00001 // -*- C++ -*- 00002 00003 // KernelProjection.h 00004 // 00005 // Copyright (C) 2004 Olivier Delalleau 00006 // 00007 // Redistribution and use in source and binary forms, with or without 00008 // modification, are permitted provided that the following conditions are met: 00009 // 00010 // 1. Redistributions of source code must retain the above copyright 00011 // notice, this list of conditions and the following disclaimer. 00012 // 00013 // 2. Redistributions in binary form must reproduce the above copyright 00014 // notice, this list of conditions and the following disclaimer in the 00015 // documentation and/or other materials provided with the distribution. 00016 // 00017 // 3. The name of the authors may not be used to endorse or promote 00018 // products derived from this software without specific prior written 00019 // permission. 00020 // 00021 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00022 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00023 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00024 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00025 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00026 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00027 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00028 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00029 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00030 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00031 // 00032 // This file is part of the PLearn library. For more information on the PLearn 00033 // library, go to the PLearn Web site at www.plearn.org 00034 00035 /* ******************************************************* 00036 * $Id: KernelProjection.h,v 1.10 2004/07/21 20:28:13 tihocan Exp $ 00037 ******************************************************* */ 00038 00039 // Authors: Olivier Delalleau 00040 00044 #ifndef KernelProjection_INC 00045 #define KernelProjection_INC 00046 00047 #include <plearn_learners/generic/PLearner.h> 00048 #include <plearn/ker/Kernel.h> 00049 00050 namespace PLearn { 00051 using namespace std; 00052 00053 class KernelProjection: public PLearner 00054 { 00055 00056 private: 00057 00058 typedef PLearner inherited; 00059 00061 mutable Vec k_x_xi; 00062 mutable Mat result; 00063 mutable Mat used_eigenvectors; 00064 00065 protected: 00066 00067 // ********************* 00068 // * protected options * 00069 // ********************* 00070 00071 int n_comp_kept; 00072 int n_examples; 00073 00074 // Fields below are not options. 00075 00077 mutable bool first_output; 00078 00079 mutable Vec last_input; 00080 mutable Vec last_output; 00081 00082 public: 00083 00084 // ************************ 00085 // * public build options * 00086 // ************************ 00087 00088 bool compute_costs; 00089 bool free_extra_components; 00090 int ignore_n_first; 00091 Ker kernel; 00092 real min_eigenvalue; 00093 int n_comp; 00094 int n_comp_for_cost; 00095 int normalize; 00096 00097 // ************************ 00098 // * public learnt options * 00099 // ************************ 00100 00101 Vec eigenvalues; 00102 Mat eigenvectors; 00103 00104 // **************** 00105 // * Constructors * 00106 // **************** 00107 00109 KernelProjection(); 00110 00111 // ******************** 00112 // * PLearner methods * 00113 // ******************** 00114 00115 private: 00116 00118 void build_(); 00119 00120 protected: 00121 00123 static void declareOptions(OptionList& ol); 00124 00125 public: 00126 00128 virtual Vec getEigenvalues() {return eigenvalues;} 00129 00130 // ************************ 00131 // **** Object methods **** 00132 // ************************ 00133 00135 virtual void build(); 00136 00138 virtual void makeDeepCopyFromShallowCopy(map<const void*, void*>& copies); 00139 00140 // Declares other standard object methods. 00141 PLEARN_DECLARE_OBJECT(KernelProjection); 00142 00143 // ************************** 00144 // **** PLearner methods **** 00145 // ************************** 00146 00149 virtual int outputsize() const; 00150 00153 virtual void forget(); 00154 00157 virtual void train(); 00158 00160 virtual void computeOutput(const Vec& input, Vec& output) const; 00161 00163 virtual void computeCostsFromOutputs(const Vec& input, const Vec& output, 00164 const Vec& target, Vec& costs) const; 00165 00167 virtual TVec<string> getTestCostNames() const; 00168 00171 virtual TVec<string> getTrainCostNames() const; 00172 00174 virtual void setTrainingSet(VMat training_set, bool call_forget=true); 00175 00176 // *** SUBCLASS WRITING: *** 00177 // While in general not necessary, in case of particular needs 00178 // (efficiency concerns for ex) you may also want to overload 00179 // some of the following methods: 00180 // virtual void computeOutputAndCosts(const Vec& input, const Vec& target, Vec& output, Vec& costs) const; 00181 // virtual void computeCostsOnly(const Vec& input, const Vec& target, Vec& costs) const; 00182 // virtual void test(VMat testset, PP<VecStatsCollector> test_stats, VMat testoutputs=0, VMat testcosts=0) const; 00183 // virtual int nTestCosts() const; 00184 // virtual int nTrainCosts() const; 00185 00186 }; 00187 00188 // Declares a few other classes and functions related to this class. 00189 DECLARE_OBJECT_PTR(KernelProjection); 00190 00191 } // end of namespace PLearn 00192 00193 #endif