00001 // -*- C++ -*- 00002 00003 // DivisiveNormalizationKernel.h 00004 // 00005 // Copyright (C) 2004 Olivier Delalleau 00006 // 00007 // Redistribution and use in source and binary forms, with or without 00008 // modification, are permitted provided that the following conditions are met: 00009 // 00010 // 1. Redistributions of source code must retain the above copyright 00011 // notice, this list of conditions and the following disclaimer. 00012 // 00013 // 2. Redistributions in binary form must reproduce the above copyright 00014 // notice, this list of conditions and the following disclaimer in the 00015 // documentation and/or other materials provided with the distribution. 00016 // 00017 // 3. The name of the authors may not be used to endorse or promote 00018 // products derived from this software without specific prior written 00019 // permission. 00020 // 00021 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00022 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00023 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00024 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00025 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00026 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00027 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00028 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00029 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00030 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00031 // 00032 // This file is part of the PLearn library. For more information on the PLearn 00033 // library, go to the PLearn Web site at www.plearn.org 00034 00035 /* ******************************************************* 00036 * $Id: DivisiveNormalizationKernel.h,v 1.4 2004/07/21 20:09:58 tihocan Exp $ 00037 ******************************************************* */ 00038 00039 // Authors: Olivier Delalleau 00040 00044 #ifndef DivisiveNormalizationKernel_INC 00045 #define DivisiveNormalizationKernel_INC 00046 00047 #include "SourceKernel.h" 00048 00049 namespace PLearn { 00050 using namespace std; 00051 00052 class DivisiveNormalizationKernel: public SourceKernel 00053 { 00054 00055 private: 00056 00057 typedef SourceKernel inherited; 00058 00060 mutable Vec all_k_x; 00061 00062 protected: 00063 00064 // ********************* 00065 // * Protected options * 00066 // ********************* 00067 00068 Vec average_col; 00069 Vec average_row; 00070 00071 // Fields below are not options. 00072 00074 mutable real avg_evaluate_i_x_again; 00075 00077 mutable real avg_evaluate_x_i_again; 00078 00079 public: 00080 00081 // ************************ 00082 // * Public build options * 00083 // ************************ 00084 00085 bool data_will_change; 00086 bool remove_bias; 00087 00088 // **************** 00089 // * Constructors * 00090 // **************** 00091 00093 DivisiveNormalizationKernel(); 00094 00096 DivisiveNormalizationKernel(Ker the_source, bool the_remove_bias = false); 00097 00098 // ************************ 00099 // * SourceKernel methods * 00100 // ************************ 00101 00102 private: 00103 00105 void build_(); 00106 00107 protected: 00108 00110 static void declareOptions(OptionList& ol); 00111 00114 inline real computeAverage(const Vec& x, bool on_row, real squared_norm_of_x = -1) const; 00115 00116 public: 00117 00118 // ************************ 00119 // **** Object methods **** 00120 // ************************ 00121 00123 virtual void build(); 00124 00126 virtual void makeDeepCopyFromShallowCopy(map<const void*, void*>& copies); 00127 00128 // Declares other standard object methods. 00129 PLEARN_DECLARE_OBJECT(DivisiveNormalizationKernel); 00130 00131 // ****************************** 00132 // **** SourceKernel methods **** 00133 // ****************************** 00134 00136 virtual real evaluate(const Vec& x1, const Vec& x2) const; 00137 virtual real evaluate_i_j(int i, int j) const; 00138 virtual real evaluate_i_x(int i, const Vec& x, real squared_norm_of_x=-1) const; 00139 virtual real evaluate_x_i(const Vec& x, int i, real squared_norm_of_x=-1) const; 00140 virtual real evaluate_i_x_again(int i, const Vec& x, real squared_norm_of_x=-1, bool first_time = false) const; 00141 virtual real evaluate_x_i_again(const Vec& x, int i, real squared_norm_of_x=-1, bool first_time = false) const; 00142 virtual void computeGramMatrix(Mat K) const; 00143 virtual void setDataForKernelMatrix(VMat the_data); 00144 00145 // You may also want to override these methods if you don't want them 00146 // to be directly forwarded to the underlying kernel. 00147 // virtual void addDataForKernelMatrix(const Vec& newRow); 00148 // virtual void setParameters(Vec paramvec); 00149 // virtual Vec getParameters() const; 00150 00151 }; 00152 00153 // Declares a few other classes and functions related to this class. 00154 DECLARE_OBJECT_PTR(DivisiveNormalizationKernel); 00155 00156 } // end of namespace PLearn 00157 00158 #endif 00159 00160