| _classname_() | PLearn::Object |  [static] | 
  | _getOptionList_() | PLearn::Object |  [static] | 
  | _isa_(Object *o) | PLearn::Object |  [static] | 
  | _new_instance_for_typemap_() | PLearn::Object |  [static] | 
  | _static_initialize_() | PLearn::Object |  [static] | 
  | _static_initializer_ | PLearn::Object |  [static] | 
  | addDataForKernelMatrix(const Vec &newRow) | PLearn::SourceKernel |  [virtual] | 
  | AdditiveNormalizationKernel() | PLearn::AdditiveNormalizationKernel |  | 
  | AdditiveNormalizationKernel(Ker the_source, bool remove_bias=false, bool remove_bias_in_evaluate=false, bool double_centering=false) | PLearn::AdditiveNormalizationKernel |  | 
  | all_k_x | PLearn::AdditiveNormalizationKernel |  [mutable, private] | 
  | apply(VMat m1, VMat m2, Mat &result) const | PLearn::Kernel |  | 
  | apply(VMat m1, VMat m2) const | PLearn::Kernel |  | 
  | apply(VMat m, const Vec &x, Vec &result) const | PLearn::Kernel |  | 
  | apply(Vec x, VMat m, Vec &result) const | PLearn::Kernel |  | 
  | average_col | PLearn::AdditiveNormalizationKernel |  [protected] | 
  | average_row | PLearn::AdditiveNormalizationKernel |  [protected] | 
  | avg_evaluate_i_x_again | PLearn::AdditiveNormalizationKernel |  [mutable, protected] | 
  | avg_evaluate_x_i_again | PLearn::AdditiveNormalizationKernel |  [mutable, protected] | 
  | build() | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | build_() | PLearn::AdditiveNormalizationKernel |  [private] | 
  | call(const string &methodname, int nargs, PStream &in_parameters, PStream &out_results) | PLearn::Object |  [virtual] | 
  | changeOption(const string &optionname, const string &value) | PLearn::Object |  | 
  | changeOptions(const map< string, string > &name_value) | PLearn::Object |  [virtual] | 
  | classname() const | PLearn::Object |  [virtual] | 
  | computeAverage(const Vec &x, bool on_row, real squared_norm_of_x=-1) const | PLearn::AdditiveNormalizationKernel |  [inline, protected] | 
  | computeGramMatrix(Mat K) const | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | computeKNNeighbourMatrixFromDistanceMatrix(const Mat &D, int knn, bool insure_self_first_neighbour=true, bool report_progress=false) | PLearn::Kernel |  [static] | 
  | computeNearestNeighbors(const Vec &x, Mat &k_xi_x_sorted, int knn) const | PLearn::Kernel |  | 
  | computeNeighbourMatrixFromDistanceMatrix(const Mat &D, bool insure_self_first_neighbour=true, bool report_progress=false) | PLearn::Kernel |  [static] | 
  | data | PLearn::Kernel |  [protected] | 
  | data_inputsize | PLearn::Kernel |  [protected] | 
  | data_will_change | PLearn::AdditiveNormalizationKernel |  | 
  | dataInputsize() | PLearn::Kernel |  [inline, virtual] | 
  | declareOptions(OptionList &ol) | PLearn::AdditiveNormalizationKernel |  [protected, static] | 
  | deepCopy(CopiesMap &copies) const | PLearn::Object |  [virtual] | 
  | double_centering | PLearn::AdditiveNormalizationKernel |  | 
  | estimateHistograms(VMat d, real sameness_threshold, real minval, real maxval, int nbins) const | PLearn::Kernel |  | 
  | estimateHistograms(Mat input_and_class, real minval, real maxval, int nbins) const | PLearn::Kernel |  | 
  | evaluate(const Vec &x1, const Vec &x2) const | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | evaluate_all_i_x(const Vec &x, Vec &k_xi_x, real squared_norm_of_x=-1, int istart=0) const | PLearn::Kernel |  | 
  | evaluate_all_x_i(const Vec &x, Vec &k_x_xi, real squared_norm_of_x=-1, int istart=0) const | PLearn::Kernel |  | 
  | evaluate_i_j(int i, int j) const | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | evaluate_i_x(int i, const Vec &x, real squared_norm_of_x=-1) const | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | evaluate_i_x_again(int i, const Vec &x, real squared_norm_of_x=-1, bool first_time=false) const | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | evaluate_x_i(const Vec &x, int i, real squared_norm_of_x=-1) const | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | evaluate_x_i_again(const Vec &x, int i, real squared_norm_of_x=-1, bool first_time=false) const | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | factor | PLearn::AdditiveNormalizationKernel |  [protected] | 
  | getData() | PLearn::Kernel |  [inline] | 
  | getOption(const string &optionname) const | PLearn::Object |  | 
  | getOptionList() const | PLearn::Object |  [virtual] | 
  | getOptionsToSave() const | PLearn::Object |  [virtual] | 
  | getParameters() const | PLearn::SourceKernel |  [virtual] | 
  | hasData() | PLearn::Kernel |  | 
  | info() const | PLearn::Object |  [virtual] | 
  | inherited typedef | PLearn::AdditiveNormalizationKernel |  [private] | 
  | is_symmetric | PLearn::Kernel |  | 
  | isInData(const Vec &x, int *i=0) const | PLearn::Kernel |  | 
  | Kernel(bool is__symmetric=true) | PLearn::Kernel |  | 
  | load(const string &filename) | PLearn::Object |  [virtual] | 
  | makeDeepCopyFromShallowCopy(map< const void *, void * > &copies) | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | PLearn::Kernel::makeDeepCopyFromShallowCopy(CopiesMap &copies) | PLearn::Kernel |  [virtual] | 
  | n_examples | PLearn::Kernel |  [protected] | 
  | newread(PStream &in) | PLearn::Object |  | 
  | newwrite(PStream &out) const | PLearn::Object |  | 
  | nExamples() | PLearn::Kernel |  [inline, virtual] | 
  | Object() | PLearn::Object |  | 
  | oldread(istream &in) | PLearn::Object |  [virtual] | 
  | operator()(const Vec &x1, const Vec &x2) const | PLearn::Kernel |  [inline] | 
  | PLEARN_DECLARE_ABSTRACT_OBJECT(Kernel) | PLearn::Kernel |  | 
  | PLEARN_DECLARE_OBJECT(AdditiveNormalizationKernel) | PLearn::AdditiveNormalizationKernel |  | 
  | PLearn::SourceKernel::PLEARN_DECLARE_OBJECT(SourceKernel) | PLearn::SourceKernel |  | 
  | PPointable() | PLearn::PPointable |  [inline] | 
  | PPointable(const PPointable &other) | PLearn::PPointable |  [inline] | 
  | prepareToSendResults(PStream &out, int nres) | PLearn::Object |  [inline, protected] | 
  | print(ostream &out) const | PLearn::Object |  [virtual] | 
  | read(istream &in) | PLearn::Object |  [virtual] | 
  | readOptionVal(PStream &in, const string &optionname) | PLearn::Object |  | 
  | ref() const | PLearn::PPointable |  [inline] | 
  | remove_bias | PLearn::AdditiveNormalizationKernel |  | 
  | remove_bias_in_evaluate | PLearn::AdditiveNormalizationKernel |  | 
  | report_progress | PLearn::Kernel |  | 
  | run() | PLearn::Object |  [virtual] | 
  | save(const string &filename) const | PLearn::Object |  [virtual] | 
  | setDataForKernelMatrix(VMat the_data) | PLearn::AdditiveNormalizationKernel |  [virtual] | 
  | setOption(const string &optionname, const string &value) | PLearn::Object |  | 
  | setParameters(Vec paramvec) | PLearn::SourceKernel |  [virtual] | 
  | source_kernel | PLearn::SourceKernel |  | 
  | SourceKernel() | PLearn::SourceKernel |  | 
  | specify_dataset | PLearn::Kernel |  | 
  | test(VMat d, real threshold, real sameness_below_threshold, real sameness_above_threshold) const | PLearn::Kernel |  | 
  | total_average | PLearn::AdditiveNormalizationKernel |  [protected] | 
  | total_average_unbiased | PLearn::AdditiveNormalizationKernel |  [protected] | 
  | unref() const | PLearn::PPointable |  [inline] | 
  | usage() const | PLearn::PPointable |  [inline] | 
  | write(ostream &out) const | PLearn::Object |  [virtual] | 
  | writeOptionVal(PStream &out, const string &optionname) const | PLearn::Object |  | 
  | ~Kernel() | PLearn::Kernel |  [virtual] | 
  | ~Object() | PLearn::Object |  [virtual] | 
  | ~PPointable() | PLearn::PPointable |  [inline, virtual] |