00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 // Copyright (C) 2004 Olivier Delalleau 00009 00010 // Redistribution and use in source and binary forms, with or without 00011 // modification, are permitted provided that the following conditions are met: 00012 // 00013 // 1. Redistributions of source code must retain the above copyright 00014 // notice, this list of conditions and the following disclaimer. 00015 // 00016 // 2. Redistributions in binary form must reproduce the above copyright 00017 // notice, this list of conditions and the following disclaimer in the 00018 // documentation and/or other materials provided with the distribution. 00019 // 00020 // 3. The name of the authors may not be used to endorse or promote 00021 // products derived from this software without specific prior written 00022 // permission. 00023 // 00024 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00025 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00026 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00027 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00028 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00029 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00030 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00031 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00032 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00033 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00034 // 00035 // This file is part of the PLearn library. For more information on the PLearn 00036 // library, go to the PLearn Web site at www.plearn.org 00037 00038 00039 /* ******************************************************* 00040 * $Id: BinaryClassificationLossVariable.cc,v 1.3 2004/04/27 15:58:16 morinf Exp $ 00041 * This file is part of the PLearn library. 00042 ******************************************************* */ 00043 00044 #include "BinaryClassificationLossVariable.h" 00045 namespace PLearn { 00046 using namespace std; 00047 00050 PLEARN_IMPLEMENT_OBJECT(BinaryClassificationLossVariable, 00051 "For one-dimensional output: class is 0 if output < 0.5, and 1 if >= 0.5.", 00052 "NO HELP"); 00053 00054 BinaryClassificationLossVariable::BinaryClassificationLossVariable(Variable* netout, Variable* classnum) 00055 : inherited(netout,classnum,1,1) 00056 { 00057 build_(); 00058 } 00059 00060 void 00061 BinaryClassificationLossVariable::build() 00062 { 00063 inherited::build(); 00064 build_(); 00065 } 00066 00067 void 00068 BinaryClassificationLossVariable::build_() 00069 { 00070 // input2 == classnum from constructor 00071 if (input2 && !input2->isScalar()) 00072 PLERROR("In BinaryClassificationLossVariable: classnum must be a scalar variable representing an index of netout (typically a class number)"); 00073 } 00074 00075 void BinaryClassificationLossVariable::recomputeSize(int& l, int& w) const 00076 { l=1, w=1; } 00077 00078 00079 void BinaryClassificationLossVariable::fprop() 00080 { 00081 int classnum = int(input2->valuedata[0]); 00082 int outputclass; 00083 if (input1->valuedata[0] <= 0.5) { 00084 outputclass = 0; 00085 } else { 00086 outputclass = 1; 00087 } 00088 00089 valuedata[0] = (outputclass == classnum ?0 :1); 00090 } 00091 00092 } // end of namespace PLearn 00093