00001 // -*- C++ -*-4 1999/10/29 20:41:34 dugas 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 2002 Pascal Vincent 00005 // 00006 // Redistribution and use in source and binary forms, with or without 00007 // modification, are permitted provided that the following conditions are met: 00008 // 00009 // 1. Redistributions of source code must retain the above copyright 00010 // notice, this list of conditions and the following disclaimer. 00011 // 00012 // 2. Redistributions in binary form must reproduce the above copyright 00013 // notice, this list of conditions and the following disclaimer in the 00014 // documentation and/or other materials provided with the distribution. 00015 // 00016 // 3. The name of the authors may not be used to endorse or promote 00017 // products derived from this software without specific prior written 00018 // permission. 00019 // 00020 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00021 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00022 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00023 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00024 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00025 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00026 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00027 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00028 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00029 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00030 // 00031 // This file is part of the PLearn library. For more information on the PLearn 00032 // library, go to the PLearn Web site at www.plearn.org 00033 00034 00035 00036 00037 /* ******************************************************* 00038 * $Id: GaussianDistribution.h,v 1.9 2004/08/12 16:15:25 tihocan Exp $ 00039 * This file is part of the PLearn library. 00040 ******************************************************* */ 00041 00042 00045 #ifndef GaussianDistribution_INC 00046 #define GaussianDistribution_INC 00047 00048 #include "PDistribution.h" 00049 00050 namespace PLearn { 00051 using namespace std; 00052 00053 // This is a density estimation learner. 00054 // It uses a compact representation of a Gaussian, by keeping only the k 00055 // top eigenvalues and associated eigenvectors of the covariance matrix. 00056 // All other eigenvalues are kept at the level of the k+1 th eigenvalue 00057 // Optionally, a constant sigma is first added to the diagonal of the covariance matrix. 00058 00059 class GaussianDistribution: public PDistribution 00060 { 00061 public: 00062 00063 typedef PDistribution inherited; 00064 00065 // Possibly "Learned" parameters 00066 Vec mu; 00067 Vec eigenvalues; 00068 Mat eigenvectors; 00069 00070 // Build options 00071 int k; // maximum number of eigenvectors to keep 00072 real gamma; // The actual covariance matrix used will be VDV' + gamma.I where V'=eigenvectors and D=diag(eigenvalues) 00073 float ignore_weights_below; 00074 00075 public: 00076 GaussianDistribution(); 00077 00078 PLEARN_DECLARE_OBJECT(GaussianDistribution); 00079 void makeDeepCopyFromShallowCopy(CopiesMap& copies); 00080 00081 virtual void forget(); 00082 virtual void train(); 00083 virtual real log_density(const Vec& x) const; 00084 00086 virtual void resetGenerator(long g_seed) const; 00087 00089 virtual void generate(Vec& x) const; 00090 00092 virtual int inputsize() const; 00093 00094 protected: 00095 static void declareOptions(OptionList& ol); 00096 00097 }; 00098 00099 DECLARE_OBJECT_PTR(GaussianDistribution); 00100 00101 } // end of namespace PLearn 00102 00103 #endif