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Introduction

PLearn is an Open Source C++ library and framework with an associated collection
of software tools developped and used for research in statistical machine learning.

The emphasis here is on “research”: it was built by researchers mostly for their
own use, i.e. not too much with the general public in mind. It is not for the faint
of heart, and you are more likely to find here exotic algorithms at the forefront
of research, rather than a comprehensive collection of all the “standard proven
and well tested” algorithms of Machine Learning. This being said, if you want to
program your new idea of a learning algortihm in efficient modern C++, the PLearn
framework offers a solid foundation.
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Chapter 1

Tutorial

This chapter is a tutorial that will walk you through the basic concepts from a
user-level perspective.

We assume you have a copy of the plearn distribution, and a working plearn exe-
cutable accessible through yout PATH. All the files in this tutorial are in examples/Tutorial/
so you should first cd to this directory.

1.1 The plearn Commands and Help

Usual PLearn executables such as plearn or plearn_light are typically called
in command-line fashion.

valhalla:˜/PLearn/examples/Tutorial> plearn
plearn 0.92.0 (Jun 21 2005 12:04:50)
Type ’plearn help’ for help

valhalla:˜/PLearn/examples/Tutorial> plearn help
plearn 0.92.0 (Jun 21 2005 12:04:50)
To run a .plearn script type: plearn scriptfile.plearn
To run a command type: plearn command [ command arguments ]

To get help on the script file format: plearn help scripts
To get a short description of available commands: plearn help commands
To get detailed help on a specific command: plearn help <command_name>

5
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To get help on a specific PLearn object: plearn help <object_type_name>
To get help on datasets: plearn help datasets

The plearn executable can be invoked either with a PLearn script (more on that
later) or with a PLearn command.
To get the list of available commands:

valhalla:˜/PLearn/examples/Tutorial> plearn help commands
plearn 0.92.0 (Jun 21 2005 12:04:50)
To run a command, type: % plearn command_name command_arguments

Available commands are:
FieldConvert : Reads a dataset and generates a .vmat file based on the data, but optimized for training.

autorun : watches files for changes and reruns the .plearn script
help : plearn command-line help
htmlhelp : Output HTML-formatted help for PLearn
jdate : Convert a Julian Date into a JJ/MM/YYYY date
ks-stat : Computes the Kolmogorov-Smirnov statistic between 2 matrix columns
learner : Allows to train, use and test a learner
read_and_write : Used to check (debug) the serialization system
run : runs a .plearn script
server : Launches plearn in computation server mode
test-dependencies : Compute dependency statistics between input and target variables.
test-dependency : Compute dependency statistics between two selected columns of a vmat.
vmat : Examination and manipulation of vmat datasets

For more details on a specific command, type:
% plearn help <command_name>

PLearn commands accept a number of arguments that are command specific. Very
often the first argument is itself a sub-command. . .

help is actually a PLearn command! Thus we can ask help on help!

valhalla:˜/PLearn/examples/Tutorial> plearn help help
plearn 0.92.0 (Jun 21 2005 12:04:50)
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*** Help for command ’help’ ***
plearn command-line help
help <topic>
Run the help command with no argument to get an overview of the system.

The help command can give detailed help on any available PLearn command, as
well as on any PLearn object class.

There is an on-line html version of the help provided by the help command...
See PLearn help on user-level commands and objects on the PLearn homepage. . .

1.2 Data Matrices

Machine-learning algorithms learn from data and are then used for prediction on
new data. In this tutorial, we’ll concentrate on the simplest and most usual form of
data samples: vectors in IRd.

A dataset of l samples is then simply an l × d matrix of reals. In PLearn such
datasets are implemented through the concept of a VMatrix (or VMat in short).

A VMat is essentially:

• A l × d matrix of reals (l is its length, d its width),

• optionally with an associated fieldname for each column (or field),

• optionally with associated inputsize, targetsize, weightsize, extrasize

• optionally with strings associated to specific values of a given column

The inputsize, targetsize, weightsize, extrasize are important information for learn-
ing algorithms, as they specify which part of each row is to be considered the
known input (the first inputsize elements), which part is the target to predict (the
next targetsize elements), and whether or not they are followed by a sample weight
(weightsize = 0 or 1). The extrasize fields can be used to store any extra informa-
tion.

For the traditional tasks of statistical machine learning, we have the following con-
ventions regarding datasets and “sizes”:

• regression:
inputsize = number of known inputs (“variables”, “factors” or “features”, i.e.



8 CHAPTER 1. TUTORIAL

dimensioality of “x”)
targetsize = number of values to predict (i.e. dimensionality of “y”)

• classification:
inputsize = number of known inputs
targetsize = 1: the target is the class number (between 0 and nclasses-1)

• density estimation:
inputsize = dimensionality of x
targetsize = 0

For ex., let’s create a simple data set for 1D regression, i.e. to predict a real y from
a real x. Open a file 1d_reg.amat with your favorite editor, and and enter the
following text definint a 5× 2 matrix:

#size: 5 2
#: x y
#sizes: 1 1 0 0

0 3
0.5 4
1 5
2 6
3 7.5

This represents a 5 × 2 matrix whose columns are named x and y, and whose
inputsize=1, targetsize=1, weightsize=0, extrasize=0.

1.3 Viewing Data Matrices

Data matrices can be manipulated with the PLearn command vmat:

valhalla:˜/PLearn/examples/Tutorial> plearn help vmat
plearn 0.92.0 (Jun 21 2005 12:04:50)

*** Help for command ’vmat’ ***
Examination and manipulation of vmat datasets
Usage: vmat info <dataset>

Will info about dataset (size, etc..)
or: vmat fields <dataset> [name_only] [transpose]
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To list the fields with their names (if ’name_only’ is specified, the indexes won’t be displayed,
and if ’transpose’ is also added, the fields will be listed on a single line)

or: vmat fieldinfo <dataset> <fieldname_or_num> [--bin]
To display statistics for that field

or: vmat bbox <dataset> [<extra_percent>]
To display the data bounding box (i.e., for each field, its min and max, possibly extended by +-extra_percent ex: 0.10 for +-10% of the data range )

or: vmat cat <dataset> [<optional_vpl_filtering_code>]
To display the dataset

or: vmat sascat <dataset.vmat> <dataset.txt>
To output in <dataset.txt> the dataset in SAS-like tab-separated format with field names on the first line

or: vmat view <dataset>
Interactive display to browse on the data.

or: vmat stats <dataset>
Will display basic statistics for each field

or: vmat convert <source> <destination> [--cols=col1,col2,col3,...]
To convert any dataset into a .amat, .pmat, .dmat or .csv format.
The extension of the destination is used to determine the format you want.
If the option --cols is specified, it requests to keep only the given columns
(no space between the commas and the columns); columns can be given either as a
number (zero-based) or a column name (string). You can also specify a range,
such as 0-18, or any combination thereof, e.g. 5,3,8-18,Date,74-85
If .csv (Comma-Separated Value) is specified as the destination file, the
following additional options are also supported:

--skip-missings: if a row (after selecting the appropriate columns) contains
one or more missing values, it is skipped during export

--precision=N: a maximum of N digits is printed after the decimal point
--delimiter=C: use character C as the field delimiter (default = ’,’)

or: vmat gendef <source> [binnum1 binnum2 ...]
Generate stats for dataset (will put them in its associated metadatadir).

or: vmat genvmat <source_dataset> <dest_vmat> [binned{num} | onehot{num} | normalized]
Will generate a template .vmat file with all the fields of the source preprocessed
with the processing you specify

or: vmat genkfold <source_dataset> <fileprefix> <kvalue>
Will generate <kvalue> pairs of .vmat that are splitted so they can be used for kfold trainings
The first .vmat-pair will be named <fileprefix>_train_1.vmat (all source_dataset except the first 1/k)
and <fileprefix>_test_1.vmat (the first 1/k of <source_dataset>

or: vmat diff <dataset1> <dataset2> [<tolerance> [<verbose>]]
Will report all elements that differ by more than tolerance (defauts to 1e-6).
If verbose==0 then print only total number of differences

or: vmat cdf <dataset> [<dataset> ...]
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To interactively display cumulative density function for each field
along with its basic statistics

or: vmat diststat <dataset> <inputsize>
Will compute and output basic statistics on the euclidean distance
between two consecutive input points

<dataset> is a parameter understandable by getDataSet:
Dataset specification can be one of:
- the path to a matrix file (or directory) .amat .pmat .vmat .dmat or plain ascii
- ...

OK, too many subcommands here, but let’s concentrate on the few ones you’re
most likely to use:

valhalla:˜/PLearn/examples/Tutorial> plearn vmat info 1d_reg.amat
plearn 0.92.0 (Jun 21 2005 12:04:50)
5 x 2
inputsize: 1
targetsize: 1
weightsize: 0
extrasize: 0

valhalla:˜/PLearn/examples/Tutorial> plearn vmat fields 1d_reg.amat
plearn 0.92.0 (Jun 21 2005 12:04:50)
FieldNames:
0: x
1: y

valhalla:˜/PLearn/examples/Tutorial> plearn vmat fieldinfo 1d_reg.amat y
plearn 0.92.0 (Jun 21 2005 12:04:50)
[------------------------------------- Computing statistics (5) -------------------------------------]
[....................................................................................................]
Field #1: y type: UnknownType
nmissing: 0
nnonmissing: 5
sum: 25.5
mean: 5.09999999999999964
stddev: 1.74642491965729807
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min: 3
max: 7.5

valhalla:˜/PLearn/examples/Tutorial> plearn vmat cat 1d_reg.amat
plearn 0.92.0 (Jun 21 2005 12:04:50)
0 3
0.5 4
1 5
2 6
3 7.5

If you want to browse the data matrix interactively, you can use the command
plearn vmat view 1d_reg.amat (This is most useful for huge data sets. . . .
plearn need to be compiled with curse.)

You can also see the points graphically by using the pyplot script pyplot plot_2d 1d_reg.amat

1.4 vmat File Formats

The V in VMatrix stands for Virtual, because VMatrix is a C++ virtual base class
of which there are several concrete derived classes (do a plearn help VMatrix
if you want to see how many. . . ).

Accordingly, there are several file formats that represent real data matrices, distin-
guished by their file extension:

extension format description
.amat Simple ascii format
.pmat Simple raw binary format with 1 line ascii header
.dmat Directory containing compressed binary data

(possibly split in several files for huge data)
.vmat Contains the specification of a C++ VMatrix object

(in PLearn’s ascii serialisation format)
.pymat Python preprocessing code that generates the

specification of a C++ VMatrix object (a la .vmat)

In addition, several of those tend to have an associated .metadata directory, that
will contain associated data that is not held within the file itself (for ex: fieldnames,
inputsize and targetsize, field statistics, etc. . . )
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You can convert from any format to .amat, .pmat, .dmat, .csv with
PLearn command vmat convert:

plearn vmat convert 1d_reg.amat 1d_reg.pmat
plearn vmat view 1d_reg.pmat

1.5 PLearn Objects, Their Serialization and Specification

PLearn is first and foremost a C++ class library. PLearn also provides a mechanism
to serialize such objects to and from files (i.e. write a representation of an in-
memory object to a file, or later reload such a saved object from that file). PLearn
serialization supports both an ASCII human-readable format (plearn_ascii),
and a more efficient binary format (plearn_binary).

As a result of this capability, it is also possible to specify a PLearn object by simply
writing its ASCII serialized form by hand. This is basically what a .vmat file
contains: the ASCII serialised form of a C++ subclass of VMatrix.

For example, create a file selected_rows.vmat with the following content:

SelectRowsVMatrix(
source = AutoVMatrix( specification = "1d_reg.amat" ),
indices = [ 1 1 3 0 3 4],
inputsize = 1,
targetsize = 0,
weightsize = 1

);

The serialised form of most PLearn objects, as can be seen here, is:

ObjectName(
optionname = optionval
optionname = optionval
...

)

Note that in plearn_ascii format, in general, spaces, newlines, commas and
semicolons are ignored (any sequence of those is considered a single separator).
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There is typically a one to one correspondance between an object’s options (in its
serialised form) and the fields of the corresponding C++ object. A PLearn object
often has many options, but they always have a default value, so that there is no
need to explicitly set those for which the default value is fine.

The above .vmat specifies an object of type SelectRowsVMatrix, which is a
sort of vmat that will select desired rows from another “source” vmat. selected_rows.vmat
will thus be an altered view of 1d_reg.amat, for which we also change the val-
ues of inputsize, targetsize, weightsize.

valhalla:˜/PLearn/examples/Tutorial> plearn vmat info selected_rows.vmat
plearn 0.92.0 (Jun 22 2005 19:42:18)
6 x 2
inputsize: 1
targetsize: 0
weightsize: 1

valhalla:˜/PLearn/examples/Tutorial> plearn vmat cat selected_rows.vmat
plearn 0.92.0 (Jun 22 2005 19:42:18)
0.5 4
0.5 4
2 6
0 3
2 6
3 7.5

Help on any plearn object can be obtained, as usual, by invoking plearn help ob-
jectclass. This will output a commented serialised object, with all its build options
and their default value. This help is also available in online html form. For ex. try:

plearn help SelectRowsVMatrix

This makes for a good starting point for writing a .vmat (or .plearn), as you
can issue:

plearn help SelectRowsVMatrix > mymat.vmat

and then edit the file to your liking (removing unnecessary options that are to keep
their default value, etc...)
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.vmat is not the only file extension associated with specifications of PLearn ob-
jects in serialised form. Here are the other extensions you may encounter:

extension format description
.vmat specification of a subclass of VMatrix in plearn_ascii

serialization format (with rudimentary macro-processing)
.plearn specification of any PLearn object in plearn_ascii

format (with rudimentary macro-processing)
.psave serialized PLearn object in plearn_ascii or plearn_binary

format (does not undergo macro-explansion)
.pymat Python preprocessing code that generates the

plearn_ascii specification of a VMatrix subclass
.pyplearn Python preprocessing code that generates the

plearn_ascii specification of any PLearn object

While .vmat and .plearn support some rudimentary macro-processing, this
is deprecated in favor of the power of the Python preprocessing of .pymat and
.pyplearn files. We will get back to this later.

1.6 plearn Learner

The concept of a learning algorithm in PLearn is implemented through the PLearner class.
Conceptually a PLearner is an object that:

• can be trained using a training data set (which contains input and target)

• can then be used by computing outputs corresponding to new inputs

• can be tested on a test set (containing input and target) and report statistics
on some costs (ex: classification error rate).

• can be saved to and loaded from file (like any PLearn object)

The meaning and form of the output vector are learner-dependant, but in PLearn
we try to respect the following convention for standard tasks:

• regression: output is the predicted target (i.e. same dimension as terget)
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• classification: target is a scalar between 0 and nclasses-1; output is a vector
of length nclasses giving a score for each class (the higher, the more likely).

• density estimation: output is typically the log of the estimated density at
x (but this can be controlled by an option, if you want for ex. the density
instead of the log).

For ex. let us create a file linreg.plearn with the following content:

LinearRegressor(
weight_decay = 1e-6
)

LinearRegressor is a subclass of PLearner and as such, it can be trained, used,
tested with the plearn learner command:

valhalla:˜/PLearn/examples/Tutorial> plearn help learner
plearn 0.92.0 (Jun 22 2005 19:42:18)

*** Help for command ’learner’ ***
Allows to train, use and test a learner
learner train <learner_spec.plearn> <trainset.vmat> <trained_learner.psave>

-> Will train the specified learner on the specified trainset and save the resulting trained learner as
trained_learner.psave

learner test <trained_learner.psave> <testset.vmat> <cost.stats> [<outputs.pmat>] [<costs.pmat>]
-> Tests the specified learner on the testset. Will produce a cost.stats file (viewable with the plearn stats

command) and optionally saves individual outputs and costs

learner compute_outputs <trained_learner.psave> <test_inputs.vmat> <outputs.pmat> (or ’learner co’ as a shortcut)

learner compute_outputs_on_1D_grid <trained_learner.psave> <gridoutputs.pmat> <xmin> <xmax> <nx> (shortcut: learner cg1)
-> Computes output of learner on nx equally spaced points in range [xmin, xmax] and writes the list of (x,output)

in gridoutputs.pmat

learner compute_outputs_on_2D_grid <trained_learner.psave> <gridoutputs.pmat> <xmin> <xmax> <ymin> <ymax> <nx> <ny> (shortcut: learner cg2)
-> Computes output of learner on the regular 2d grid specified and writes the list of (x,y,output) in gridoutputs.pmat

learner compute_outputs_on_auto_grid <trained_learner.psave> <gridoutputs.pmat> <trainset.vmat> <nx> [<ny>] (shortcut: learner cg)
-> Automatically determines a bounding-box from the trainset (enlarged by 5%), and computes the output along a

regular 1D grid of <nx> points or a regular 2D grid of <nx>*<ny> points. (Note: you can also invoke command vmat
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bbox to determine the bounding-box by yourself, and then invoke learner cg1 or learner cg2 appropriately)

learner analyze_inputs <data.vmat> <results.pmat> <epsilon> <learner_1> ... <learner_n>
-> Analyze the influence of inputs of given learners. The output of each sample in the data VMatrix is computed

when each input is perturbed, so as to estimate the derivative of the output with respect to the input. This
is averaged over all samples and all learners so as to estimate the influence of each input. In the results.pmat
file, are stored the average, variance, min and max of the derivative for all inputs (and outputs).

The datasets do not need to be .vmat they can be any valid vmatrix (.amat .pmat .dmat)

To train this linear regressor on our data-set 1d_reg.amat and save the resulting
trained learner as linreg_trained.psave we issue the following command:

plearn learner train linreg.plearn 1d_reg.amat linreg_trained.psave

To get the predicions of the trained learner on new data that was not in the training
set, (for ex. x = 0.25, x = 1.5, x = 2.5) we can create a file 1d_reg_test.amat
containing

#size: 3 1
#: x
#sizes: 1 0 0
0.25
1.5
2.5

and issue the commands

valhalla:˜/PLearn/examples/Tutorial> plearn learner compute_outputs linreg_trained.psave 1d_reg_test.amat 1d_reg_test_outputs.pmat
plearn 0.92.0 (Jun 22 2005 19:42:18)
[---------------------------------------- Using learner (3) -----------------------------------------]
[....................................................................................................]

valhalla:˜/PLearn/examples/Tutorial> plearn vmat cat 1d_reg_test_outputs.pmat
plearn 0.92.0 (Jun 22 2005 19:42:18)
3.58836232959270118
5.3879309848394854
6.82758590903691243

We thus get the predictions output by the learner.
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To see the learnt parameters of the trained learner, we can examine the file linreg_trained.psave
:

*1 ->LinearRegressor(
include_bias = 1 ;
cholesky = 1 ;
weight_decay = 9.99999999999999955e-07 ;
output_learned_weights = 0 ;
weights = 2 1 [
3.22844859854334443
1.43965492419742724
]
;
AIC = -2.53047027031051597 ;
BIC = -2.6866951053368755 ;
resid_variance = 1 [ 0.0596271276504959716 ] ;
expdir = "" ;
stage = 0 ;
n_examples = 5 ;
inputsize = 1 ;
targetsize = 1 ;
weightsize = 0 ;
forget_when_training_set_changes = 0 ;
nstages = 1 ;
report_progress = 1 ;
verbosity = 1 ;
nservers = 0 )

We can see that there are many more options in the saved learner than what we
specified. In particular the weights option gives us the parameters tuned by the
learning (i.e. the regression weights).

For 1D regression problems such as this, we can easily display the predicted output
along the real line:

pyplot 1d_regression 1d_reg.amat linreg.plearn

This will train the given learner on the given training set, compute the output pre-
diction along the real line, and plot the result.
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1.7 A density estimation example

Let’s make a new data matrix spiral.vmat containing:

VMatrixFromDistribution(
distr = SpiralDistribution(),
# nsamples=10600,
nsamples=200,
inputsize=2,
targetsize=0,
weightsize=0);

valhalla:˜/PLearn/examples/Tutorial> plearn vmat view spiral.vmat

valhalla:˜/PLearn/examples/Tutorial> pyplot plot_2d spiral.vmat

Now let’s make parzen.plearn

ParzenWindow(
sigma_square = 0.06;
outputs_def = "d" ;
);

and check how well it estimates the density:

valhalla:˜/PLearn/examples/Tutorial> pyplot 2d_density spiral.vmat parzen.plearn

1.8 A classification example

See the older tutorial.2

Note that we can make a classification data set by issuing

pypoints 2d_classif.amat

1.9 Running a Full Experiment: PTester

The class PTester is used to wrap the action of running a complete experiment
in a single runnable PLearn object. The goals of this class are as follows:
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Specification of 
Statistics

Dataset
(amat, pmat, 
vmat, pymat)

PTester

PLearner

Splitter

Results of 
Experiment
(in expdir)

Figure 1.1: Relationship among the classes taking part in the experiment run
by PTester. The PLearner must actually be an instance of a class derived from
PLearner; likewise, the Splitter must be an instance of a class derived from Split-
ter. The desired statistics are specified as options of the PTester object, and the
experiment results are stored in the experiment directory.

• Take a dataset (either a .amat, .vmat, .pmat or .pymat) and split it into one or
more training and test sets. We shall denote the k-th such split as Split-k.

• For each split, the PTester trains an associated learner (which must be of
a class derived from PLearner) on the training set of the split.

• For each split, the PTester then tests the trained learner on the testset data.
Afterwards, it can compute performance statistics and report.

The relationship among the various parts is illustrated in Figure 1.1.

1.9.1 Process Underlying PTester

The process underlying PTester is illustrated in Figure 1.2.
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Figure 1.2: Process Underlying PTester
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1.9.2 Experiment Directory

PTester executes its experiment in a designated experiment directory (often ab-
breviated expdir, the name of the option used to specify it within the PTester
object.) This directory should be empty at the beginning of the experiment (if it
does not exist, it is created automatically); if it contains the results of a previous
experiment, PTester complains loudly and exits immediately.

Note that if you run your experiments from .pyplearn scripts, a synthetic ex-
periment directory of the form expdir_YYYY_MM_DD_HH:MM:SS is created
for you automatically, which pretty much guarantees uniqueness of the name.

1.9.3 Example

(See the .pyplearn tutorial.)

1.10 Python Preprocessing

See the pyplearn tutorial
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Chapter 2

Older Tutorial
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Figure 2.1: In red, the first class. In green, the second one. In blue, the analytic
decision boundary. The train examples are 0, the test ones +

2.1 Introduction

PLearn is an open source software for machine learning, with numerous features.
It can be used as an runnable software or as a library. This tutorial will help you to
discover what is PLearn and how to use it. I assume that:

• you have basic concepts in machine learning.

• you have basic concept in object programming.

• you have a PLearn binary that runs.

2.2 A basic classification problem

2.2.1 First steps

We consider the following classification problem. In a 2-D space, we have two
classes. The problem is represented on figure 2.1.
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The data are generated with a Matlab script, called task1.m1.The script generates
boundary.amat, train.amat, test.amat, and space.amat.

Now, let’s train a neural network on this task with PLearn.

We create the PLearn script, a kind of configuration file:

#!plearn

PTester(
# string: Path of this experiment’s directory in which to save all experiment results (will be created if it does not already exist)
expdir = "expdir-nnet";

# VMat: The dataset to use for training/testing (will be split according to what is specified in the testmethod)
dataset = AutoVMatrix(specification="UCI_pima-indians-diabetes all" inputsize = 8 targetsize = 1);

# TVec< string >: A list of global statistics we are interested in.
# These are strings of the form S1[S2[dataset.cost_name]] where:
# - dataset is train or test1 or test2 ... (train being
# the first dataset in a split, test1 the second, ...)
# - cost_name is one of the training or test cost names (depending on dataset) understood
# by the underlying learner (see its getTrainCostNames and getTestCostNames methods)
# - S1 and S2 are a statistic, i.e. one of: E (expectation), V(variance), MIN, MAX, STDDEV, ...
# S2 is computed over the samples of a given dataset split. S1 is over the splits.
statnames = [ ]
# TVec< TVec< string > >: A list of lists of masks. If provided, each of the lists is used to compose the statnames_processed.
# If not provided the statnames are those in the ’statnames’ list. See the class help for an example.
statmask = [ [ "test#1-2#" ] [ "*.E[stable_cross_entropy]" "*.E[binary_class_error]" ] [ "E[*]" ] ]
# PP< Splitter >: The splitter to use to generate one or several train/test pairs.
splitter = TrainTestSplitter(
test_fraction = .10
append_train = 1

) ;

# PP< PLearner >: The learner to train/test
learner =
NNet(

# int: number of hidden units in first hidden layer (0 means no hidden layer)
nhidden = 10 ;
# int: number of output units. This gives this learner its outputsize.

1provided in Plearn/examples, as all the other sources for this tutorial
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# It is typically of the same dimensionality as the target for regression problems
# But for classification problems where target is just the class number, noutputs is
# usually of dimensionality number of classes (as we want to output a score or probability
# vector, one per class)
noutputs = 1 ;
# double: global weight decay for all layers
weight_decay = 0.0 ;
# string: what transfer function to use for ouput layer?
# one of: tanh, sigmoid, exp, softplus, softmax, log_softmax
# or interval(<minval>,<maxval>), which stands for
# <minval>+(<maxval>-<minval>)*sigmoid(.).
# An empty string or "none" means no output transfer function
output_transfer_func = "sigmoid" ;
# Array< string >: a list of cost functions to use
# in the form "[ cf1; cf2; cf3; ... ]" where each function is one of:
# mse (for regression)
# mse_onehot (for classification)
# NLL (negative log likelihood -log(p[c]) for classification)
# class_error (classification error)
# binary_class_error (classification error for a 0-1 binary classifier)
# multiclass_error
# cross_entropy (for binary classification)
# stable_cross_entropy (more accurate backprop and possible regularization, for binary classification)
# margin_perceptron_cost (a hard version of the cross_entropy, uses the ’margin’ option)
# lift_output (not a real cost function, just the output for lift computation)
# The first function of the list will be used as
# the objective function to optimize
# (possibly with an added weight decay penalty)
cost_funcs = [ "stable_cross_entropy" "binary_class_error" ] ;
# PP< Optimizer >: specify the optimizer to use
optimizer =

GradientOptimizer(
# double: the initial learning rate
start_learning_rate = 0.05
# double: the learning rate decrease constant
decrease_constant = 0.001 ;

);
# int: how many samples to use to estimate the avergage gradient before updating the weights
# 0 is equivalent to specifying training_set->length()
batch_size = 0 ;
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# int: The stage until which train() should train this learner and return.
# The meaning of ’stage’ is learner-dependent, but for learners whose
# training is incremental (such as involving incremental optimization),
# it is typically synonym with the number of ’epochs’, i.e. the number
# of passages of the optimization process through the whole training set,
# since the last fresh initialisation.
nstages = 100 ;
# int: Level of verbosity. If 0 should not write anything on cerr.
# If >0 may write some info on the steps performed along the way.
# The level of details written should depend on this value.
verbosity = 10 ;
seed = 12345

);

)

We call this file NNnet.plearn.

Now we have to specify the dataset. In a classification problem, the dataset is a
set of examples and their associated classes. We have already created such a file
in Matlab, called train.amat. Now we have to specify to PLearn that the two first
columns of “train.amat” contain the data, and the last column the class label, which
is in −1, 1, corresponding to the output of a tanh.

All this tasks are made with the following file, called train.vmat:

AutoVMatrix(
specification = "train.amat"
inputsize = 2
targetsize = 1
weightsize = 0
)

Now, let’s train the network with the folllowing command:

plearn learner train NNet.plearn train.vmat final.psave

Then test on the original space:

plearn learner compute outputs final.psave space.amat out.pmat

We need two additionnals commands to view the result of the network with matlab:
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Figure 2.2: Analytic and learned boundary

plearn vmat convert out.pmat out.amat converts from a binary to
an ascci file.

tail +3 out.amat > result.mat removes meta-information at the be-
ginning of the file.

Then we execute the result task1.m script in Matlab to plot the result, as in figure
2.2.

2.2.2 What have we done?

NNet.plearn contains informations about the neural net. train.vmat contains infor-
mations about the the dataset.

PLearn is built with a direct help system. For example:

plearn help NNet

plearn help AutoVMatrix

plearn help GradientOptimizer

This commands gives you an accurate information.
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Here are the more important thing about PLearn.

PLearn is an object oriented software. The scripting language is object ori-
ented. “plearn help NameOfTheClass” gives you the corresponding informa-
tion

Note that a lot of others parameters exist for each classes but they have default
values.

2.3 A second example

We now consider a regression problem. We want to train a neural network to
predict a sinus.

First, we generate the data with the task2.m matlab file.

Then we perform the task within only one script, the following regression.plearn.

PTester(

learner = NNet
(
nhidden = 10 ;
noutputs = 1 ;
output_transfer_func = "";
hidden_transfer_func = "tanh" ;
cost_funcs = 1 [ mse ] ;
optimizer = GradientOptimizer(

start_learning_rate = .01;
decrease_constant = 0;
)

batch_size = 1 ;
initialization_method = "normal_sqrt" ;
nstages = 500 ;
verbosity = 3;
);

expdir = "tutorial_task2" ;

splitter = ExplicitSplitter(splitsets = 1 2 [
AutoVMatrix(
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specification = "reg_train.amat"
inputsize = 1
targetsize = 1
weightsize = 0

)
AutoVMatrix(

specification = "reg_test.amat"
inputsize = 1
targetsize = 1
weightsize = 0

)
]

) ;

statnames = ["E[E[train.mse]]" "E[E[test.mse]]" ];

);

Let’s run Plearn on this script: plearn regression.plearn

Then test on the original space: plearn learner compute outputs tutorial task2/Split0/final learner.psave
space2.amat out.pmat

We need two additionnals commands to view the result of the network with matlab:

plearn vmat convert out.pmat out.amat

tail +3 out.amat > result.mat

Let’s view the result with a matlab script, result task2.m:

2.3.1 What have we done?

We encapsulated the experiment in a powerful scriptable class called “PTester”.

The command plearn help PTester gives you the corresponding informa-
tion. Note that a lot of others parameters exist for PTester but they have default
values.

Furthermore, explore all the files that a PTester creates:

cd tutorial_task2/
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Figure 2.3: Analytic and learned function

ls
plearn vmat view split_stats.pmat
plearn vmat view global_stats.pmat
cd Split0
ls
less test1_stats.psave
less final_learner.psave

2.4 Conclusion

This short tutorial shows a small part of PLearn. Continue by yourself and have a
nice Plearn time!
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Chapter 3

Basics

3.1 The plearn Program

The plearn program is to be found in PLearn/commands and is used to

• either run a .plearn script

• or run a plearn command

Plearn scripts are essentially text files ending in .plearn that describe a learning
experiment to be performed.

Plearn commands are typically little tools that allow you to manipulate or examine
datasets or result files, but they can also launch more evolved interactive programs.

The plearn program has a simple yet very useful command-line help system.
Type plearn help to have an overview.

3.2 Essential Commmands

The basic plearn command is plearn script.plearn.

The wisest command is plearn help ClassFoo.

But there are others:

plearn vmat view bidule.vmat to view any .vmat, .pmat or .amat file.

33
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plearn vmat convert truc.pmat truc.amat to convert a specific data
format in an other.

plearn learner train, plearn learner test, plearn learner
computes output provide useful shortcuts to avoid creating long .plearn script
(cf. Tutorial).

If you are interested in more information,

plearn help commands
plearn help vmat
plearn help learner

3.3 Essential Classes

Here is a list of essential classes.

plearn help AutoVMatrix
plearn help PTester
plearn help Optimizer
--- plearn help GradientOptimizer
plearn help PLearner
--- plearn help NNet

3.4 The .plearn Object File Format

PLearn uses the same simple file format, both to describe experiments to be per-
formed (in .plearn scripts), and to save and restore objects such as a trained neural-
network (in .psave or .spec files).

Essentially these files contain the specifications of PLearn objects.

This is a typical .plearn script:

PTester(

learner = NNet
(
nhidden = 10 ;
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noutputs = 1 ;
output_transfer_func = "";
hidden_transfer_func = "tanh" ;
cost_funcs = 1 [ mse ] ;
optimizer = GradientOptimizer(

start_learning_rate = .01;
decrease_constant = 0;
)

batch_size = 1 ;
initialization_method = "normal_sqrt" ;
nstages = 500 ;
verbosity = 3;
);

expdir = "tutorial_task2" ;

splitter = ExplicitSplitter(splitsets = 1 2 [
AutoVMatrix(

specification = "reg_train.amat"
inputsize = 1
targetsize = 1
weightsize = 0

)
AutoVMatrix(

specification = "reg_test.amat"
inputsize = 1
targetsize = 1
weightsize = 0

)
]

) ;

statnames = ["E[E[train.mse]]" "E[E[test.mse]]" ];

);

Objects are specified by the name of their type, followed by a list of option = value
pairs.
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Any sequence of spaces, newlines, tabs, comma, or semicolon is considered a sep-
arator. So colons and semicolons are just there to ease the reading, spaces would
work just as well.

Comments start with a # and continue until the end of the line.

The following table sums up the formats that can be used for the values of an option
of a given type

Table 3.1: Ascii format for given data-types
Data type Format example
Any subclass of Object ObjectType( option1 = value1, option2 = value2, ... )
integer -365
floating number -3.2e-4
string "any string"
character ’x’
1D sequences [ 10, 20, 30, 40 ]

[ 10 20 30 40 ]
4 [ 10 20 30 40 ]
4 [ "aa", "bb", "cc", "dd" ]

2D matrices 3 2 [ 1 2 10 20 30 40 ]
pairs (1, "one")
tuples (1, "one", 3.5)
maps { 1:"one", 2 :"two", 3: "three" }
pointers to new object *1 -> ObjType( ... )
reference to pointer *1;

Note for strings: unquoted strings, while not recommended are also supported.
They are read until a separator (blank, comma, . . . ) or opening or closing symbol
(parenthesis, bracket, . . . ) is met.

3.5 The .amat File Format

Ascii data file.

The new format is as follows:

• The size of the matrix is indicated by a line starting with #size: and fol-
lowed by length (number of rows) and width (number of columns).



3.6. THE .PMAT FILE FORMAT 37

• An optional line starting with #sizes: gives the inputsize, targetsize,
weightsize, extrasize.

• An optional line starting with #: gives the names of the fields (the columns)

• Regular comment lines start with a single #.

ex:

# Characteristics of a population of 534
#size: 534 3
#sizes: 2 1 0 0
#: age height weight

33 1.72 71
25 1.80 80

3.6 The .pmat File Format

PLearn native binary format.

3.7 The .vmat File Format

File containing a description of a virtual dataset.

A .vmat contains the specification of a subclass of VMatrix, in plearn serialization
format.

AutoVMatrix(
specification = "train.amat"
inputsize = 2
targetsize = 1
weightsize = 0
)
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Chapter 4

Howto

4.1 How to Build a Neural Network?

You should have learned with the tutorial basic PLearn neural network. The class
used is NNet.

Here is a basic NNet script object:

NNet(
nhidden = 10 ;
noutputs = 1 ;
output_transfer_func = "";
hidden_transfer_func = "tanh" ;
cost_funcs = 1 [ mse ] ;
optimizer = GradientOptimizer(

start_learning_rate = .01;
decrease_constant = 0;
)

batch_size = 1 ;
initialization_method = "normal_sqrt" ;
nstages = 500 ;
);

39
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Chapter 5

Advanced

5.1 The .dmat/ Format

Directory containing compressed data.

Contains:

• 0.data, 1.data, 2.data

• indexfile

• fieldnames

5.2 The VPL language

VPL (vmat processing language) is a home brewed mini-language in postfix nota-
tion. As of today, it is used is the {PRE,POST}FILTERING and PROCESSING
sections of a .vmat file. It can handle reals as well as dates (format is: CYYMMDD,
where C is 0 (1900-1999) or 1 (2000-2099). The language will not be extensively
described here. For more info, you can look at plearn/vmat/VMatLanguage.*.

A VPL code snippet is always applied to the row of a VMatrix, and can only refer to
data of that row. The result of the execution will be a vector, which is the execution
stack at code termination.

When you use VPL in a PROCESSING section, each field you declare must have
its associated fieldname declaration. The compiler will ensure that the size of the
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result vector and the number of declared fieldnames match. This doesn’t apply in
the filtering sections since the result is always a single value.

To declare a fieldname, use a colon with the name immediately after. To batch-
declare fieldnames, use eg.:myfield:1:10. This will declare fields myfield1 up to
myfield10.

There are two notations to refer to a field value: the @ symbol followed by the
fieldname, or % followed by the field number.

To batch-copy fields, use the following syntax: [field1:fieldn] (fields can be in @
or % notation).

Here’s a real-life example:

@lease_indicator 88 == 1 0 ifelse :lease_indicator
@rate_class 1 - 7 onehot :rate_class:0:6
@collision_deductible { 2->1; 4->2; 5->3; 6->4; 7->5;
[8 8]->6; MISSING->0; OTHER->0 }
7 onehot :collision_deductible:0:6
@roadstar_indicator 89 == 1 0 ifelse :roadstar_indicator

5.3 The Metadata Directory

A metadata directory is associated with each dataset. For the datasets correspond-
ing to a file (.amat, .pmat, .vmat) or directory (.dmat/) the associated
metadata directory is obtained by appending .metadata/ to the file or directory
name.

A metadata directory will typically contain the following cache directories to avoid
recomputing costly things

• STATSCACHE/ contains cached statistics

• MODELCACHE/<classname>/ contains any pertinent cached data com-
puted on this dataset by objects of class <classname>

In addition, the .metadata directory associated with a .vmat may contain

• precomputed.dmat/ or precomputed.pmat if the .vmat descrip-
tion specified <PRECOMPUTE>
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• source.index containing row indexes in the source (resulting from <PREFILTER>,
<POSTFILTER>, <SHUFFLE>)
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Chapter 6

Appendix A: File Formats

6.1 The .plearn and .psave Formats

6.1.1 Generalities on mixing ascii and binary

The following characters are in many cases skipped before reading any element:
space, tab, newline, carriage-return, comma and semicolon. They are essentially
ignored. Binary serialized things should always start with a non-printable ascii
character.

6.1.2 TVec and TMat

TVec and TMat will be serialized differently depending on the implicit storage flag
of the PStream they are being written to.

If implicit storage is set, then serialization won’t write the actual whole structure
of the TVec or TMat, but will only save the size information and elements as a 1D
or 2D sequence (see 6.1.4 and 6.1.5), ex:

4 [ 1.2 3.5 2.8 5.2 ]

3 2 [
0.1 0.2
0.3 0.4
0.5 0.6
]

45
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If implicit storage is false, then the complete structure of the TVec or TMat with
the pointer to its storage (possibly shared with others) will be written explicitly.
This corresponds to true, deep serialization.

Ex:

TVec( 4 0

*1->Storage(4 [ 1.2 3.5 2.8 5.2 ]) )

TMat( 3 2 2 0

*2->Storage(6 [ 0.1 0.2 0.3 0.4 0.5 0.6 ] ) )

For TVec, we have length offset followed by the storage pointer. For TMat, we
have length width mod offset followed by the storage pointer.

This allows to keep structure. For example, if we had a submatrix viewing the
second column of the previous TMat, we would have:

TMat( 3 1 2 1

*2 )

6.1.3 Binary PLearn format for base types

To allow mixing of ascii and binary in a file, a non-printable ascii character is used
as a one-byte header to identify any binary portion. In Table 6.1 we give the header
codes for all basic types

Note that char is considered to be the same as signed char, and long is considered
to be the same as int, i.e.: 4-bytes long, which is the case on current architectures.

• booleans are represented the same way in binary mode as in ascii mode: with
the character 0 (for false) or 1 (for true). There is no header byte.

• A date (PDate) is written with the header-byte 0xFE followed by a binary
serialized double (with appropriate double header) representing the date in
YYYYMMDD format.

6.1.4 Ascii PLearn format for a sequence

We consider both one-dimensional sequences ( array, vector, . . . ) which only have
a length, and two-dimensional sequences which have a length and a width.
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Table 6.1: Binary-header codes for base types
Base type Byte order Header byte Number of bytes to follow
char - 0x01 1
signed char - 0x01 1
unsigned char - 0x02 1
short little-endian 0x03 2
short big-endian 0x04 2
unsigned short little-endian 0x05 2
unsigned short big-endian 0x06 2
int little-endian 0x07 4
int big-endian 0x08 4
unsigned int little-endian 0x0B 4
unsigned int big-endian 0x0C 4
long little-endian 0x07 4
long big-endian 0x08 4
unsigned long little-endian 0x0B 4
unsigned long big-endian 0x0C 4
float little-endian 0x0E 4
float big-endian 0x0F 4
double little-endian 0x10 8
double big-endian 0x11 8
PRInt64 little-endian 0x16 4
PRInt64 big-endian 0x17 4
PRUint64 little-endian 0x18 4
PRUint64 big-endian 0x19 4

Ascii-serialized one-dimensional sequences will have the following format:

length [ ... ... ... ]

with the elements of the sequence separated by a single space.

However, on reading, several variations of this format are recognized:

• The elements may be separated by any number of blanks (space, tab, new-
line) and/or commas or semicolons.

• The length may be omitted

Ascii-serialized two-dimensional sequences will have the following format:
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length width [

... ... ...

... ... ...
]

with the elements of each row separated by a tab, and the rows separated by a
newline.

However on reading, blanks, commas and semi-colons between elements are com-
pletely ignored (skipped), so you may format the data as you wish.

2D Sequences are used exclusively for TMats. Notice that it’s also possible to
make a 1D sequence of 1D sequences, but that’s different from a 2D sequence.

6.1.5 Binary PLearn format for a sequence

We consider both one-dimensional sequences ( array, vector, . . . ) which only have
a length, and two-dimensional sequences which have a length and a width.

The following table gives the corresponding header-byte:

Type of sequence byte-order Header byte
one-dimensional little-endian 0x12
one-dimensional big-endian 0x13
two-dimensional little-endian 0x14
two-dimensional big-endian 0x15

All that follows is supposed to be in the byte-order implied by the header-byte.

The first header-byte is followed by an element-type byte giving the nature of the
elements in the sequence. It can be either the byte identifying a base-type given in
Table 6.1 (the endianness must match), or ’0’ = 0x30 to indicate a sequence of
booleans (1 byte per boolean) or 0xFF to indicate a generic sequence.

The header bytes are followed by one (for 1D sequences) or two (for 2D) 4-byte
int to indicate the length (and possibly width) of the sequence. So the total header
size for sequences is 6 bytes for 1D sequences and 10 bytes for 2D sequences.

This header is followed by a dump of the elements of the sequence (in row-major
mode for 2D). Notice that a sequence of a base type, may be saved as a generic
sequence (with the element-type byte 0xFF)
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Type of sequence Header byte Followed by
Generic on little-endian 0x12 size as 4-byte little-endian int,

then binary serialization of the elements
Generic on big-endian 0x13 size as 4-byte big-endian int,

then binary serialization of the elements
Sequence of a base-type 0x14 size as 4-byte little-endian int,
on little-endian base-type given by header byte in previous

table, followed by binary dump of elements
Sequence of a base-type 0x15 size as 4-byte big-endian int,
on big-endian base-type given by header byte in previous

table, followed by binary dump of elements
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License

This document is covered by the license appearing after the title page.

The PLearn software library and tools described in this document are distributed
under the following BSD-type license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the authors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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