Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | File List | Namespace Members | Class Members | File Members

Max2Variable.cc

Go to the documentation of this file.
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: Max2Variable.cc,v 1.6 2004/04/27 15:58:16 morinf Exp $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #include "Max2Variable.h" 00044 #include "Var_operators.h" 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00049 00053 PLEARN_IMPLEMENT_OBJECT(Max2Variable, 00054 "Elementwise max over 2 elements: max(v1,v2)[i] = max(v1[i],v2[i]) " 00055 "with same dimensions as the input vectors", 00056 "NO HELP"); 00057 00058 Max2Variable::Max2Variable(Variable* input1, Variable* input2) 00059 : inherited(input1, input2, input1->length(), input1->width()) 00060 { 00061 build_(); 00062 } 00063 00064 void 00065 Max2Variable::build() 00066 { 00067 inherited::build(); 00068 build_(); 00069 } 00070 00071 void 00072 Max2Variable::build_() 00073 { 00074 if (input1 && input2) { 00075 if (input1->length() != input2->length() || input1->width() != input2->width()) 00076 PLERROR("IN Max2Variable input1 and input2 must have the same size"); 00077 } 00078 } 00079 00080 00081 void Max2Variable::recomputeSize(int& l, int& w) const 00082 { 00083 if (input1) { 00084 l = input1->length(); 00085 w = input1->width(); 00086 } else 00087 l = w = 0; 00088 } 00089 00090 void Max2Variable::fprop() 00091 { 00092 int n=input1->value.length(); 00093 real* v1=input1->value.data(); 00094 real* v2=input2->value.data(); 00095 real* v=value.data(); 00096 for (int i=0;i<n;i++) 00097 v[i] = std::max(v1[i],v2[i]); 00098 } 00099 00100 00101 void Max2Variable::bprop() 00102 { 00103 int n=input1->value.length(); 00104 real* v1=input1->value.data(); 00105 real* v2=input2->value.data(); 00106 real* grad1=input1->gradient.data(); 00107 real* grad2=input2->gradient.data(); 00108 real* grad=gradient.data(); 00109 for (int i=0;i<n;i++) 00110 { 00111 if (v2[i]<v1[i]) 00112 grad1[i] += grad[i]; 00113 if (v1[i]<v2[i]) 00114 grad2[i] += grad[i]; 00115 } 00116 } 00117 00118 00119 void Max2Variable::symbolicBprop() 00120 { 00121 input1->accg((input2<input1)*g); 00122 input2->accg((input1<input2)*g); 00123 } 00124 00125 00126 00127 } // end of namespace PLearn 00128 00129

Generated on Tue Aug 17 15:58:32 2004 for PLearn by doxygen 1.3.7