00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: WeightedSumSquareVariable.cc,v 1.6 2004/04/27 15:58:16 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "WeightedSumSquareVariable.h" 00044 #include "Var_operators.h" 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00051 PLEARN_IMPLEMENT_OBJECT(WeightedSumSquareVariable, 00052 "ONE LINE DESCR", 00053 "NO HELP"); 00054 00055 WeightedSumSquareVariable::WeightedSumSquareVariable(Variable* input, Variable* weights) 00056 : inherited(input,weights,1,1) 00057 { 00058 build_(); 00059 } 00060 00061 void 00062 WeightedSumSquareVariable::build() 00063 { 00064 inherited::build(); 00065 build_(); 00066 } 00067 00068 void 00069 WeightedSumSquareVariable::build_() 00070 { 00071 if (input1 && input2) { 00072 // input1 and input2 are (respectively) input and weights from constructor 00073 if (input1->nelems() != input2->nelems()) 00074 PLERROR("In WeightedSumSquareVariable: input and weights must be the same size;" 00075 " input->nelems()=%d weights->nelems()=&d.", 00076 input1->nelems(), input2->nelems()); 00077 } 00078 } 00079 00080 00081 void WeightedSumSquareVariable::recomputeSize(int& l, int& w) const 00082 { l=1; w=1; } 00083 00084 00085 void WeightedSumSquareVariable::fprop() 00086 { 00087 int n=input1->nelems(); 00088 *valuedata= 0; 00089 for(int i=0; i<n; i++) 00090 *valuedata+= input1->valuedata[i]*input1->valuedata[i] * input2->valuedata[i]; 00091 } 00092 00093 00094 void WeightedSumSquareVariable::bprop() 00095 { 00096 int n=input1->nelems(); 00097 for(int i=0; i<n; i++) 00098 { 00099 input1->gradientdata[i]+= 2.0 * input1->valuedata[i] * input2->valuedata[i] * *gradientdata; 00100 input2->gradientdata[i]+= input1->valuedata[i] * input1->valuedata[i] * *gradientdata; 00101 } 00102 } 00103 00104 00105 void WeightedSumSquareVariable::symbolicBprop() 00106 { 00107 input1->accg(2.0 * (g*input1*input2)); 00108 input2->accg(g*input1*input1); 00109 } 00110 00111 00112 00113 } // end of namespace PLearn 00114 00115