00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: SquareVariable.cc,v 1.6 2004/04/27 16:02:26 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "SquareVariable.h" 00044 #include "Var_operators.h" 00045 //#include "Var_utils.h" 00046 00047 namespace PLearn { 00048 using namespace std; 00049 00050 00053 PLEARN_IMPLEMENT_OBJECT(SquareVariable, 00054 "ONE LINE DESCR", 00055 "NO HELP"); 00056 00057 SquareVariable::SquareVariable(Variable* input) 00058 : inherited(input, input->length(), input->width()) 00059 {} 00060 00061 void SquareVariable::recomputeSize(int& l, int& w) const 00062 { 00063 if (input) { 00064 l = input->length(); 00065 w = input->width(); 00066 } else 00067 l = w = 0; 00068 } 00069 00070 00071 void SquareVariable::fprop() 00072 { 00073 int n=nelems(); 00074 for(int i=0; i<n; i++) 00075 valuedata[i] = input->valuedata[i]*input->valuedata[i]; 00076 } 00077 00078 00079 void SquareVariable::bprop() 00080 { 00081 int n=nelems(); 00082 for(int i=0; i<n; i++) 00083 input->gradientdata[i] += 2.0 * input->valuedata[i] * gradientdata[i]; 00084 } 00085 00086 00087 void SquareVariable::bbprop() 00088 { 00089 if (input->diaghessian.length()==0) 00090 input->resizeDiagHessian(); 00091 int n=nelems(); 00092 for(int i=0; i<n; i++) 00093 { 00094 real input_i = input->valuedata[i]; 00095 input->diaghessiandata[i] += 4.0 * input_i * input_i * diaghessiandata[i] 00096 + 2.0 * gradientdata[i]; 00097 } 00098 } 00099 00100 00101 void SquareVariable::symbolicBprop() 00102 { 00103 input->accg(2. * (g * input)); 00104 } 00105 00106 00107 void SquareVariable::rfprop() 00108 { 00109 if (rValue.length()==0) resizeRValue(); 00110 int n=nelems(); 00111 for(int i=0; i<n; i++) 00112 rvaluedata[i] = 2*input->valuedata[i]*input->rvaluedata[i]; 00113 } 00114 00115 00116 00117 } // end of namespace PLearn 00118 00119