00001 00002 // -*- C++ -*- 00003 00004 // LinearRegressor.h 00005 // 00006 // Copyright (C) 2003 Yoshua Bengio 00007 // 00008 // Redistribution and use in source and binary forms, with or without 00009 // modification, are permitted provided that the following conditions are met: 00010 // 00011 // 1. Redistributions of source code must retain the above copyright 00012 // notice, this list of conditions and the following disclaimer. 00013 // 00014 // 2. Redistributions in binary form must reproduce the above copyright 00015 // notice, this list of conditions and the following disclaimer in the 00016 // documentation and/or other materials provided with the distribution. 00017 // 00018 // 3. The name of the authors may not be used to endorse or promote 00019 // products derived from this software without specific prior written 00020 // permission. 00021 // 00022 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00023 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00024 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00025 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00026 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00027 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00028 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00029 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00030 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00031 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00032 // 00033 // This file is part of the PLearn library. For more information on the PLearn 00034 // library, go to the PLearn Web site at www.plearn.org 00035 00036 /* ******************************************************* 00037 * $Id: LinearRegressor.h,v 1.6 2004/07/21 20:27:27 tihocan Exp $ 00038 ******************************************************* */ 00039 00041 #ifndef LinearRegressor_INC 00042 #define LinearRegressor_INC 00043 00044 #include <plearn_learners/generic/PLearner.h> 00045 00046 namespace PLearn { 00047 using namespace std; 00048 00049 class LinearRegressor: public PLearner 00050 { 00051 00052 private: 00053 00054 typedef PLearner inherited; 00055 00056 // Global storage used to save memory allocations. 00057 mutable Vec extendedinput; 00058 mutable Vec input; 00059 Vec target; 00060 Vec train_costs; 00061 00062 protected: 00063 // local variables 00064 Mat XtX; 00065 Mat XtY; 00066 real sum_squared_y; 00067 real sum_gammas; 00068 00069 // ********************* 00070 // * protected options * 00071 // ********************* 00072 00073 // ### declare protected option fields (such as learnt parameters) here 00074 00075 Mat weights; 00076 real weights_norm; 00077 00078 public: 00079 00080 // ************************ 00081 // * public build options * 00082 // ************************ 00083 00084 bool cholesky; 00085 real weight_decay; 00086 00087 // **************** 00088 // * Constructors * 00089 // **************** 00090 00091 // Default constructor, make sure the implementation in the .cc 00092 // initializes all fields to reasonable default values. 00093 LinearRegressor(); 00094 00095 00096 // ****************** 00097 // * PLearner methods * 00098 // ****************** 00099 00100 private: 00102 void build_(); 00103 00104 protected: 00106 static void declareOptions(OptionList& ol); 00107 00108 public: 00109 00110 // ************************ 00111 // **** Object methods **** 00112 // ************************ 00113 00115 virtual void build(); 00116 00118 virtual void makeDeepCopyFromShallowCopy(map<const void*, void*>& copies); 00119 00120 // Declares other standard object methods 00121 // If your class is not instantiatable (it has pure virtual methods) 00122 // you should replace this by PLEARN_DECLARE_ABSTRACT_OBJECT_METHODS 00123 PLEARN_DECLARE_OBJECT(LinearRegressor); 00124 00125 00126 // ************************** 00127 // **** PLearner methods **** 00128 // ************************** 00129 00132 virtual int outputsize() const; 00133 00141 virtual void forget(); 00142 00143 00147 virtual void train(); 00148 00149 00152 virtual void computeOutput(const Vec& input, Vec& output) const; 00153 00155 virtual void computeCostsFromOutputs(const Vec& input, const Vec& output, 00156 const Vec& target, Vec& costs) const; 00157 00158 00160 virtual TVec<string> getTestCostNames() const; 00161 00164 virtual TVec<string> getTrainCostNames() const; 00165 00166 00167 // *** SUBCLASS WRITING: *** 00168 // While in general not necessary, in case of particular needs 00169 // (efficiency concerns for ex) you may also want to overload 00170 // some of the following methods: 00171 // virtual void computeOutputAndCosts(const Vec& input, const Vec& target, Vec& output, Vec& costs) const; 00172 // virtual void computeCostsOnly(const Vec& input, const Vec& target, Vec& costs) const; 00173 // virtual void test(VMat testset, PP<VecStatsCollector> test_stats, VMat testoutputs=0, VMat testcosts=0) const; 00174 // virtual int nTestCosts() const; 00175 // virtual int nTrainCosts() const; 00176 00177 }; 00178 00179 // Declares a few other classes and functions related to this class 00180 DECLARE_OBJECT_PTR(LinearRegressor); 00181 00182 } // end of namespace PLearn 00183 00184 #endif