Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

PLearn::ConjGradientOptimizer Member List

This is the complete list of members for PLearn::ConjGradientOptimizer, including all inherited members.

_classname_()PLearn::Object [static]
_getOptionList_()PLearn::Object [static]
_isa_(Object *o)PLearn::Object [static]
_new_instance_for_typemap_()PLearn::Object [static]
_static_initialize_()PLearn::Object [static]
_static_initializer_PLearn::Object [static]
addMeasurer(Measurer &measurer)PLearn::Optimizer
build()PLearn::ConjGradientOptimizer [inline, virtual]
build_()PLearn::ConjGradientOptimizer [private]
call(const string &methodname, int nargs, PStream &in_parameters, PStream &out_results)PLearn::Object [virtual]
changeOption(const string &optionname, const string &value)PLearn::Object
changeOptions(const map< string, string > &name_value)PLearn::Object [virtual]
classname() constPLearn::Object [virtual]
collectGradientStats(Vec gradient)PLearn::Optimizer
compute_costPLearn::ConjGradientOptimizer
computeCostAndDerivative(real alpha, ConjGradientOptimizer *opt, real &cost, real &derivative)PLearn::ConjGradientOptimizer [private, static]
computeCostValue(real alpha, ConjGradientOptimizer *opt)PLearn::ConjGradientOptimizer [private, static]
computeDerivative(real alpha, ConjGradientOptimizer *opt)PLearn::ConjGradientOptimizer [private, static]
computeGradient(Optimizer *opt, const Vec &gradient)PLearn::Optimizer [static]
computeOppositeGradient(Optimizer *opt, const Vec &gradient)PLearn::Optimizer [static]
computeRepartition(Vec v, int n, real mini, real maxi, Vec res, int &noutliers)PLearn::Optimizer
ConjGradientOptimizer(real the_starting_step_size=0.01, real the_restart_coeff=0.2, real the_epsilon=0.01, real the_sigma=0.01, real the_rho=0.005, real the_fmax=-1e8, real the_stop_epsilon=0.0001, real the_tau1=9, real the_tau2=0.1, real the_tau3=0.5, int n_updates=1, const string &filename="", int every_iterations=1)PLearn::ConjGradientOptimizer
ConjGradientOptimizer(VarArray the_params, Var the_cost, real the_starting_step_size=0.01, real the_restart_coeff=0.2, real the_epsilon=0.01, real the_sigma=0.01, real the_rho=0.005, real the_fmax=0, real the_stop_epsilon=0.0001, real the_tau1=9, real the_tau2=0.1, real the_tau3=0.5, int n_updates=1, const string &filename="", int every_iterations=1)PLearn::ConjGradientOptimizer
ConjGradientOptimizer(VarArray the_params, Var the_cost, VarArray the_update_for_measure, real the_starting_step_size=0.01, real the_restart_coeff=0.2, real the_epsilon=0.01, real the_sigma=0.01, real the_rho=0.005, real the_fmax=0, real the_stop_epsilon=0.0001, real the_tau1=9, real the_tau2=0.1, real the_tau3=0.5, int n_updates=1, const string &filename="", int every_iterations=1)PLearn::ConjGradientOptimizer
conjpomdp(void(*grad)(Optimizer *, const Vec &gradient), ConjGradientOptimizer *opt)PLearn::ConjGradientOptimizer [private, static]
costPLearn::Optimizer
cubicInterpol(real f0, real f1, real g0, real g1, real &a, real &b, real &c, real &d)PLearn::ConjGradientOptimizer [private, static]
current_opp_gradientPLearn::ConjGradientOptimizer [private]
current_step_sizePLearn::ConjGradientOptimizer [private]
daiYuan(void(*grad)(Optimizer *, const Vec &), ConjGradientOptimizer *opt)PLearn::ConjGradientOptimizer [private, static]
daiYuanMain(Vec new_gradient, Vec old_gradient, Vec old_search_direction, Vec tmp_storage)PLearn::ConjGradientOptimizer [private, static]
declareOptions(OptionList &ol)PLearn::ConjGradientOptimizer [protected, static]
deepCopy(CopiesMap &copies) constPLearn::Object [virtual]
deltaPLearn::ConjGradientOptimizer [private]
early_stopPLearn::Optimizer
early_stop_iPLearn::Optimizer
epsilonPLearn::ConjGradientOptimizer
everyPLearn::Optimizer
filenamePLearn::Optimizer [protected]
find_new_direction_formulaPLearn::ConjGradientOptimizer
findDirection()PLearn::ConjGradientOptimizer [private]
findMinWithCubicInterpol(real p1, real p2, real mini, real maxi, real f0, real f1, real g0, real g1)PLearn::ConjGradientOptimizer [private, static]
findMinWithQuadInterpol(int q, real sum_x, real sum_x_2, real sum_x_3, real sum_x_4, real sum_c_x_2, real sum_g_x, real sum_c_x, real sum_c, real sum_g)PLearn::ConjGradientOptimizer [private, static]
fletcherReeves(void(*grad)(Optimizer *, const Vec &), ConjGradientOptimizer *opt)PLearn::ConjGradientOptimizer [private, static]
fletcherSearch(real mu=FLT_MAX)PLearn::ConjGradientOptimizer [private]
fletcherSearchMain(real(*f)(real, ConjGradientOptimizer *opt), real(*g)(real, ConjGradientOptimizer *opt), ConjGradientOptimizer *opt, real sigma, real rho, real fmax, real epsilon, real tau1=9, real tau2=0.1, real tau3=0.5, real alpha1=FLT_MAX, real mu=FLT_MAX)PLearn::ConjGradientOptimizer [private, static]
fmaxPLearn::ConjGradientOptimizer
getOption(const string &optionname) constPLearn::Object
getOptionList() constPLearn::Object [virtual]
getOptionsToSave() constPLearn::Object [virtual]
gSearch(void(*grad)(Optimizer *, const Vec &))PLearn::ConjGradientOptimizer [private]
hestenesStiefel(void(*grad)(Optimizer *, const Vec &), ConjGradientOptimizer *opt)PLearn::ConjGradientOptimizer [private, static]
info() constPLearn::Object [virtual]
inherited typedefPLearn::ConjGradientOptimizer [private]
init()PLearn::Optimizer [inline, virtual]
initial_stepPLearn::ConjGradientOptimizer
last_costPLearn::ConjGradientOptimizer [private]
last_improvementPLearn::ConjGradientOptimizer [private]
line_search_algoPLearn::ConjGradientOptimizer
lineSearch()PLearn::ConjGradientOptimizer [private]
load(const string &filename)PLearn::Object [virtual]
low_enoughPLearn::ConjGradientOptimizer
makeDeepCopyFromShallowCopy(CopiesMap &copies)PLearn::ConjGradientOptimizer [inline, virtual]
PLearn::Optimizer::makeDeepCopyFromShallowCopy(map< const void *, void * > &copies)PLearn::Optimizer [virtual]
max_stepsPLearn::ConjGradientOptimizer
meancostPLearn::ConjGradientOptimizer [protected]
measure(int t, const Vec &costs)PLearn::Optimizer [virtual]
measurersPLearn::Optimizer [protected]
minCubic(real a, real b, real c, real mini=-FLT_MAX, real maxi=FLT_MAX)PLearn::ConjGradientOptimizer [private, static]
minQuadratic(real a, real b, real mini=-FLT_MAX, real maxi=FLT_MAX)PLearn::ConjGradientOptimizer [private, static]
newread(PStream &in)PLearn::Object
newtonSearch(int max_steps, real initial_step, real low_enough)PLearn::ConjGradientOptimizer [private]
newwrite(PStream &out) constPLearn::Object
nstagesPLearn::Optimizer
nupdatesPLearn::Optimizer
Object()PLearn::Object
oldread(istream &in)PLearn::Optimizer [virtual]
oldwrite(ostream &out) constPLearn::Optimizer [virtual]
optimize()PLearn::ConjGradientOptimizer [virtual]
optimizeN(VecStatsCollector &stat_coll)PLearn::ConjGradientOptimizer [virtual]
Optimizer(int n_updates=1, const string &file_name="", int every_iterations=1)PLearn::Optimizer
Optimizer(VarArray the_params, Var the_cost, int n_updates=1, const string &file_name="", int every_iterations=1)PLearn::Optimizer
Optimizer(VarArray the_params, Var the_cost, VarArray the_update_for_measure, int n_updates=1, const string &file_name="", int every_iterations=1)PLearn::Optimizer
paramsPLearn::Optimizer
PLEARN_DECLARE_ABSTRACT_OBJECT(Optimizer)PLearn::Optimizer
PLEARN_DECLARE_OBJECT(ConjGradientOptimizer)PLearn::ConjGradientOptimizer
polakRibiere(void(*grad)(Optimizer *, const Vec &), ConjGradientOptimizer *opt)PLearn::ConjGradientOptimizer [private, static]
PPointable()PLearn::PPointable [inline]
PPointable(const PPointable &other)PLearn::PPointable [inline]
prepareToSendResults(PStream &out, int nres)PLearn::Object [inline, protected]
print(ostream &out) constPLearn::Object [virtual]
printStep(ostream &ostr, int step, real mean_cost, string sep="\t")PLearn::ConjGradientOptimizer [inline, protected, virtual]
proppathPLearn::Optimizer
quadraticInterpol(real f0, real f1, real g0, real &a, real &b, real &c)PLearn::ConjGradientOptimizer [private, static]
read(istream &in)PLearn::Object [virtual]
readOptionVal(PStream &in, const string &optionname)PLearn::Object
ref() constPLearn::PPointable [inline]
reset()PLearn::ConjGradientOptimizer [virtual]
restart_coeffPLearn::ConjGradientOptimizer
rhoPLearn::ConjGradientOptimizer
run()PLearn::Object [virtual]
save(const string &filename) constPLearn::Object [virtual]
search_directionPLearn::ConjGradientOptimizer [private]
setOption(const string &optionname, const string &value)PLearn::Object
setToOptimize(VarArray the_params, Var the_cost)PLearn::Optimizer [virtual]
setVarArrayOption(const string &optionname, VarArray value)PLearn::Optimizer [virtual]
setVarOption(const string &optionname, Var value)PLearn::Optimizer [virtual]
setVMatOption(const string &optionname, VMat value)PLearn::Optimizer [virtual]
sigmaPLearn::ConjGradientOptimizer
stagePLearn::Optimizer
starting_step_sizePLearn::ConjGradientOptimizer
stop_epsilonPLearn::ConjGradientOptimizer
tau1PLearn::ConjGradientOptimizer
tau2PLearn::ConjGradientOptimizer
tau3PLearn::ConjGradientOptimizer
tmp_storagePLearn::ConjGradientOptimizer [private]
unref() constPLearn::PPointable [inline]
update_for_measurePLearn::Optimizer
updateSearchDirection(real gamma)PLearn::ConjGradientOptimizer [private]
usage() constPLearn::PPointable [inline]
verifyGradient(real minval, real maxval, real step)PLearn::Optimizer
verifyGradient(real step)PLearn::Optimizer
vlogPLearn::Optimizer
write(ostream &out) constPLearn::Object [virtual]
writeOptionVal(PStream &out, const string &optionname) constPLearn::Object
~Object()PLearn::Object [virtual]
~Optimizer()PLearn::Optimizer [virtual]
~PPointable()PLearn::PPointable [inline, virtual]


Generated on Tue Aug 17 16:24:11 2004 for PLearn by doxygen 1.3.7