
PLearn Programmer’s Tools Guide
The tools that make the programmer’s life simpler

ii

Copyright © 2002 Pascal Vincent

Permission is granted to copy and distribute this document in any medium, with
or without modification, provided that the following conditions are met:

1. Modified versions must give fair credit to all authors.

2. Modified versions may not be written with the aim to discredit, misrepresent,
or otherwise taint the reputation of any of the above authors.

3. Modified versions must retain the above copyright notice, and append to it
the names of the authors of the modifications, together with the years the
modifications were written.

4. Modified versions must retain this list of conditions unaltered, and may not
impose any further restrictions.

Contents

Table of contents iii

1 PLearn scripts 1

1.1 pymake . 1

1.2 pyskeleton . 1

1.3 perlgrep . 1

1.4 search-replace . 1

1.5 pytransform . 1

1.6 cvschangeroot . 1

2 The PLearn test-suite 3

3 The speed benchmark suite 9

4 External tools 11

4.1 cvs . 11

4.2 valgrind . 11

4.3 doxygen . 11

4.4 latex2html . 11

4.5 mpi . 11

iii

iv CONTENTS

Chapter 1

PLearn scripts

1.1 pymake

1.2 pyskeleton

1.3 perlgrep

1.4 search-replace

1.5 pytransform

1.6 cvschangeroot

1

2 CHAPTER 1. PLEARN SCRIPTS

Chapter 2

The PLearn test-suite

PLearn test-suite is still in development by its author Christian Dorion, but
it is already usable and should probably be used by anyone who wants to
ensure his code does not get broken accidentally.

Each test is a program or a PLearn script, which process some files (such
as datasets), and outputs something to the standard output and error, and
possibly to other files. The goal of the test-suite is to compare these results,
run with a recently-compiled copy of PLearn, to the reference results created
by the first run of the test.

The following instructions are a step-by-step example, for a test named
PL Var utils, testing the Var class. It is not officially supported by Chris-
tian, and may not work anymore on a later version of the test-suite.

In addition, those who already know of the test-suite may find the PLearn
object class PTest useful to write C++ tests that do not make the test-suite
explode both in size and execution time (in addition to provide understand-
able floating numbers diff through the PLearn diff command applied on
objects).

1. If it does not already exist, create the appropriate test directory, add
this directory to the Subversion repository, and move into it:

$ mkdir ${PLEARNDIR}/plearn/var/test

$ svn add ${PLEARNDIR}/plearn/var/test

$ cd ${PLEARNDIR}/plearn/var/test

2. [Optional] If your test relies on more than a couple of custom files

3

4 CHAPTER 2. THE PLEARN TEST-SUITE

(data files, scripts, ...), better create its own directory:

$ mkdir Var_utils

$ svn add Var_utils

$ cd Var_utils

3. If it does not already exist, create a template pytest.config file:

$ pytest add

4. There are mainly two kinds of tests. If a simple .plearn or .pyplearn
script is enough to run the test (e.g., if you plan to test a new PLearner
class), go to step 14. If you need to create C++ code to test some
specific functions, go on to step 5.

5. Create a PTest subclass template:

$ pyskeleton PTest VarUtilsTest

6. Edit the resulting files (e.g., VarUtilsTest.h and VarUtilsTest.cc):

• fill the PLEARN IMPLEMENT OBJECT macro help:

PLEARN_IMPLEMENT_OBJECT(

arUtilsTest,

"Test various functions in Var_utils",

""

);

• write your actual test code in the perform() method

• store the test results, you can either:

(a) display them (using the pout or perr PStreams, or the PLearn
logging system):

// In VarUtilsTest::perform

pout << my_function(x) << endl;

MAND_LOG << my_function(x) << endl;

(b) store them in your PTest object options (this requires a little
more work, but is actually easier to understand when the test
fails):

5

// In VarUtilsTest.h

map<string, Vec> vec_results;

// In VarUtilsTest::declareOptions

declareOption(ol, "vec_results",

&VarUtilsTest::vec_results,

OptionBase::learntoption,

"Test Vec results.");

// In VarUtilsTest::perform

vec_results["my_function"] = my_function(x);

(c) remember that the text (and PLearn binary-formatted) files
that might be output by the program are also compared (no
need to output them to cout).

7. Once your code compiles and is ready to be tested, add your new PTest
in PLearn/commands/plearn tests inc.h:

#include <plearn/var/test/VarUtilsTest.h>

8. Edit your pytest.config file to specify how your test is supposed to
be run. The name of your test should begin by “PL ” if it is a normal
PLearn test.

Typically you will run plearn tests, on a .plearn or .pyplearn

script (this script will describe one or more objects of your PTest
subclass, with its specific options):

Test(

name = "PL_Var_util",

description = "Test various functions in Var_utils",

program = GlobalCompilableProgram(

name = "plearn_tests",

compiler = "pymake",

compile_options = ""

),

arguments = "varutils_test.plearn",

resources = ["varutils_test.plearn"],

precision = 1e-06,

disabled = False

)

But if your PTest object does not need extra options, you can save
the use of a script:

6 CHAPTER 2. THE PLEARN TEST-SUITE

Test(

name = "PL_Var_util",

description = "Test various functions in Var_utils",

program = GlobalCompilableProgram(

name = "plearn",

compiler = "pymake",

compile_options = ""

),

arguments = "PLEARNDIR:scripts/command_line_object.plearn " \

"’object=VarUtilsTest()’",

resources = [],

precision = 1e-06,

disabled = False

)

9. [Optional] For debug purpose, you may temporarily use a copy (say
plearn mytests) of plearn tests in pytest.config, and also com-
ment out all tests but your own test in plearn mytests inc.h. This
will make compilation faster when debugging your test. Setting compile options

to -opt will also probably speed up the link time.

10. Run your test to generate results. Check everything is fine in the
generated .pytest/expected results hidden directory. If it is not,
fix your code. Do this until you are happy with the results.

$ pytest results -n PL_Var_util

11. If you had made any of the actions described in optional step 9, revert
back to the standard test configuration.

12. Add your specific files to version control:

$ svn add VarUtilsTest.h VarUtilsTest.cc

13. Go to step 19.

14. Write your .plearn or .pyplearn script, and make sure it runs smoothly.

15. Once you are confident it works fine, remove all the data that was
generated while running it (the script must generate data files, or
output to cout or cerr, otherwise it is useless).

7

16. Edit your pytest.config file to specify how your test is to be run:

Test(

name = "PL_Var_util",

description = "Test various functions in Var_utils",

program = GlobalCompilableProgram(

name = "plearn",

compiler = "pymake",

compile_options = ""

),

arguments = "varutils_test.plearn",

resources = ["varutils_test.plearn"],

precision = 1e-06,

disabled = False

)

17. Run your test to generate results. Check everything is fine in the
generated .pytest/expected results hidden directory. If it is not,
fix your script. Do this until you are happy with the results.

$ pytest results -n PL_Var_util

18. Add your specific files to version control:

$ svn add varutils_test.plearn

19. Check that your test works fine:

$ pytest run

20. Confirm that the results obtained are correct for the current test. This
will svn add the result files, and put the svn:ignore property on some
files, but nothing will be committed yet.

$ pytest confirm

21. Do a svn status to check what files have been generated but should
be ignored by version control, and ignore them:

$ svn propedit svn:ignore .pytest

8 CHAPTER 2. THE PLEARN TEST-SUITE

And in the editor it opens, type:

*.compilation_log

run_results

22. Assuming your test passes correctly, it is ready for commit:

$ cd ${PLEARNDIR}

$ svn status <-- to check which files you need to commit

$ svn commit commands/plearn_tests_inc.h plearn/var/test \

-m "New test: VarUtilsTest"

Chapter 3

The speed benchmark suite

9

10 CHAPTER 3. THE SPEED BENCHMARK SUITE

Chapter 4

External tools

4.1 cvs

4.2 valgrind

4.3 doxygen

4.4 latex2html

4.5 mpi

11

12 CHAPTER 4. EXTERNAL TOOLS

License

This document is covered by the license appearing after the title page.

The PLearn software library and tools described in this document are dis-
tributed under the following BSD-type license:

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the authors may not be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN

NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

13

14 CHAPTER 4. EXTERNAL TOOLS

	Table of contents
	PLearn scripts
	pymake
	pyskeleton
	perlgrep
	search-replace
	pytransform
	cvschangeroot

	The PLearn test-suite
	The speed benchmark suite
	External tools
	cvs
	valgrind
	doxygen
	latex2html
	mpi

