | PLearn::EmpiricalDistribution |  [virtual] | 
  | PLearn::Learner::train(VMat training_set, VMat accept_prob, real max_accept_prob=1.0, VMat weights=VMat()) | PLearn::Learner |  [inline, virtual] | 
  | train_cost | PLearn::Learner |  [protected] | 
  | train_objective_stream | PLearn::Learner |  [protected] | 
  | train_set | PLearn::Learner |  | 
  | trainObjectiveNames() const | PLearn::Learner |  [virtual] | 
  | unref() const | PLearn::PPointable |  [inline] | 
  | usage() const | PLearn::PPointable |  [inline] | 
  | use(const Vec &input, Vec &output) | PLearn::Distribution |  [virtual] | 
  | PLearn::Learner::use(const Mat &inputs, Mat outputs) | PLearn::Learner |  [inline, virtual] | 
  | use_file_if_bigger | PLearn::Learner |  [static] | 
  | use_returns_what | PLearn::Distribution |  | 
  | useAndCost(const Vec &input, const Vec &target, Vec output, Vec cost) | PLearn::Learner |  [virtual] | 
  | useAndCostOnTestVec(const VMat &test_set, int i, const Vec &output, const Vec &cost) | PLearn::Learner |  [virtual] | 
  | variance() const | PLearn::EmpiricalDistribution |  [virtual] | 
  | vec_input | PLearn::Learner |  | 
  | vlog | PLearn::Learner |  | 
  | weightsize() const | PLearn::Learner |  [inline] | 
  | weightsize_ | PLearn::Learner |  | 
  | write(ostream &out) const | PLearn::Object |  [virtual] | 
  | writeOptionVal(PStream &out, const string &optionname) const | PLearn::Object |  | 
  | ~Learner() | PLearn::Learner |  [virtual] | 
  | ~Measurer() | PLearn::Measurer |  [virtual] | 
  | ~Object() | PLearn::Object |  [virtual] | 
  | ~PPointable() | PLearn::PPointable |  [inline, virtual] |