Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

PLearn::EmpiricalDistribution Member List

This is the complete list of members for PLearn::EmpiricalDistribution, including all inherited members.

_classname_()PLearn::Object [static]
_getOptionList_()PLearn::Object [static]
_isa_(Object *o)PLearn::Object [static]
_new_instance_for_typemap_()PLearn::Object [static]
_static_initialize_()PLearn::Object [static]
_static_initializer_PLearn::Object [static]
appendMeasurer(Measurer &measurer)PLearn::Learner [inline]
apply(const VMat &data, VMat outputs)PLearn::Learner [virtual]
applyAndComputeCosts(const VMat &data, VMat outputs, VMat costs)PLearn::Learner [virtual]
applyAndComputeCostsOnTestMat(const VMat &test_set, int i, const Mat &output_block, const Mat &cost_block)PLearn::Learner [virtual]
avg_objectivePLearn::Learner
avgsq_objectivePLearn::Learner
basename() constPLearn::Learner
best_stepPLearn::Learner
build()PLearn::Distribution [virtual]
call(const string &methodname, int nargs, PStream &in_parameters, PStream &out_results)PLearn::Object [virtual]
cdf(const Vec &x) constPLearn::EmpiricalDistribution [virtual]
changeOption(const string &optionname, const string &value)PLearn::Object
changeOptions(const map< string, string > &name_value)PLearn::Object [virtual]
classname() constPLearn::Object [virtual]
computeCost(const Vec &input, const Vec &target, const Vec &output, const Vec &cost)PLearn::Learner [virtual]
computeCosts(const VVec &input, VVec &target, VVec &weight, Vec &costs)PLearn::Learner [virtual]
computeCosts(const VMat &data, VMat costs)PLearn::Learner [virtual]
computeCostsFromOutputs(const VVec &input, const Vec &output, const VVec &target, const VVec &weight, Vec &costs)PLearn::Learner [virtual]
computeLeaveOneOutCosts(const VMat &data, VMat costs)PLearn::Learner [virtual]
computeLeaveOneOutCosts(const VMat &data, VMat costsmat, CostFunc costf)PLearn::Learner [virtual]
computeOutput(const VVec &input, Vec &output)PLearn::Learner [virtual]
computeOutputAndCosts(const VVec &input, VVec &target, const VVec &weight, Vec &output, Vec &costs)PLearn::Learner [virtual]
computeTestStatistics(const VMat &costs)PLearn::Learner
costNames() constPLearn::Learner [virtual]
costsize() constPLearn::Learner [virtual]
current_sample_xPLearn::EmpiricalDistribution [mutable]
current_sample_yPLearn::EmpiricalDistribution [mutable]
dataPLearn::EmpiricalDistribution [protected]
declareOptions(OptionList &ol)PLearn::EmpiricalDistribution [protected, static]
deepCopy(CopiesMap &copies) constPLearn::Object [virtual]
default_vlog()PLearn::Learner [static]
density(const Vec &x) constPLearn::Distribution [virtual]
distributed_PLearn::Learner [protected]
Distribution()PLearn::Distribution
dont_parallelizePLearn::Learner
each_cpu_saves_its_errorsPLearn::Learner [protected]
earlystop_max_degradationPLearn::Learner
earlystop_max_degraded_stepsPLearn::Learner
earlystop_min_improvementPLearn::Learner
earlystop_min_valuePLearn::Learner
earlystop_minvalPLearn::Learner
earlystop_previousvalPLearn::Learner [protected]
earlystop_relative_changesPLearn::Learner
earlystop_save_bestPLearn::Learner
earlystop_testresultindexPLearn::Learner
earlystop_testsetnumPLearn::Learner
EmpiricalDistribution()PLearn::EmpiricalDistribution
EmpiricalDistribution(int inputsize, bool random_sample_=true)PLearn::EmpiricalDistribution
epoch() constPLearn::Learner [inline]
epoch_PLearn::Learner [protected]
expdirPLearn::Learner [protected]
expectation() constPLearn::EmpiricalDistribution [virtual]
experiment_namePLearn::Learner
flipPLearn::EmpiricalDistribution [mutable]
force_saving_on_all_processesPLearn::Learner [static]
forget()PLearn::Learner [virtual]
freeTestResultsStreams()PLearn::Learner [protected]
generate(Vec &x) constPLearn::EmpiricalDistribution [virtual]
getExperimentDirectory() constPLearn::Learner [inline]
getOption(const string &optionname) constPLearn::Object
getOptionList() constPLearn::Object [virtual]
getOptionsToSave() constPLearn::Object [virtual]
getTestDuringTrain() constPLearn::Learner [inline]
getTestResultsStream(int k)PLearn::Learner [protected]
getTrainCost()PLearn::Learner [inline]
getTrainingSet()PLearn::Learner [inline]
getTrainObjectiveStream()PLearn::Learner [protected]
info() constPLearn::Object [virtual]
inherited typedefPLearn::EmpiricalDistribution [protected]
inputsize() constPLearn::Learner [inline]
inputsize_PLearn::Learner
Learner(int the_inputsize=0, int the_targetsize=0, int the_outputsize=0)PLearn::Learner
lengthPLearn::EmpiricalDistribution
load(const string &filename="")PLearn::Learner [virtual]
log_density(const Vec &x) constPLearn::EmpiricalDistribution [virtual]
makeDeepCopyFromShallowCopy(CopiesMap &copies)PLearn::EmpiricalDistribution [virtual]
PLearn::Distribution::makeDeepCopyFromShallowCopy(map< const void *, void * > &copies)PLearn::Distribution [virtual]
measure(int step, const Vec &costs)PLearn::Learner [virtual]
PLearn::Measurer::measure(int t)PLearn::Measurer [inline, virtual]
measure_cpu_time_firstPLearn::Learner [protected]
measurersPLearn::Learner [protected]
minibatch_sizePLearn::Learner
newread(PStream &in)PLearn::Object
newtest(VMat testset, VecStatsCollector &test_stats, VMat testoutputs=0, VMat testcosts=0)PLearn::Learner [virtual]
newtrain(VecStatsCollector &train_stats)PLearn::Learner [virtual]
newwrite(PStream &out) constPLearn::Object
Object()PLearn::Object
objectiveoutPLearn::Learner
oldread(istream &in)PLearn::Learner [virtual]
oldwrite(ostream &out) constPLearn::Learner [virtual]
openTestResultsStreams()PLearn::Learner [protected]
openTrainObjectiveStream()PLearn::Learner [protected]
optionsPLearn::Learner
outputResultLineToFile(const string &filename, const Vec &results, bool append, const string &names)PLearn::Learner [protected]
outputsize() constPLearn::Learner [inline]
outputsize_PLearn::Learner
PLEARN_DECLARE_ABSTRACT_OBJECT(Learner)PLearn::Learner
PLEARN_DECLARE_OBJECT(EmpiricalDistribution)PLearn::EmpiricalDistribution
PLearn::Distribution::PLEARN_DECLARE_OBJECT(Distribution)PLearn::Distribution
PPointable()PLearn::PPointable [inline]
PPointable(const PPointable &other)PLearn::PPointable [inline]
prepareToSendResults(PStream &out, int nres)PLearn::Object [inline, protected]
print(ostream &out) constPLearn::Object [virtual]
random_samplePLearn::EmpiricalDistribution
read(istream &in)PLearn::Object [virtual]
readOptionVal(PStream &in, const string &optionname)PLearn::Object
ref() constPLearn::PPointable [inline]
report_test_progress_everyPLearn::Learner
run()PLearn::Object [virtual]
save(const string &filename="") constPLearn::Learner [virtual]
save_at_every_epochPLearn::Learner
save_objectivePLearn::Learner
setEarlyStopping(int which_testset, int which_testresult, real max_degradation, real min_value=-FLT_MAX, real min_improvement=0, bool relative_changes=true, bool save_best=true, int max_degraded_steps=-1)PLearn::Learner
setExperimentDirectory(const string &the_expdir)PLearn::Learner [virtual]
setModel(const Vec &new_options)PLearn::Learner [virtual]
setOption(const string &optionname, const string &value)PLearn::Object
setTestCostFunctions(Array< CostFunc > costfunctions)PLearn::Learner [inline]
setTestDuringTrain(ostream &testout, int every, Array< VMat > testsets)PLearn::Learner [virtual]
setTestDuringTrain(Array< VMat > testsets)PLearn::Learner [virtual]
setTestStatistics(StatsItArray statistics)PLearn::Learner [inline]
setTrainCost(Vec &cost)PLearn::Learner [inline, protected]
setTrainingSet(VMat training_set)PLearn::Learner [inline, virtual]
stop_if_wanted()PLearn::Learner [virtual]
survival_fn(const Vec &x) constPLearn::EmpiricalDistribution [virtual]
targetsize() constPLearn::Learner [inline]
targetsize_PLearn::Learner
test(VMat test_set, const string &save_test_outputs="", const string &save_test_costs="")PLearn::Learner [virtual]
test_costfuncsPLearn::Learner
test_everyPLearn::Learner
test_results_streamsPLearn::Learner [protected]
test_setsPLearn::Learner
test_statisticsPLearn::Learner
testoutPLearn::Learner
testResultsNames() constPLearn::Learner [virtual]
tmpvecPLearn::Learner [protected]
train(VMat training_set)PLearn::EmpiricalDistribution [virtual]
PLearn::Learner::train(VMat training_set, VMat accept_prob, real max_accept_prob=1.0, VMat weights=VMat())PLearn::Learner [inline, virtual]
train_costPLearn::Learner [protected]
train_objective_streamPLearn::Learner [protected]
train_setPLearn::Learner
trainObjectiveNames() constPLearn::Learner [virtual]
unref() constPLearn::PPointable [inline]
usage() constPLearn::PPointable [inline]
use(const Vec &input, Vec &output)PLearn::Distribution [virtual]
PLearn::Learner::use(const Mat &inputs, Mat outputs)PLearn::Learner [inline, virtual]
use_file_if_biggerPLearn::Learner [static]
use_returns_whatPLearn::Distribution
useAndCost(const Vec &input, const Vec &target, Vec output, Vec cost)PLearn::Learner [virtual]
useAndCostOnTestVec(const VMat &test_set, int i, const Vec &output, const Vec &cost)PLearn::Learner [virtual]
variance() constPLearn::EmpiricalDistribution [virtual]
vec_inputPLearn::Learner
vlogPLearn::Learner
weightsize() constPLearn::Learner [inline]
weightsize_PLearn::Learner
write(ostream &out) constPLearn::Object [virtual]
writeOptionVal(PStream &out, const string &optionname) constPLearn::Object
~Learner()PLearn::Learner [virtual]
~Measurer()PLearn::Measurer [virtual]
~Object()PLearn::Object [virtual]
~PPointable()PLearn::PPointable [inline, virtual]


Generated on Tue Aug 17 16:27:13 2004 for PLearn by doxygen 1.3.7