_classname_() | PLearn::Object | [static] |
_getOptionList_() | PLearn::Object | [static] |
_isa_(Object *o) | PLearn::Object | [static] |
_new_instance_for_typemap_() | PLearn::Object | [static] |
_static_initialize_() | PLearn::Object | [static] |
_static_initializer_ | PLearn::Object | [static] |
addDataForKernelMatrix(const Vec &newRow) | PLearn::Kernel | [virtual] |
apply(VMat m1, VMat m2, Mat &result) const | PLearn::Kernel | |
apply(VMat m1, VMat m2) const | PLearn::Kernel | |
apply(VMat m, const Vec &x, Vec &result) const | PLearn::Kernel | |
apply(Vec x, VMat m, Vec &result) const | PLearn::Kernel | |
build() | PLearn::Kernel | [virtual] |
call(const string &methodname, int nargs, PStream &in_parameters, PStream &out_results) | PLearn::Object | [virtual] |
changeOption(const string &optionname, const string &value) | PLearn::Object | |
changeOptions(const map< string, string > &name_value) | PLearn::Object | [virtual] |
classname() const | PLearn::Object | [virtual] |
computeGramMatrix(Mat K) const | PLearn::Kernel | [virtual] |
computeKNNeighbourMatrixFromDistanceMatrix(const Mat &D, int knn, bool insure_self_first_neighbour=true, bool report_progress=false) | PLearn::Kernel | [static] |
computeNearestNeighbors(const Vec &x, Mat &k_xi_x_sorted, int knn) const | PLearn::Kernel | |
computeNeighbourMatrixFromDistanceMatrix(const Mat &D, bool insure_self_first_neighbour=true, bool report_progress=false) | PLearn::Kernel | [static] |
data | PLearn::Kernel | [protected] |
data_inputsize | PLearn::Kernel | [protected] |
dataInputsize() | PLearn::Kernel | [inline, virtual] |
declareOptions(OptionList &ol) | PLearn::LogOfGaussianDensityKernel | [protected, static] |
deepCopy(CopiesMap &copies) const | PLearn::Object | [virtual] |
estimateHistograms(VMat d, real sameness_threshold, real minval, real maxval, int nbins) const | PLearn::Kernel | |
estimateHistograms(Mat input_and_class, real minval, real maxval, int nbins) const | PLearn::Kernel | |
evaluate(const Vec &x1, const Vec &x2) const | PLearn::LogOfGaussianDensityKernel | [virtual] |
evaluate_all_i_x(const Vec &x, Vec &k_xi_x, real squared_norm_of_x=-1, int istart=0) const | PLearn::Kernel | |
evaluate_all_x_i(const Vec &x, Vec &k_x_xi, real squared_norm_of_x=-1, int istart=0) const | PLearn::Kernel | |
evaluate_i_j(int i, int j) const | PLearn::Kernel | [virtual] |
evaluate_i_x(int i, const Vec &x, real squared_norm_of_x=-1) const | PLearn::Kernel | [virtual] |
evaluate_i_x_again(int i, const Vec &x, real squared_norm_of_x=-1, bool first_time=false) const | PLearn::Kernel | [virtual] |
evaluate_x_i(const Vec &x, int i, real squared_norm_of_x=-1) const | PLearn::Kernel | [virtual] |
evaluate_x_i_again(const Vec &x, int i, real squared_norm_of_x=-1, bool first_time=false) const | PLearn::Kernel | [virtual] |
getData() | PLearn::Kernel | [inline] |
getOption(const string &optionname) const | PLearn::Object | |
getOptionList() const | PLearn::Object | [virtual] |
getOptionsToSave() const | PLearn::Object | [virtual] |
getParameters() const | PLearn::Kernel | [virtual] |
hasData() | PLearn::Kernel | |
info() const | PLearn::Object | [virtual] |
inherited typedef | PLearn::LogOfGaussianDensityKernel | [private] |
is_symmetric | PLearn::Kernel | |
isInData(const Vec &x, int *i=0) const | PLearn::Kernel | |
Kernel(bool is__symmetric=true) | PLearn::Kernel | |
load(const string &filename) | PLearn::Object | [virtual] |
LogOfGaussianDensityKernel() | PLearn::LogOfGaussianDensityKernel | [inline] |
LogOfGaussianDensityKernel(real the_sigma) | PLearn::LogOfGaussianDensityKernel | [inline] |
makeDeepCopyFromShallowCopy(CopiesMap &copies) | PLearn::Kernel | [virtual] |
n_examples | PLearn::Kernel | [protected] |
newread(PStream &in) | PLearn::Object | |
newwrite(PStream &out) const | PLearn::Object | |
nExamples() | PLearn::Kernel | [inline, virtual] |
Object() | PLearn::Object | |
oldread(istream &in) | PLearn::Object | [virtual] |
operator()(const Vec &x1, const Vec &x2) const | PLearn::Kernel | [inline] |
PLEARN_DECLARE_ABSTRACT_OBJECT(Kernel) | PLearn::Kernel | |
PLEARN_DECLARE_OBJECT(LogOfGaussianDensityKernel) | PLearn::LogOfGaussianDensityKernel | |
PPointable() | PLearn::PPointable | [inline] |
PPointable(const PPointable &other) | PLearn::PPointable | [inline] |
prepareToSendResults(PStream &out, int nres) | PLearn::Object | [inline, protected] |
print(ostream &out) const | PLearn::Object | [virtual] |
read(istream &in) | PLearn::Object | [virtual] |
readOptionVal(PStream &in, const string &optionname) | PLearn::Object | |
ref() const | PLearn::PPointable | [inline] |
report_progress | PLearn::Kernel | |
run() | PLearn::Object | [virtual] |
save(const string &filename) const | PLearn::Object | [virtual] |
setDataForKernelMatrix(VMat the_data) | PLearn::Kernel | [virtual] |
setOption(const string &optionname, const string &value) | PLearn::Object | |
setParameters(Vec paramvec) | PLearn::Kernel | [virtual] |
sigma | PLearn::LogOfGaussianDensityKernel | [protected] |
specify_dataset | PLearn::Kernel | |
test(VMat d, real threshold, real sameness_below_threshold, real sameness_above_threshold) const | PLearn::Kernel | |
unref() const | PLearn::PPointable | [inline] |
usage() const | PLearn::PPointable | [inline] |
write(ostream &out) const | PLearn::Object | [virtual] |
writeOptionVal(PStream &out, const string &optionname) const | PLearn::Object | |
~Kernel() | PLearn::Kernel | [virtual] |
~Object() | PLearn::Object | [virtual] |
~PPointable() | PLearn::PPointable | [inline, virtual] |