_classname_() | PLearn::Object | [static] |
_getOptionList_() | PLearn::Object | [static] |
_isa_(Object *o) | PLearn::Object | [static] |
_new_instance_for_typemap_() | PLearn::Object | [static] |
_static_initialize_() | PLearn::Object | [static] |
_static_initializer_ | PLearn::Object | [static] |
addMeasurer(Measurer &measurer) | PLearn::Optimizer | |
build() | PLearn::ConjGradientOptimizer | [inline, virtual] |
build_() | PLearn::ConjGradientOptimizer | [private] |
call(const string &methodname, int nargs, PStream &in_parameters, PStream &out_results) | PLearn::Object | [virtual] |
changeOption(const string &optionname, const string &value) | PLearn::Object | |
changeOptions(const map< string, string > &name_value) | PLearn::Object | [virtual] |
classname() const | PLearn::Object | [virtual] |
collectGradientStats(Vec gradient) | PLearn::Optimizer | |
compute_cost | PLearn::ConjGradientOptimizer | |
computeCostAndDerivative(real alpha, ConjGradientOptimizer *opt, real &cost, real &derivative) | PLearn::ConjGradientOptimizer | [private, static] |
computeCostValue(real alpha, ConjGradientOptimizer *opt) | PLearn::ConjGradientOptimizer | [private, static] |
computeDerivative(real alpha, ConjGradientOptimizer *opt) | PLearn::ConjGradientOptimizer | [private, static] |
computeGradient(Optimizer *opt, const Vec &gradient) | PLearn::Optimizer | [static] |
computeOppositeGradient(Optimizer *opt, const Vec &gradient) | PLearn::Optimizer | [static] |
computeRepartition(Vec v, int n, real mini, real maxi, Vec res, int &noutliers) | PLearn::Optimizer | |
ConjGradientOptimizer(real the_starting_step_size=0.01, real the_restart_coeff=0.2, real the_epsilon=0.01, real the_sigma=0.01, real the_rho=0.005, real the_fmax=-1e8, real the_stop_epsilon=0.0001, real the_tau1=9, real the_tau2=0.1, real the_tau3=0.5, int n_updates=1, const string &filename="", int every_iterations=1) | PLearn::ConjGradientOptimizer | |
ConjGradientOptimizer(VarArray the_params, Var the_cost, real the_starting_step_size=0.01, real the_restart_coeff=0.2, real the_epsilon=0.01, real the_sigma=0.01, real the_rho=0.005, real the_fmax=0, real the_stop_epsilon=0.0001, real the_tau1=9, real the_tau2=0.1, real the_tau3=0.5, int n_updates=1, const string &filename="", int every_iterations=1) | PLearn::ConjGradientOptimizer | |
ConjGradientOptimizer(VarArray the_params, Var the_cost, VarArray the_update_for_measure, real the_starting_step_size=0.01, real the_restart_coeff=0.2, real the_epsilon=0.01, real the_sigma=0.01, real the_rho=0.005, real the_fmax=0, real the_stop_epsilon=0.0001, real the_tau1=9, real the_tau2=0.1, real the_tau3=0.5, int n_updates=1, const string &filename="", int every_iterations=1) | PLearn::ConjGradientOptimizer | |
conjpomdp(void(*grad)(Optimizer *, const Vec &gradient), ConjGradientOptimizer *opt) | PLearn::ConjGradientOptimizer | [private, static] |
cost | PLearn::Optimizer | |
cubicInterpol(real f0, real f1, real g0, real g1, real &a, real &b, real &c, real &d) | PLearn::ConjGradientOptimizer | [private, static] |
current_opp_gradient | PLearn::ConjGradientOptimizer | [private] |
current_step_size | PLearn::ConjGradientOptimizer | [private] |
daiYuan(void(*grad)(Optimizer *, const Vec &), ConjGradientOptimizer *opt) | PLearn::ConjGradientOptimizer | [private, static] |
daiYuanMain(Vec new_gradient, Vec old_gradient, Vec old_search_direction, Vec tmp_storage) | PLearn::ConjGradientOptimizer | [private, static] |
declareOptions(OptionList &ol) | PLearn::ConjGradientOptimizer | [protected, static] |
deepCopy(CopiesMap &copies) const | PLearn::Object | [virtual] |
delta | PLearn::ConjGradientOptimizer | [private] |
early_stop | PLearn::Optimizer | |
early_stop_i | PLearn::Optimizer | |
epsilon | PLearn::ConjGradientOptimizer | |
every | PLearn::Optimizer | |
filename | PLearn::Optimizer | [protected] |
find_new_direction_formula | PLearn::ConjGradientOptimizer | |
findDirection() | PLearn::ConjGradientOptimizer | [private] |
findMinWithCubicInterpol(real p1, real p2, real mini, real maxi, real f0, real f1, real g0, real g1) | PLearn::ConjGradientOptimizer | [private, static] |
findMinWithQuadInterpol(int q, real sum_x, real sum_x_2, real sum_x_3, real sum_x_4, real sum_c_x_2, real sum_g_x, real sum_c_x, real sum_c, real sum_g) | PLearn::ConjGradientOptimizer | [private, static] |
fletcherReeves(void(*grad)(Optimizer *, const Vec &), ConjGradientOptimizer *opt) | PLearn::ConjGradientOptimizer | [private, static] |
fletcherSearch(real mu=FLT_MAX) | PLearn::ConjGradientOptimizer | [private] |
fletcherSearchMain(real(*f)(real, ConjGradientOptimizer *opt), real(*g)(real, ConjGradientOptimizer *opt), ConjGradientOptimizer *opt, real sigma, real rho, real fmax, real epsilon, real tau1=9, real tau2=0.1, real tau3=0.5, real alpha1=FLT_MAX, real mu=FLT_MAX) | PLearn::ConjGradientOptimizer | [private, static] |
fmax | PLearn::ConjGradientOptimizer | |
getOption(const string &optionname) const | PLearn::Object | |
getOptionList() const | PLearn::Object | [virtual] |
getOptionsToSave() const | PLearn::Object | [virtual] |
gSearch(void(*grad)(Optimizer *, const Vec &)) | PLearn::ConjGradientOptimizer | [private] |
hestenesStiefel(void(*grad)(Optimizer *, const Vec &), ConjGradientOptimizer *opt) | PLearn::ConjGradientOptimizer | [private, static] |
info() const | PLearn::Object | [virtual] |
inherited typedef | PLearn::ConjGradientOptimizer | [private] |
init() | PLearn::Optimizer | [inline, virtual] |
initial_step | PLearn::ConjGradientOptimizer | |
last_cost | PLearn::ConjGradientOptimizer | [private] |
last_improvement | PLearn::ConjGradientOptimizer | [private] |
line_search_algo | PLearn::ConjGradientOptimizer | |
lineSearch() | PLearn::ConjGradientOptimizer | [private] |
load(const string &filename) | PLearn::Object | [virtual] |
low_enough | PLearn::ConjGradientOptimizer | |
makeDeepCopyFromShallowCopy(CopiesMap &copies) | PLearn::ConjGradientOptimizer | [inline, virtual] |
PLearn::Optimizer::makeDeepCopyFromShallowCopy(map< const void *, void * > &copies) | PLearn::Optimizer | [virtual] |
max_steps | PLearn::ConjGradientOptimizer | |
meancost | PLearn::ConjGradientOptimizer | [protected] |
measure(int t, const Vec &costs) | PLearn::Optimizer | [virtual] |
measurers | PLearn::Optimizer | [protected] |
minCubic(real a, real b, real c, real mini=-FLT_MAX, real maxi=FLT_MAX) | PLearn::ConjGradientOptimizer | [private, static] |
minQuadratic(real a, real b, real mini=-FLT_MAX, real maxi=FLT_MAX) | PLearn::ConjGradientOptimizer | [private, static] |
newread(PStream &in) | PLearn::Object | |
newtonSearch(int max_steps, real initial_step, real low_enough) | PLearn::ConjGradientOptimizer | [private] |
newwrite(PStream &out) const | PLearn::Object | |
nstages | PLearn::Optimizer | |
nupdates | PLearn::Optimizer | |
Object() | PLearn::Object | |
oldread(istream &in) | PLearn::Optimizer | [virtual] |
oldwrite(ostream &out) const | PLearn::Optimizer | [virtual] |
optimize() | PLearn::ConjGradientOptimizer | [virtual] |
optimizeN(VecStatsCollector &stat_coll) | PLearn::ConjGradientOptimizer | [virtual] |
Optimizer(int n_updates=1, const string &file_name="", int every_iterations=1) | PLearn::Optimizer | |
Optimizer(VarArray the_params, Var the_cost, int n_updates=1, const string &file_name="", int every_iterations=1) | PLearn::Optimizer | |
Optimizer(VarArray the_params, Var the_cost, VarArray the_update_for_measure, int n_updates=1, const string &file_name="", int every_iterations=1) | PLearn::Optimizer | |
params | PLearn::Optimizer | |
PLEARN_DECLARE_ABSTRACT_OBJECT(Optimizer) | PLearn::Optimizer | |
PLEARN_DECLARE_OBJECT(ConjGradientOptimizer) | PLearn::ConjGradientOptimizer | |
polakRibiere(void(*grad)(Optimizer *, const Vec &), ConjGradientOptimizer *opt) | PLearn::ConjGradientOptimizer | [private, static] |
PPointable() | PLearn::PPointable | [inline] |
PPointable(const PPointable &other) | PLearn::PPointable | [inline] |
prepareToSendResults(PStream &out, int nres) | PLearn::Object | [inline, protected] |
print(ostream &out) const | PLearn::Object | [virtual] |
printStep(ostream &ostr, int step, real mean_cost, string sep="\t") | PLearn::ConjGradientOptimizer | [inline, protected, virtual] |
proppath | PLearn::Optimizer | |
quadraticInterpol(real f0, real f1, real g0, real &a, real &b, real &c) | PLearn::ConjGradientOptimizer | [private, static] |
read(istream &in) | PLearn::Object | [virtual] |
readOptionVal(PStream &in, const string &optionname) | PLearn::Object | |
ref() const | PLearn::PPointable | [inline] |
reset() | PLearn::ConjGradientOptimizer | [virtual] |
restart_coeff | PLearn::ConjGradientOptimizer | |
rho | PLearn::ConjGradientOptimizer | |
run() | PLearn::Object | [virtual] |
save(const string &filename) const | PLearn::Object | [virtual] |
search_direction | PLearn::ConjGradientOptimizer | [private] |
setOption(const string &optionname, const string &value) | PLearn::Object | |
setToOptimize(VarArray the_params, Var the_cost) | PLearn::Optimizer | [virtual] |
setVarArrayOption(const string &optionname, VarArray value) | PLearn::Optimizer | [virtual] |
setVarOption(const string &optionname, Var value) | PLearn::Optimizer | [virtual] |
setVMatOption(const string &optionname, VMat value) | PLearn::Optimizer | [virtual] |
sigma | PLearn::ConjGradientOptimizer | |
stage | PLearn::Optimizer | |
starting_step_size | PLearn::ConjGradientOptimizer | |
stop_epsilon | PLearn::ConjGradientOptimizer | |
tau1 | PLearn::ConjGradientOptimizer | |
tau2 | PLearn::ConjGradientOptimizer | |
tau3 | PLearn::ConjGradientOptimizer | |
tmp_storage | PLearn::ConjGradientOptimizer | [private] |
unref() const | PLearn::PPointable | [inline] |
update_for_measure | PLearn::Optimizer | |
updateSearchDirection(real gamma) | PLearn::ConjGradientOptimizer | [private] |
usage() const | PLearn::PPointable | [inline] |
verifyGradient(real minval, real maxval, real step) | PLearn::Optimizer | |
verifyGradient(real step) | PLearn::Optimizer | |
vlog | PLearn::Optimizer | |
write(ostream &out) const | PLearn::Object | [virtual] |
writeOptionVal(PStream &out, const string &optionname) const | PLearn::Object | |
~Object() | PLearn::Object | [virtual] |
~Optimizer() | PLearn::Optimizer | [virtual] |
~PPointable() | PLearn::PPointable | [inline, virtual] |