
PLearn Programmer’s Guide
A programmer’s view of the Plearn C++ Machine-Learning Library

and tools

August 3, 2022

ii

Copyright © 1998-2002 Pascal Vincent, Yoshua Bengio
Copyright © 2004 Martin Monperrus
Copyright © 2007 Hugo Larochelle

Permission is granted to copy and distribute this document in any medium, with or without
modification, provided that the following conditions are met:

1. Modified versions must give fair credit to all authors.

2. Modified versions may not be written with the aim to discredit, misrepresent, or
otherwise taint the reputation of any of the above authors.

3. Modified versions must retain the above copyright notice, and append to it the names
of the authors of the modifications, together with the years the modifications were
written.

4. Modified versions must retain this list of conditions unaltered, and may not impose
any further restrictions.

Contents

Table of contents iii

1 Overview of PLearn 1

1.1 Introduction . 1

1.2 Additional tools for developers . 2

2 Basics 3

2.1 PLearn for Matrix-Vectors Operations . 3

2.1.1 Creation and Basic Manipulations 3

2.1.2 Mathematical Manipulations . 8

2.1.3 Loading and saving . 9

2.2 How to create a PLearner? . 10

2.2.1 What? . 10

2.2.2 Where? . 11

2.2.3 How? . 11

2.2.4 And now? . 21

2.2.5 A build () that works in every situation 21

2.2.6 Useful members and methods defined in PLearner class 22

2.2.7 Datasets . 22

2.2.8 Testing phase . 23

2.2.9 How to get the dataset? . 23

2.2.10 How to manage the dataset? . 23

2.2.11 If you need gradients on a cost function... 23

3 Intermediate 25

3.1 Low-level concepts . 25

iii

iv CONTENTS

3.1.1 Important compilation flags . 25

3.1.2 Smart Pointers . 25

3.2 How to subclass a PLearn Object . 28

3.2.1 Object . 28

3.2.2 Creating a basic class deriving from Object 28

3.2.3 Setting option fields and calling build() 29

3.2.4 A generic way of setting options from “outside” 30

3.2.5 Building an object from its specification in a file 31

3.2.6 Human description versus saved object 33

3.3 Matrix-Vectors Operations with Gradients 34

3.3.1 Introduction to Var . 34

3.3.2 Creating . 39

3.3.3 Manipulating . 39

3.3.4 Loading and saving . 40

3.3.5 Func . 41

3.4 Online Learning . 43

3.4.1 OnlineLearningModule . 43

4 Advanced 45

4.1 RandomVar . 45

4.2 Function-like types . 45

4.2.1 Ker . 45

4.2.2 CostFunc . 45

4.2.3 StatsIt . 45

4.3 Optimizers . 45

4.4 Miscalleanous utilities . 45

5 Managing software growth 47

5.1 A few words on the build system . 48

5.2 How to limit compilation and link dependencies 49

5.2.1 Compilation dependency versus link dependency 49

5.2.2 How dependencies tend to creep in, and ways around them 49

5.3 Regarding external library dependencies . 51

5.4 Evolving software in a backward-compatible way 51

CONTENTS v

6 PLearn coding guidelines and philosophy 53

6.1 A few words on C++ . 53

6.2 Design goals and priorities . 54

6.3 Usage of C++ features in PLearn . 54

6.4 Usage of the C++ standard library in PLearn 57

6.5 Naming conventions . 58

6.6 Final word . 59

7 Debugging 61

7.1 Compilation problems . 61

7.1.1 Frequently encountered compilation errors 62

7.2 Linking problems . 62

7.3 Clean runtime errors . 62

7.4 Dirty runtime errors . 63

vi CONTENTS

Chapter 1

Overview of PLearn

1.1 Introduction

Machine Learning algorithms are usually described in scientific papers in a standard math-
ematical formulation, often framed as an optimization of a given cost function. PLearn is
a C++ library that uses the object-oriented and operator overloading capabilities of the
C++ language to allow, among other things, to express cost functions and their optimiza-
tion as a standard C++ program, in a declarative manner that is as close as possible to
their mathematical formalization.

Most neural-network and general machine-learning simulation environments define their
own scripting language. While it is very tempting for every computer-scientist to craft his
own language, creating a complete, clear, efficient and bug-free language is a horrendous
task, so this is how things usually go: one starts bulding a simple scripting syntax (typically
lisp-like because it’s easy to parse) to specify simple experiments. Quickly it appears too
limited, and it may grow to include loops, functions, data structures, etc. Eventually it
ends up including some sort of support for object-oriented programming, and finally for
efficiency you want it to be compiled rather than interpreted! In the end, you end up with
a huge mess of a system that was not designed to grow that much from the beginning,
and which is often impossible to comprehend and maintain for anybody but its author.
The end-result might sometimes be impressive, but at the cost of a lot of efforts diverted
from your actual research. While C++ is far from being the perfect language, it is very
powerful, can be both very expressive and generate highly efficient code, and most of all it
has the immense advantage of being developed and well-supported by worldwide teams of
dedicated and competent people...

When providing the correct type abstractions, C++ can be an expressive-enough language
to directly serve as a highly customizable, extensible and efficient “scripting language” for
designing and running even the most demanding experiments in machine-learning research
and development. So this is what this library is all about: providing the right type abstrac-
tions. What originally got me started on this project was the desire to be able to optimize
a complex cost function by just expressing it in a declarative way as close as possible to
the mathematical formulation. This lead to the original implementation of the Var class.
Since then PLearn has grown to include many other useful types and abstractions.

1

2 CHAPTER 1. OVERVIEW OF PLEARN

While PLearn has been successfully used by several people for over a year, it is still very
much work in progress. As its primary use is for our own research, we did not want to
carve it in stone: thus future versions may look quite different from this one, as we are still
reworking the class hierarchy. But it is nevertheless already very usable, so feel free to play
around and experiment with it!

Probably the biggest problem, like with many projects of this kind, is the cruel lack of
documentation. This manual will attempt to give you a high-level understanding of the
basic concepts, but to work out the details, you’ll have to look at the actual code. Also, to
fully use the potential of this library, you are expected to be somewhat comfortable with
the C++ language.

Have fun!

Pascal

1.2 Additional tools for developers

In addition, if you wish to develop new learning algorithms, or otherwise contribute to the
librery, the following tools will be useful:

• ssh for write access to the SourceForge CVS repository.

• gdb for basic debugging (or a better debugger if you have one!)

• valgrind a wonderful free tool for memory-bug hunting.

• python for running python scripts, as well as the PLearn build system

• perl for running perl scripts

• LaTeX, pdflatex, dvips, latex2html, doxygen to re-generate the documentation.

Chapter 2

Basics

2.1 PLearn for Matrix-Vectors Operations

PLearn has its own vector and matrix data structures. The files PLearn/plearn/math/TVec {decl,math}.h
contain the declaration and implementation of the vector class templateTVec, and the ma-
trix class template TMat can be found in files PLearn/plearn/math/TMat {decl,math}.h.

2.1.1 Creation and Basic Manipulations

The PLearn vector and matrix data structures are easy to instantiate and support many
useful basic operations, such as subvector and submatrix access.

Here is a concrete example of how to use these data structures. The data type Vec and
Mat refer to the TVec<real> and TMat<real> classes, where real is a macro corresponding
either to double or float, depending on the compilation options used.

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

int main(int argc, char** argv)

{

// Example use of a ‘real’ variable

// a compilation option makes it either a double or a float

// Please don’t use double nor float

real a=15;

cout<<"a="<<a<<endl;

// Output:

// a=15

// Vector creation

Vec b(3);

b[0] = 2;

3

4 CHAPTER 2. BASICS

b[1] = 42;

b[2] = 21;

cout<<"b="<<b<<endl;

cout<<"b.length()="<<b.length()<<endl;

// Output:

// b=2 42 21

// b.length()=3

// Vector manipulations:

// Subvector access of the last two elements (not a copy!!!)

Vec b3 = b.subVec(1,2);

cout<<"b3="<<b3<<endl;

// Output:

// b3=42 21

// Concatenation

Vec b4 = concat(b,b);

cout<<"b4="<<b4<<endl;

// Output:

// b4=2 42 21 2 42 21

// Note: "=" operator does not copy!!!

Vec b5 = b4;

b5[1] = 100000;

cout<<"b4="<<b4<<endl;

cout<<"b5="<<b5<<endl;

// Output:

// b4=2 100000 21 2 42 21

// b5=2 100000 21 2 42 21

// Copy

b5 = b4.copy();

b5[1]=1;

cout<<"b4="<<b4<<endl;

cout<<"b5="<<b5<<endl;

// Output:

// b4=2 100000 21 2 42 21

// b5=2 1 21 2 42 21

// Fill in one element

Vec b6(b4.length());

b6.fill(3);

cout<<"b6="<<b6<<endl;

// Output:

2.1. PLEARN FOR MATRIX-VECTORS OPERATIONS 5

// b6=3 3 3 3 3 3

// Fill in elements of another vector

b6 << b4;

cout<<"b6="<<b6<<endl;

// Output:

// b6=2 100000 21 2 42 21

// Clear

b6.clear();

cout<<"b6="<<b6<<endl;

// Output:

// b6=0 0 0 0 0 0

// Resize

b4.resize(7);

b4[6] = 6;

cout<<"b4="<<b4<<endl;

// Output:

// b4=2 100000 21 2 42 21 6

b4.resize(4);

cout<<"b4="<<b4<<endl;

// Output:

// b4=2 100000 21 2

// Matrix creation :

Mat c(3,2);

c(1,1)=1.1;

c(1,0)=4;

c(2,0)=5;

c(0,1)=-73.2;

c(0,0)=78;

c(2,1)=5.32e-2;

cout<<"c=\n"<<c<<endl;

cout<<"c.length()="<<c.length()<<endl;

cout<<"c.width()="<<c.width()<<endl;

// Output:

// c=

// 78 -73.2

// 4 1.1

// 5 0.0532

//

// c.length()=3

// c.width()=2

6 CHAPTER 2. BASICS

// Matrix manipulation:

// Submatrix access (not a copy!!!)...

// ... of the last two rows and first column

Mat c3 = c.subMat(1,0,2,1);

cout<<"c3=\n"<<c3<<endl;

// Output:

// c3=

// 4

// 5

// ... of the second column

Mat c4 = c.column(1);

cout<<"c4=\n"<<c4<<endl;

// Output:

// c4=

// -73.2

// 1.1

// 0.0532

// ... of the third row

Mat c5 = c.row(2);

cout<<"c5=\n"<<c5<<endl;

// Output:

// c5=

// 5 0.0532

// .. of the third row, as a vector

Vec b7 = c(2);

cout<<"b7="<<b7<<endl;

// Output:

// b7=5 0.0532

// Note: "=" operator does not copy!!!

Mat c6 = c;

c6(1,1) = 100000;

cout<<"c=\n"<<c<<endl;

cout<<"c6=\n"<<c6<<endl;

// Output:

// c=

// 78 -73.2

// 4 100000

// 5 0.0532

//

// c6=

// 78 -73.2

2.1. PLEARN FOR MATRIX-VECTORS OPERATIONS 7

// 4 100000

// 5 0.0532

// Copy

c6 = c.copy();

c6(1,1) = 1;

cout<<"c=\n"<<c<<endl;

cout<<"c6=\n"<<c6<<endl;

// Output:

// c=

// 78 -73.2

// 4 100000

// 5 0.0532

//

// c6=

// 78 -73.2

// 4 1

// 5 0.0532

// Fill in one element

Mat c7(c.length(),c.width());

c7.fill(3);

cout<<"c7=\n"<<c7<<endl;

// Output:

// c7=

// 3 3

// 3 3

// 3 3

// Fill in elements of another matrix

c7 << c;

cout<<"c7=\n"<<c7<<endl;

// Output:

// c7=

// 78 -73.2

// 4 100000

// 5 0.0532

// Fill in a row of another matrix

c7(2) << c(1);

cout<<"c7=\n"<<c7<<endl;

// Output:

// c7=

// 78 -73.2

// 4 100000

// 5 0.0532

8 CHAPTER 2. BASICS

// Clear

c7.clear();

cout<<"c7=\n"<<c7<<endl;

// Output:

// c7=

// 0 0

// 0 0

// 0 0

// Resize

c7.resize(4,4);

c7.subMat(0,2,3,2)<<c.subMat(0,0,3,2);

c7(3,0)=0.01;

c7(3,1)=0.02;

c7(3,2)=0.03;

c7(3,3)=0.04;

cout<<"c7=\n"<<c7<<endl;

// Output:

// c7=

// 0 0 78 -73.2

// 0 0 4 100000

// 0 0 5 0.0532

// 0.01 0.02 0.03 0.04

c7.resize(2,3);

cout<<"c7=\n"<<c7<<endl;

// Output:

// c7=

// 0 0 78

// 0 0 4

return 0;

}

For other useful methods for TVec and TMat and more details on their implementation, see
files PLearn/plearn/math/TVec {decl,math}.h and PLearn/plearn/math/TMat {decl,math}.h

2.1.2 Mathematical Manipulations

Though you might want to implement certain mathematical functions or operators yourself,
many mathematical manipulations for TVec and TMat are already implemented in PLearn.

In PLearn/plearn/math/TMat maths impl.h, many mathematical operators, such as +, -,
*, /, +=, -=, *= and /= are already overloaded. When using +, -, * or /, a new vector/matrix
is created as the result of the operation, and when using +=, -=, *=, /=, the operand on

2.1. PLEARN FOR MATRIX-VECTORS OPERATIONS 9

the left is modified and no object is created. Also, many vector/matrix products are
implemented. Given the vector x and y and the matrices A, B and C:

• dot(x,y) computes x′y

• product(y,A,x) computes y such that Ax = y

• transposeProduct(y,A,x) computes y such that A′x = y

• product(C,A,B) computes C such that AB = C

• transposeProduct(C,A,B) computes C such that A′B = C

• externalProduct(A,x,y) computes A such that xy′ = A

Moreover, the functions productAcc, transposeProductAcc and externalProductAcc

perform the same operations but accumulate the result of the computations in the mod-
ified data structure instead of overwriting what it initially contained. For example, the
computation of Ax+Ay = z can be done by the following calls: product(z,A,x) followed
by productAcc(z,A,y).

Many other standard functions can be found in PLearn/plearn/math/TMat maths impl.h.
The most popular are probably sign, max, argmax, min, argmin, softmax, exp, abs, log,
logadd, sqrt, sigmoid and tanh.

When considering to implement a given mathematical function on vectors and matrices in
PLearn, some time can be saved by first looking in PLearn/plearn/math/TMat maths impl.h

in order to verify whether it has already been implemented.

In PLearn/plearn/math/TMat maths specialisation.h, optimized versions of vector/matrix
operators for specific data types and relying on the BLAS library can be found. Also, in
PLearn/plearn/math/plapack.h, other specialized functions for vectors and matrices (ma-
trix inverse, eigenvalue and singular value decomposition, linear system solver, etc.) relying
on the LAPACK library can also be found.

2.1.3 Loading and saving

You can load and save a Mat with the following code (VMat.h must be included):

#include <plearn/math/TMat_maths.h>

#include <plearn/var/Var_all.h>

#include <plearn/vmat/VMat.h>

#include <plearn/db/getDataSet.h>

using namespace PLearn;

int main(int argc, char** argv)

{

10 CHAPTER 2. BASICS

Mat c(3,2);

c(1,1)=1.0;

c(1,0)=4.0;

c(2,0)=5.0;

c(0,1)=73.0;

c(0,0)=78.0;

c(2,1)=5.0;

// save into a pmat file

c.save("save.pmat");

// save into an amat file

VMat vm(c);

vm->saveAMAT("save.amat");

// load from a file

VMat vm2 = getDataSet("save.pmat");

// it could have been "save.amat"

Mat m = vm2.toMat();

cout<<m;

return 0;

}

2.2 How to create a PLearner?

PLearner is the super class for learner. Here we describe how to create a PLearner.
PLearner is a subclass of Object so if you want to know more about what you are do-
ing, go to section 3.2.

2.2.1 What?

A PLearner is an object intended to learn some structure in the data that is provided to
it during a training phase, and use this knowledge to do some inference on (usually new)
data during a testing phase.

A typical training phase includes:

• setting some options to control the behaviour during learning;

• providing the data the algorithm will learn from. This data might include targets
if the goal is to perform classification or regression for example (but not for density
estimation), and can include per-sample weights;

• calling the method train(), that performs the actual learning.

2.2. HOW TO CREATE A PLEARNER? 11

At this point, the PLearner is ready to be used on test data. You can:

• compute an output value from a given test input (a trained PLearner can be used to
process data);

• compute an output value and a cost from a given test input and expected target.
This can be useful to test the error of the algorithm on new data, but a cost can as
well be a measure of uncertainty or a reconstruction error;

• perform this last operation on a whole dataset and accumulate statistics.

2.2.2 Where?

If your learner is experimental, and at least until it compiles and work perfectly under every
situation, you should not commit it in $PLEARNDIR/plearn learners with the other ones,
but it is still a good idea to put it in the version tracking system, and to commit often.
When your learner works robustly, you can move it into the corresponding subdirectory of
plearn learners.

If you have an account on LisaPLearn, the best is to use $LISAPLEARNDIR/UserExp/your login/any path,
if you don’t you can create a subdirectory in $PLEARNDIR/plearn learners experimental

and use it as a working directory.

2.2.3 How?

Here is a step-by-step example of how to implement MyLearner:

1. Once you are in your working directory, type:

$ pyskeleton PLearner MyLearner

where MyLearner is the name of the PLearner you want to create.

This will create two files, MyLearner.h and MyLearner.cc, from a template. These
files contain the prototypes of the methods you need to implement in order to follow
the PLearner interface, and some comments to help you filling them.

2. Edit MyLearner.h, and add (possibly short) Doxygen documentation about what
your learner is supposed to do. Something like:

namespace PLearn {

/**

* Learns the meaning of life.

* This class learns how to find the meaning of life through the application

* of stochastic methods. Tests can be performed on several 42-dimensions

* vectors.

*

12 CHAPTER 2. BASICS

* @todo Make God fit into this framework.

*

*/

class MyLearner : public PLearner

3. Declare your public options. These will typically be the hyperparameters of your
algorithm, and the options allowing to switch between different methods. These are
the options the user will need to provide for your algorithm to know what to do, but
they can change during the learning phase. Don’t forget to put comments:

class MyLearner : public PLearner

{

typedef PLearner inherited;

public:

//##### Public Build Options ##

//! ### declare public option fields (such as build options) here

//! Start your comments with Doxygen-compatible comments such as //!

//! Initial parameters, specified by the user

Vec init_params;

/**

* Method to use for performing learning.

* One of:

* - "none": use raw data

* - "first": first method

* - "second": second method

*/

string learning_method;

You can skip the “public methods” section for the moment.

4. Declare your protected options. These will typically be parameters learned from your
data, or from the public options (cached to avoid always accessing them).

protected:

//##### Protected Options ###

// ### Declare protected option fields (such as learned parameters) here

//! Number of initial parameters

int nparams;

//! ’learning_method’ as number: 0 for none, 1 for first, 2 for second

int method;

2.2. HOW TO CREATE A PLEARNER? 13

//! Learned parameters: a matrix of size (nparams * inputsize())

// (inputsize() is a method of PLearner)

Mat learned_params;

5. Declare other variables you will need during learning or computations, and you don’t
want to reallocate each time. This members can be protected or private, depending
if your subclasses are likely to use them.

//#### Not Options ##

//! Stores intermediate results

Vec tmp;

6. Edit MyLearner.cc. First, fill the PLearn documentation of the class. This is usually
the same as the doxygen one.

namespace PLearn {

using namespace std;

PLEARN_IMPLEMENT_OBJECT(

MyLearner,

"Learns the meaning of life.",

"This class learns how to find the meaning of life through the"

" application\n"

"of stochastic methods. Tests can be performed on several 42-dimensions\n"

"vectors.\n");

7. Write the default constructor. First, initialize all fields which need it (such as int,
bool, real...), and the ones you want to, to a default value. You can skip some (like the
Vec and Mat, that have a reasonable default constructor), but you have to initialize
the fields in the same order you declared them.

MyLearner::MyLearner()

: learning_method("none"),

nparams(-1),

method(0),

tmp(42)

{

}

The comment says you may want to call build () to finish the construction of the
object. For this default constructor, you probably don’t want to do it, because
build () will be called anyway after setting the actual option values.

8. [Optional] Write other constructors. You can write new constructors, that would take
(for example) as arguments all the parameters needed to build the learner completely.
In such a constructor, you may want to call build () (so you are sure everything is
usable right after construction) or build everything

14 CHAPTER 2. BASICS

// In MyLearner.h

MyLearner(Vec the_init_params, string the_learning_method = "none");

// In MyLearner.cc

// If everything is in the constructor:

MyLearner::MyLearner(Vec the_init_params, string the_learning_method);

: init_params(the_init_params),

learning_method(the_learning_method),

nparams(the_init_params.length()),

method(-1),

learned_params(nparams, max(0,inputsize())),

tmp(42)

{

learning_method = lowerstring(learning_method);

if(learning_method == "none")

method = 0;

else if(learning_method == "first")

method = 1;

else if(learning_method == "second")

method = 2;

else

PLERROR("MyLearner - learning_method ’%s’ is unknown.",

learning_method.c_str());

}

// If we prefer to call build():

MyLearner::MyLearner(Vec the_init_params, string the_learning_method);

: init_params(the_init_params),

learning_method(the_learning_method),

nparams(-1), method(-1)

{

// We are not sure inherited::build() has been called, so:

build();

}

9. Now, declare (in the sense of PLearn) the options of the learner, as you do for
any Object. The options we had in section “Public Build Option” will be labeled
buildoption, the ones in “Protected Option” will be labeled learntoption, and the
ones in “Not Options” will not be declared.

void MyLearner::declareOptions(OptionList& ol)

{

// ### Declare all of this object’s options here.

// ### For the "flags" of each option, you should typically specify

// ### one of OptionBase::buildoption, OptionBase::learntoption or

// ### OptionBase::tuningoption. If you don’t provide one of these three,

// ### this option will be ignored when loading values from a script.

2.2. HOW TO CREATE A PLEARNER? 15

// ### You can also combine flags, for example with OptionBase::nosave:

// ### (OptionBase::buildoption | OptionBase::nosave)

// First, the public build options

declareOption(ol, "init_params", &MyLearner::init_params,

OptionBase::buildoption,

"Initial parameters");

declareOption(ol, "learning_method", &MyLearner::learning_method,

OptionBase::buildoption,

"Method to use for performing learning.\n"

"One of:\n"

" - "none": use raw data\n"

" - "first": first method\n"

" - "second": second method\n");

// Then, the learned options

declareOption(ol, "nparams", &MyLearner::nparams,

OptionBase::learntoption,

"Number of initial parameters");

declareOption(ol, "method", &MyLearner::method,

OptionBase::learntoption,

"’learning_method’ as a number:\n"

"0 for none, 1 for first, 2 for second.\n");

declareOption(ol, "learned_params", &MyLearner::learned_params,

OptionBase::learntoption,

"Learned parameters: a matrix of size (nparams *"

" inputsize())");

// Now call the parent class’ declareOptions

inherited::declareOptions(ol);

}

10. Now, if you include your header in plearn inc.h:

#include <plearn_learners_experimental/some_path/MyLearner.h>

you should be able to compile plearn, and to have help of all the “buildoption”
options when typing:

$ plearn help MyLearner

Options that are not labeled “buildoption”, such as the “learntoption” options defined
above, do not appear: it is not necessary to provide them (it could even confuse your
learner if their values are inconsistent).

16 CHAPTER 2. BASICS

11. Now, let’s implement a basic version of the build () method. It is intended to let
you test (and debug) your class in a few easy situations, but you will have to rewrite
a more complete version later (see section 2.2.5), so that it works correctly in every
case.

The goal of build() is to ensure that the object is in a consistent state, and ready to
be used. This method calls inherited::build() (in our case, PLearner::build()),
and then build (), which we have to implement. It is called in various situations, so
a correct version of build () should check everything. Now, we will only focus one
simple scenario, where the sequence of methods called is:

• MyLearner(),

• build(),

• setOption(...) possibly on every build option,

• build(),

• setTrainingSet(some trainset),

• build().

The first call to build () can be used to do some initializations that do not fit in
the default constructor, or thar use the default values of parent object (PLearner),
for example. The first and second calls set the values of the parameters learned from
build options. Here, we resize learned params only if the parameter inputsize is
positive (meaning the input size of the learner have been set).

//! @todo rewrite this method to work in every case

void MyLearner::build_()

{

// ### This method should do the real building of the object,

// ### according to set ’options’, in *any* situation.

// ### Typical situations include:

// ### - Initial building of an object from a few user-specified options

// ### - Building of a "reloaded" object: i.e. from the complete set of

// ### all serialised options.

// ### - Updating or "re-building" of an object after a few "tuning"

// ### options have been modified.

// ### You should assume that the parent class’ build_() has already been

// ### called.

nparams = init_params.length();

if(inputsize_ > 0)

learned_params.resize(nparams, inputsize());

learning_method = lowerstring(learning_method);

if(learning_method == "none")

method = 0;

else if(learning_method == "first")

2.2. HOW TO CREATE A PLEARNER? 17

method = 1;

else if(learning_method == "second")

method = 2;

else

PLERROR("MyLearner - learning_method ’%s’ is unknown.",

learning_method.c_str());

}

The member PLearner::inputsize is equal to the size of the elements the learner
takes as input, or −1 if they are not set (or variable). There are two possibilities to
have it set: calling setTrainingSet(...) on some VMat (see section 2.2.7), in that
case it will be set to the inputsize of that VMat, or having it set as an option (or read
from a script).

In the function above, if inputsize is set, no matter how, it will resize learned params,
and that is what we want: always use all the informations available.

12. Since PLearn uses smart pointers (see section 3.1.2), when we make a copy of an
Object, it is by default a “shallow” copy, meaning that the pointers are copied, but
still point to the same actual data. Each Object (hence each PLearner) class has
to implement a method called makeDeepCopyFromShallowCopy that creates a real,
“deep” copy of every field we have a pointer to (and recursively).

In this step, we ensure that every member of our PLearner that is (or contain) a smart
pointer (a PP<something>) will be “deepCopied”. Usually, it concerns the members
of type TVec<something>, Vec, TMat<something>, Mat and of course PP<something>.
If you use classes defined elsewhere, be careful that a class name could be a typedef

to PP<something>: for instance a VMat is a PP¡VMatrix¿, so you would have to call
deepCopy on it.

void MyLearner::makeDeepCopyFromShallowCopy(CopiesMap& copies)

{

inherited::makeDeepCopyFromShallowCopy(copies);

// ### Call deepCopyField on all "pointer-like" fields

// ### that you wish to be deepCopied rather than

// ### shallow-copied.

// ### ex:

// deepCopyField(trainvec, copies);

deepCopyField(init_params, copies);

deepCopyField(learned_params, copies);

deepCopyField(tmp, copies);

}

Don’t forget to remove these lines when finished:

// ### Remove this line when you have fully implemented this method.

PLERROR("StackedModulesLearner::makeDeepCopyFromShallowCopy not fully (correctly) implemented yet!");

18 CHAPTER 2. BASICS

13. We will now implement the methods that are specific to PLearner. Let’s begin with
outputsize(). Whereas the value of inputsize(), targetsize() and weightsize()
will be automatically set from the training set’s sizes (see 2.2.7), you have to define
the output size of your learner. It can depend on inputsize() and other parameters,
but you should not change it during the learning or testing phase.

int MyLearner::outputsize() const

{

// Compute and return the size of this learner’s output (which typically

// may depend on its inputsize(), targetsize() and set options).

if(method == 0)

return 42;

else if(method == 1)

return inputsize()+1;

else if(method == 2)

return inputsize()*2;

else

{

PLERROR("MyLearner::outputsize() - method ’%i’ is unknown.\n"

"Did you call ’build()’?\n", method);

return 0; // to avoid warning, we must return in every case

}

}

14. The method forget() is used to forget everything the PLearner learned during the
training phase. It can be called when changing the training set (for the first training
set, or if what it learned with one data set is not usable with another one), or if
we want to try to learn with different parameters, for example. The “learntoption”
parameters we have set during build () are not affected.

void MyLearner::forget()

{

//! (Re-)initialize the PLearner in its fresh state (that state may depend

//! on the ’seed’ option) and sets ’stage’ back to 0 (this is the stage of

//! a fresh learner!)

/*!

A typical forget() method should do the following:

- initialize a random number generator with the seed option

- initialize the learner’s parameters, using this random generator

- stage = 0

*/

learned_params.clear();

stage = 0;

}

15. The method computeOutput(input, output) computes an output vector from the
input part of a data point. It is routinely called when the PLearner is trained (because

2.2. HOW TO CREATE A PLEARNER? 19

it is what you train it for!), but can also be used during training. The implementation
really depends on what you want your learner to do.

void MyLearner::computeOutput(const Vec& input, Vec& output) const

{

// Compute the output from the input.

int nout = outputsize();

output.resize(nout);

if(method == 0)

{

tmp += sum(input);

output << tmp;

}

else if(method == 1)

{

output.subVec(0,input.length()) << input;

output[inputsize()] = sum(tmp);

}

else if(method == 2)

{

if(inputsize() != 42)

PLERROR("MyLearner::computeOutput: inputsize() is ’%d’, but\n"

"Learning method ’second’ only works when inputsize() =="

" 42.\n", inputsize());

output.subVec(0,42) << input;

output.subVec(42,42) << tmp;

}

}

16. The method computeCostsFromOutput(...) is usually called after computeOutput,
because it computes the costs from already computed outputs, knowing the actual
target (if any). Note that you can have several costs, each of one being a scalar.
Typical costs are squared distances between output and target, NLL, hinge loss... It
mainly depends on how you measure the performance of your learning algorithm.

Do not forget the “const” at the end of the declaration line.

void MyLearner::computeCostsFromOutputs(const Vec& input, const Vec& output,

const Vec& target, Vec& costs) const

{

// Compute the costs from *already* computed output.

costs.resize(1);

costs[0] = powdistance(output, target, 2); // squared error

}

17. [Optional] The method computeOutputAndCosts(...), as it names tells, computes
both the output vector and the costs, from an input vector and the corresponding

20 CHAPTER 2. BASICS

target. There is a default implementation in the parent PLearner class, that calls
computeOutput and then computeCostsFromOutput, but you may want to reimple-
ment it to improve efficiency.

It would be the case if computing the output gives you the costs as well (if you don’t
need the target). Then, you may want to implement computeOutputAndCosts, and
make computeOutput and computeCostsFromOutput call it.

You may also want to reimplement the method computeCostsOnly.

18. The method train() performs the actual training. Its implementation will mostly
depend on your algorithm. The pseudo-code included in MyLearner.cc will give you
an idea of the general structure of a train() method, but it is possible that your
learner doesn’t really fit in this.

Vague advice: don’t hesitate to add helper functions or routines to prevent train()
from being too big an monolithic; keeping statistics during training can be useful; you
can use computeOutput, computeOutputAndCosts and computeCostsFromOutput

from inside train() to avoid code duplication (but it might be impossible for some
learners).

void MyLearner::train()

{

// The role of the train method is to bring the learner up to

// stage==nstages, updating train_stats with training costs measured

// on-line in the process.

static Vec input; // static so we don’t reallocate memory each time...

static Vec target; // (but be careful that static means shared!)

static Vec train_costs;

input.resize(inputsize()); // the train_set’s inputsize()

target.resize(targetsize()); // the train_set’s targetsize()

real weight;

// This generic PLearner method does a number of standard stuff useful for

// (almost) any learner, and return ’false’ if no training should take

// place. See PLearner.h for more details.

if (!initTrain())

return;

// learn until we arrive at desired stage

for(; stage < nstages ; stage ++)

{

// clear stats of previous epoch

train_stats->forget();

// loop over all examples in train set

for(int sample=0 ; sample<nsamples ; sample++)

2.2. HOW TO CREATE A PLEARNER? 21

{

train_set->getExample(sample, input, target, weight);

computeOutputAndCosts(input, target, output, train_costs);

// keep statistics of costs

train_stats->update(train_costs);

// minimize the cost on current sample, modifying learned_params

// this function is defined elsewhere in this file...

minimizeByVariationalMethods(input, target, output, train_costs);

}

train_stats->finalize(); // finalize statistics for this epoch

}

}

19. getTestCostNames() and getTrainCostNames() return, as a vector of strings, the
names of the costs computed during testing and during training (respectively). These
values are used to interpret the accumulated statistics.

getTrainCostNames.length() should be equal to the train costs vector used to
update the training statistics, and getTestCostNames.length() should be equal to
the length of the costs vectors computed in computeCostsFromOutput. However,
the train and test costs are not necessarily the same, and do not have necessarily the
same length.

TVec<string> MyLearner::getTestCostNames() const

{

return TVec<string>(1, "squared_distance");

}

TVec<string> MyLearner::getTrainCostNames() const

{

return getTestCostNames();

}

2.2.4 And now?

Now, you can compile plearn, and try your learner in different situations, from a program
as well as from a script, with different training sets, debug it, and see if the results seem
normal. It is usually a good thing to try it with a simple “toy” dataset, for which you can
do the computation by hand, in order to be sure everything works as intended.

2.2.5 A build () that works in every situation

1. split the building of the different parts of your PLearner into different functions,

2. call one of these functions as soon as you have all the elements needed,

22 CHAPTER 2. BASICS

3. it is better to compute twice the same thing at build time and lose a bit of efficiency,
than to think that everything has already been set to the right values when one
parameter has changed.

2.2.6 Useful members and methods defined in PLearner class

1. inputsize()

2. setTrainingSet()

3. train set

4. train stats

5. stage

6. nstages

2.2.7 Datasets

In PLearn, the data structure for datasets (training, validation and test sets) correspond
to the VMatrix class. Conceptually, it corresponds to a matrix where each row is a sample
(training or test example). The length of the VMatrix, that is the number of samples it
contains, is given by the length() method.

A row is divided in three parts called the input, target and weight parts. Their respective
sizes are given by the methods inputsize(), targetsize() and weightsize() of the
VMatrix object. The total width of the VMatrix is given by the method width() and
should be equal to the sum of the input, target and weight part sizes. The weight size
should also be either 1 or 0, that is a sample either has a weight or does not.

There are two ways of accessing a sample of a VMatrix. The method getRow(i, row) can
be called, where i is the index of the row and row is a Vec which will be filled with the
input, target and weight parts of the ith sample. The length of row should already be set
to the width of the VMatrix.

Another possibility is to call getExample(i, input, target, weight), where input and
target are Vec objects and will be filled with the input and target parts of the ith sample.
The weight variable is a reference to a real, which will be equal to the weight of the ith

sample. The input and target vectors do not have to be sized according to the VMatrix

input and target part sizes. They will be resized appropriately by VMatrix (this is possible
since they are passed as references to the method).

Usually, instead of manipulating VMatrix objects, you will have access to a VMat object,
which can be seen as a pointer to a VMatrix object and should be used as such. The VMat
class inherits from the class PP<VMatrix>, that is the class of smart pointers for VMatrix
objects. To know more about smart pointers, see section 3.1.2.

The VMatrix object is implemented in files PLearn/plearn/vmat/VMatrix.{cc,h}, where
you will find many more methods for this class. However, the ones that we described in
this section will usually be sufficient for the implementation of a PLearner.

2.2. HOW TO CREATE A PLEARNER? 23

2.2.8 Testing phase

TODO

2.2.9 How to get the dataset?

TODO

2.2.10 How to manage the dataset?

TODO

2.2.11 If you need gradients on a cost function...

Go read the section 3.3 and the section 4.3.

24 CHAPTER 2. BASICS

Chapter 3

Intermediate

3.1 Low-level concepts

3.1.1 Important compilation flags

TODO: explication

• BOUNDCHECK or nothing

• USEFLOAT or USEDOUBLE

• LITTLEENDIAN or BIGENDIAN

Default with Pymake and Linux is BOUNDCHECK, USEDOUBLE,
LITTLEENDIAN.

3.1.2 Smart Pointers

Memory management is one of the most error-prone aspects of traditional C and C++
programming. PLearn makes it easier through the use of reference-counted smart pointers.

Traditionally, there are two basic ways an object can typically be created:

• on the stack:

void f()

{ // Beginning of scope

MyClass myinstance;

// memory is allocated on the stack,

// and constructor is called

myinstance.dosomething();

// methods and members are called using a dot

25

26 CHAPTER 3. INTERMEDIATE

} // when exiting the scope, destructor of object is

// called automatically and stack memory is freed

• by calling new:

void f()

{ // Beginning of scope

MyClass* ptr = new MyClass();

// memory is allocated on the heap by the "new"

// opearator, which returns a pointer

ptr->dosomething();

// methods and members are called using "->"

delete ptr;

// we have to call "delete" explicitly,

// because object is NOT automatically destroyed

} // when leaving the scope

In more complex cases, where several ojects may contain pointers to other objects, keeping
track of when to delete an object quickly becomes a complex and error-prone bookkeeping
task.

PLearn uses reference-counted smart pointers to automate this, so that you don’t have
to worry about calling delete. It is based on a smart pointer template (PP which stands
for PLearnPointer) that can be used on any class that derives from SmartPointable. A
SmartPointable object contains the count of the number of smart pointers that point to
it, and is automatically destroyed when this reference count becomes 0 (i.e. when nobody
any longer points to it)

class MyClass: public SmartPointable;

void f()

{ // Beginning of first scope

PP<MyClass> ptr = new MyClass();

// memory is allocated on the heap

// (reference count for object is 1)

{ // Beginning of second scope

PP<MyClass> ptr2 = ptr;

// ptr2 and ptr point to the same object

// (reference count becomes 2)

} // Object is not destroyed upon exiting the second scope

// (reference count becomes 1)

3.1. LOW-LEVEL CONCEPTS 27

ptr->dosomething();

// methods and members are called using "->"

} // Object is automatically destroyed here

// when reference count becomes 0

It is possible to mix traditional pointers to an object with smart pointers, and there are
automatic conversions between the two. However, in general we discourage doing this,
although it might prove useful in some situations (such as to keep a pointer to the actual
specific type of the object rather than its base-class). If you do mix them, just remember
that the object will get deleted as soon as the last smart pointer pointing to it is gone (when
it gets out of scope for instance), regardless whether there are still traditional pointers
pointing to it (the automatic reference count can only counts smart pointers!).

Many base classes in PLearn have an associated smart pointer type with a similar (and
usually shorter) name, as shown in the following table. Sometimes this corresponding smart
pointer type is a simple typedef to the type PP¡baseclass¿.

But we also often specialised them (by deriving PP¡baseclass¿) to add operators and meth-
ods for user convenience. So that, for instance, element at row i and column j of a VMat
m can be accessed as m(i,j) as an alternative to the more verbose m-¿get(i,j).

base class smart pointer

VMatrix VMat

Variable Var

RandomVariable RandomVar

Kernel Ker

CostFunction CostFunc

StatsIterator StatsIt

Several concepts in PLearn can be seen as having two levels of implementation:

1. A base class and its derived classes form the basic internal working mechanism for
the concept which can be extended by deriving new classes. We call this the designer
level.

2. A correponding smart pointer type for the base class, and a number of utility functions
give a more user-friendly syntax to use the concept. They are mostly wrapping and
syntactic sugar around the designer level classes. We call this the user level.

The person who only wishes to use the library typically doesn’t need to understand all the
details of the designer level hierarchy. Some concepts (such as Var) can be manipulated
almost entirely through the smart pointer type and user-level functions, although knowing
the most useful methods of the uinderlying base class, and the role of each subclass certainly
doesn’t harm.

28 CHAPTER 3. INTERMEDIATE

3.2 How to subclass a PLearn Object

3.2.1 Object

PLearn defines an Object class. There is not much to it. Its role is mainly to standardise
the methods for printing, saving to file, and duplicating objects. Not all classes in PLearn
are derived from Object (many low-level classes aren’t). But all non-strictly-concrete classes
(i.e. those with virtual methods) in PLearn derive from Object. This includes the Learner
base class.

Object allows an easy support for a number of useful generic facilities:

• automatic memory management (through reference counted smart pointers: Object
derives from PPointable)

• serialization/persistence (read, write, save, load)

• runtime type information (classname)

• displaying (info, print)

• deep copying (deepCopy)

• a generic way of setting options (setOption) and a generic build() method (the
combination of the two allows for instance to change the object structure and rebuild
it at runtime)

3.2.2 Creating a basic class deriving from Object

First, you can use pyskeleton, a python script which creates automatically the .h and .cc
files.

pyskeleton Object Person creates a class called Person derived from Object.

The first thing to do is to fill the .h file.

Example:

...

private:

typedef Object inherited;

protected:

// *********************

// * protected options *

// *********************

// ### declare protected option fields

// ### (such as learnt parameters) here

3.2. HOW TO SUBCLASS A PLEARN OBJECT 29

// ...

public:

// here we had the good things

string firstname;

int age;

Then you just have to fill the declareOptions method in the .cc .

void Person::declareOptions(OptionList& ol)

{

// ### Declare all of this object’s options here.

// ### For the "flags" of each option, you should typically specify

// ### one of OptionBase::buildoption, OptionBase::learntoption or

// ### OptionBase::tuningoption. If you don’t provide one of these three,

// ### this option will be ignored when loading values from a script.

// ### You can also combine flags, for example with OptionBase::nosave:

// ### (OptionBase::buildoption | OptionBase::nosave)

// ### ex:

declareOption(ol, "firstname", &Person::firstname,

OptionBase::buildoption,

"Help text describing this option");

declareOption(ol, "age", &Person::age,

OptionBase::buildoption,

"Help text describing this option");

// ...

// Now call the parent class’ declareOptions

inherited::declareOptions(ol);

}

3.2.3 Setting option fields and calling build()

There are several techniques to implement the facilities of finishing building afterwards
and named parameters. In PLearn, we typically use public option fields (or sometimes
protected fields with setter methods) and a public build() method that does the actual
building. Think of those public fields as really nothing but named constructor parameters,
and build() as the one and only true constructor.

The building of me in the previous example could then look as follows:

#include "Person.h"

using namespace PLearn;

30 CHAPTER 3. INTERMEDIATE

int main(int argc, char** argv)

{

Person me; // default constructor can set default values

// for the option-fields

// for ex: suppose default profession is "student"

me.firstname = "Pascal";

me.age = 29;

me.build(); // finalize the building process

cout<<me.firstname;

}

Note that there has to be a default (empty) constructor, whose role is also to set the default
values of the parameters.

3.2.4 A generic way of setting options from “outside”

Sometimes, you want to set options and build an object from some form of interpreted
language environment or from a text description, etc. That is to say from “outside” a
C++ program. For this, PLearn provides the setOption method. Suppose Person is a
subclass of Object, then we could do the following:

#include <plearn/base/Object.h>

#include "Person.h"

using namespace PLearn;

int main(int argc, char** argv)

{

Object *o = new Person(); // o is a smart pointer to an

// object whose true type is Person

o->setOption("firstname","Pascal");

o->setOption("age","29");

Person *p = dynamic_cast<Person*>(o);

cout<<p->firstname;

}

Note that setOption takes 2 strings: the name of the option, and its value serialised in
string form. Strings are universal because anything can be represented (serialized) as a
string. Actually, setOption calls a lower-level method called readOptionVal which reads
the option value from a stream (a string stream in this case. . .) rather than a string.
Similarly there is a getOption method which returns a string representation of a named
option, and whose implementation simply calls writeOptionVal on a string stream.

3.2. HOW TO SUBCLASS A PLEARN OBJECT 31

3.2.5 Building an object from its specification in a file

Building an object from a specification in a file is a natural extension of the setOption/build
mechanism. Suppose we now have a file me.psave containing the following text:

Person(firstname="Pascal";

age = 29;

);

In the following code, we a way to build me from its description in the file.

#include <plearn/base/Object.h>

#include "Person.h"

using namespace PLearn;

int main(int argc, char** argv)

{

Object* o = loadObject("me.psave");

Person *p = dynamic_cast<Person*>(o);

cout<<p->firstname;

return 0;

}

There are others ways to do that:

string filename = "me.psave";

// 1) The loadObject function

{

Object *me;

me = loadObject(filename);

}

// 2) What loadObject actually does

{

ifstream in(filename.c_str());

Object *me = readObject(in);

}

// 3) An alternative (loadObject actually calls Object::read)

{

Person me;

32 CHAPTER 3. INTERMEDIATE

ifstream in(filename.c_str());

me.read(in);

}

// 4) An alternative using the global generic

// plearn::read function

{

Object *me;

ifstream in(filename.c_str());

::read(in, me);

}

// 5) What if we have the string representation at hand?

{

// get the content of the file as a string

// (function in fileutils.h)

string description = loadFileAsString(filename);

Object *me = newObject(description);

}

Naturally, all that these functions do is parse the description in the file, and call readOptionVal
(the lower-level equivalent of setOption) for each specified option, before finally calling
build().

Note that options may have arbitrarily complex types. They are not limited to strings and
numbers; in particular they may themselves be compex objects or arrays of things. For
example:

Drawing(

color = "blue";

path is an array of objects

path = [Line(x0=0, y0=0, x1=10, y1=20);

Line(x0=0, y0=0, x1=10, y1=20, width=2);

Circle(x=20; y=30; radius=5.3, fill=true);

];

);

Finally, you should use a SmartPointable for Person, as seen before in 3.1.2.

#include <plearn/base/Object.h>

#include "Person.h"

using namespace PLearn;

int main(int argc, char** argv)

{

3.2. HOW TO SUBCLASS A PLEARN OBJECT 33

Object* o = loadObject("me.psave");

PP<Person> p = dynamic_cast<Person*>(o);

cout<<p->firstname;

return 0;

}

3.2.6 Human description versus saved object

The me.psave file in the previous section may have been produced either manually by a
human being, or automatically by calling

plearn::save("me.psave",me);

on a previously constructed Person me object.

The mechanism for building an object is the same in both cases: it automatically calls a
series of readOptionVal followed by build(). However the options specified in both cases
are not always the same:

• A hand-written description file will typically be used to give a small number of options
for the initial building of an object (with the other options taking their default value).

• A file resulting from a saved object, will typically include everything that is necessary
to reconstruct a new instance in the full and exact same state as the instance that
was saved. This may include options, such as the learnt synaptic weights of a neural
network, that are not given at the time of initial building, but only when reloading a
serialised object.

We call the options typically used for initial building build options, and the second type
learnt options. Note that the behaviour of the build method may have to be quite
different when we are reloading a saved object (and providing it with learnt options) from
when we are only doing an initial building (and providing it only with build options). It
is natural that our ”one and only” constructor may have to behave differently depending
on the parameters it is given, but it is important to keep in mind the distinction between
build options on one hand, and learnt options that are only present whe reloading, on the
other hand.

There is a third conceptual category of options, that we call tuning options, which are
used mostly to tune the object after an intial building. They often overlap with build
options, but not necessarily, the distinction is nevertheless more conceptual than real.

34 CHAPTER 3. INTERMEDIATE

3.3 Matrix-Vectors Operations with Gradients

3.3.1 Introduction to Var

The class Var is at the heart of PLearn and aims at providing matrix-variables in the
mathematical sense. It is built on top of the Mat class, that provides matrix-variables in
the more traditional sense of sequential computer languages.

Var should be used for Matrix-Vectors operations when you need gradients on operations.
Otherwise, use Mat and Vec classes.

NO NUMERICAL COMPUTATION IS DONE AT THIS LEVEL. The purpose of the Var
definitions is only to build the symbolic relationship between mathematical variables.

One can write arbitarily complex expressions using many implicit or explicit intermediary
variables, and predefined functions such as in: w = exp(−(abs(sqrt(lambda) ∗ v)/3.0)).
This will construct an internal representation, only with a larger number of intermediate
nodes to represent intermediate states (variables) of the calculations.

Each Var contains two Vec fields.

One is called value and holds the current value assigned to that variable, and the other is
called gradient and is used to backpropagate gradients with respect to another variable.

Every Var has an fprop() method that updates its value field according to the value field
of its direct parents.

Every Var also has a bprop() method that updates the gradient field of its direct parents
according to its own gradient field (backpropagation algorithm). Note that it accumulates
gradients into its parents gradient field.

Example:

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

int main(int argc, char** argv)

{

Var v(3,2); // declares a Variable of size 3x2

Var lambda(1,1); // declares a scalar Variable

v->matValue(1,0)=4.0;

v->matValue(2,0)=5.0;

v->matValue(0,1)=73.0;

v->matValue(0,0)=78.0;

v->matValue(2,1)=5.0;

cout << v->matValue << endl;

3.3. MATRIX-VECTORS OPERATIONS WITH GRADIENTS 35

lambda->value = 2.0;

Var w = lambda*v;

w->fprop();

cout << w->matValue << endl;

return 0;

}

If the expression to be calculated involves intermediate variables, fprop must be called in
a correct order on all those intermediate variables before it can be called on the result
variable we are interested in. For example, suppose we have z = dot(x, tanh(y)) where
x, u ∈ R3.

A Var builds a directed acyclic graph whose nodes are Var’s, with the following structure:

x u x

\ | |

\ | |

\ | |

\| |

[+] |

| |

y ---> tanh() --> w -----> dot----> z

To obtain the correct value of z as a function of x and u, after setting x-¿value and u-¿value,
we need to perform fprop on all the intermediate nodes as well as z.

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

int main(int argc, char** argv)

{

Var x(3,1);

Var u(3,1);

x->matValue(0,0)=1;

x->matValue(1,0)=2;

x->matValue(2,0)=3;

u->matValue(0,0)=4;

u->matValue(1,0)=5;

u->matValue(2,0)=6;

36 CHAPTER 3. INTERMEDIATE

cout<<x->matValue<<endl;

cout<<u->matValue<<endl;

Var y = x + u;

// y is also a 3x1 matrix

Var w = tanh(y);

Var z = dot(x,w);

// z is a scalar variable result of the dot product

// of x and tanh(y)

cout<<z->matValue<<endl;

y->fprop();

w->fprop();

z->fprop();

cout<<z->matValue<<endl;

return 0;

}

To simplify the computation of values and gradients in a graph of Var’s, we use a VarArray
(don’t forget the include).

A VarArray is simply an array of Vars, which has a method fprop() and a method bprop()

which calls the fprop() (resp. bprop()) methods of all the elements of the array in the
right order (note that a right order for bprop is the reverse of the order for fprop). The
above function finds all the Var’s on the paths from the the inputs Vars to the output
Var. There are may be several input Vars so they are put in a VarArray. Once the path is
obtained, we can propagate values through it with the fprop method:

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

int main(int argc, char** argv)

{

Var x(3,1);

Var u(3,1);

x->matValue(0,0)=1;

x->matValue(1,0)=2;

x->matValue(2,0)=3;

u->matValue(0,0)=4;

u->matValue(1,0)=5;

u->matValue(2,0)=6;

3.3. MATRIX-VECTORS OPERATIONS WITH GRADIENTS 37

cout<<x->matValue<<endl;

cout<<u->matValue<<endl;

Var y = x + u;

// y is also a 3x1 matrix

Var w = tanh(y);

Var z = dot(x,w);

// z is a scalar variable result of the dot product

// of x and tanh(y)

cout<<z->matValue<<endl;

VarArray path = propagationPath(x & u, z);

path.fprop();

cout<<z->matValue<<endl;

return 0;

}

In the previous, the VarArray is useful but not essential. Let consider the following exam-
ple:

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

int main(int argc, char** argv)

{

Var x(3,1);

Var u(3,1);

x->matValue(0,0)=1;

x->matValue(1,0)=2;

x->matValue(2,0)=3;

u->matValue(0,0)=4;

u->matValue(1,0)=5;

u->matValue(2,0)=6;

cout<<x->matValue<<endl;

cout<<u->matValue<<endl;

Var z = dot(x,tanh(x+u));

// z is a scalar variable result of the dot product

// of x and tanh(y)

cout<<z->matValue<<endl;

38 CHAPTER 3. INTERMEDIATE

VarArray path = propagationPath(x & u, z);

path.fprop();

cout<<z->matValue<<endl;

return 0;

}

This example performs exactly the same thing as the previous one. But in this case, we
don’t have any reference to the previous Var y,w to do fprop(). That’s why a VarArray

could be essential.

You can also use y->fprop from all sources() instead of a VarArray but this reconstruct
the path each time and so don’t store it. It’s not efficient for a multi fprop and it’s not
possible to back-propagate gradients.

Once we have this path, we can also back-propagate gradients. For example, if we set the
gradient of z to 1,

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

int main(int argc, char** argv)

{

Var x(3,1);

Var u(3,1);

x->matValue(0,0)=1;

x->matValue(1,0)=2;

x->matValue(2,0)=3;

u->matValue(0,0)=4;

u->matValue(1,0)=5;

u->matValue(2,0)=6;

cout<<x->matValue<<endl;

cout<<u->matValue<<endl;

Var y = x + u;

// y is also a 3x1 matrix

Var w = tanh(y);

Var z = dot(x,w);

// z is a scalar variable result of the dot product

// of x and tanh(y)

cout<<z->matValue<<endl;

3.3. MATRIX-VECTORS OPERATIONS WITH GRADIENTS 39

VarArray path = propagationPath(x & u, z);

path.fprop();

cout<<z->matValue<<endl;

z->gradient = 1.0;

path.bprop();

cout << "dz/dx = " << x->gradient << endl;

cout << "dz/du = " << u->gradient << endl;

return 0;

}

We obtain the partial derivatives of z with respect to x and u in their gradient field.

3.3.2 Creating

You can create Var with several methods. The main are:

Var(int the_length, int width_=1);

Var(int the_length, int the_width, const char* name);

Var(const Mat& mat);

The last one id used as in the following example:

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

int main(int argc, char** argv)

{

Mat mx(3,1);

mx(0,0) = 1;

mx(1,0)=2;

mx(2,0)=3;

Var x(mx);

cout<<x->matValue<<endl;

return 0;

}

3.3.3 Manipulating

In the introduction to Var, you saw how to manipulate them.

Don’t forget that all is symbolic (it will tricks you).

You can find numerous var in PLearnplearnvar, some are shortcuted by overloaded oper-
ators (such as +).

40 CHAPTER 3. INTERMEDIATE

3.3.4 Loading and saving

Only the value

With the following method, you can load and save THE VALUE of a var (not the symbolic
path).

#include <plearn/vmat/VMat.h>

#include <plearn/db/getDataSet.h>

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

int main(int argc, char** argv)

{

Var y(3,1);

y->matValue(0,0)=1;

y->matValue(1,0)=2;

y->matValue(2,0)=3;

cout<<y->matValue;

// save into a pmat file

y->matValue.save("save.pmat");

// save into an amat file

VMat vm(y->matValue);

vm->saveAMAT("save.amat");

// load from a file

VMat vm2 = getDataSet("save.pmat");

// it could have been "save.amat"

Var x(vm2.toMat());

cout<<x->matValue;

return 0;

}

All the var

Var is a subclass of Object, so you can use the methods of Object as in the following
example. Note that it will save all the Var, including the sub ones.

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

3.3. MATRIX-VECTORS OPERATIONS WITH GRADIENTS 41

int main(int argc, char** argv)

{

Var x(3,1);

Var u(3,1);

x->matValue(0,0)=1;

x->matValue(1,0)=2;

x->matValue(2,0)=3;

u->matValue(0,0)=4;

u->matValue(1,0)=5;

u->matValue(2,0)=6;

cout<<x->matValue<<endl;

cout<<u->matValue<<endl;

Var z = dot(x,tanh(x+u));

// z is a scalar variable result of the dot product

// of x and tanh(y)

cout<<z->matValue<<endl;

VarArray path = propagationPath(x & u, z);

path.fprop();

cout<<z->matValue<<endl;

save("z.psave",z);

Object* o = loadObject("z.psave");

// There is no PP<> nor * here,

// because Var is already a PP<Variable>

Var p = dynamic_cast<Variable*>(o);

cout<<p->matValue<<endl;

return 0;

}

3.3.5 Func

In order to make the usage of Var more friendly, you can use Func. The Func class is mode
for those who want to make fprop on different values of Var in an elegant way. The two
following examples illustrate this: they do exactly the same thing, but the first one without
Func and the second one with.

42 CHAPTER 3. INTERMEDIATE

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

using namespace PLearn;

int main(int argc, char** argv)

{

Vec a(3),c(1);

Vec da(3),dc(1);

// Without Func

Var x(3,1);

Var y = dot(x,tanh(x));

// y is a scalar variable result of the dot product

// of x and tanh(x)

VarArray path = propagationPath(x,y);

a<<"1 2.3 4";

x->value<<a;

path.fprop();

c=y->value;

cout<<a<<endl;

cout<<c<<endl;

a<<"4 8.3 -12";

x->value<<a;

path.fprop();

c=y->value;

cout<<a<<endl;

cout<<c<<endl;

dc<<2.3;

y->gradient<<dc;

path.bprop();

da<<x->gradient;

cout<<dc<<endl;

cout<<da<<endl;

return 0;

}

With Func:

#include <plearn/var/Var_all.h>

#include <plearn/math/TMat_maths.h>

3.4. ONLINE LEARNING 43

using namespace PLearn;

int main(int argc, char** argv)

{

Vec a(3),c(1);

Vec da(3),dc(1);

// With Func

Var x(3,1);

Var result(1,1);

Func f(x, result ,dot(x,tanh(x)));

// z is a scalar variable result of the dot product

// of x and tanh(y)

a<<"1 2.3 4";

f->fprop(a,c);

cout<<a<<endl;

cout<<c<<endl;

a<<"4 8.3 -12";

f->fprop(a,c);

cout<<a<<endl;

cout<<c<<endl;

dc<<2.3;

f->fbprop(a,c,da,dc);

cout<<dc<<endl;

cout<<da<<endl;

return 0;

}

3.4 Online Learning

3.4.1 OnlineLearningModule

They can be found in ${PLEARNDIR}/plearn learners/online.

44 CHAPTER 3. INTERMEDIATE

Chapter 4

Advanced

4.1 RandomVar

4.2 Function-like types

4.2.1 Ker

4.2.2 CostFunc

4.2.3 StatsIt

4.3 Optimizers

4.4 Miscalleanous utilities

The PLearnLibrary/PLearnUtils directory contains classes and functions to perform various
useful things such as graphically displaying things. The Scripts directory contains a number
of perl-scripts and also binary programs to both help manage the source-tree, and to
manipulate matrix files.

45

46 CHAPTER 4. ADVANCED

Chapter 5

Managing software growth

A large library and collection of tools in constant development like PLearn is comparable to
a vine which keeps growing branches endlessly. As developers adapt it for diverse uses, lead-
ing it simultaneously in different directions, this growth will manifest as an overwhelming
tendency to:

• add new classes and files (that’s fine!)

• extend existing methods of base classes by adding extra arguments (possibly with
default values)

• add new member fields to existing base classes

• add new methods to existing base classes

• add new dependencies between existing files/classes (by adding new #include direc-
tives, due for example to the addition of a method taking a novel type of argument
which needs to be ”included”).

• add dependencies to new external libraries/tools

This process is natural in the course of development, and is desirable if we want to keep
the code base adaptable. However if left unchecked it will lead to its logical undesirable
outcome: a huge collection of files, base classes with hundreds of member fields and hun-
dreds of methods (many for obscure special purposes), very long compile and link times
and huge executables (due to all the added dependencies) and an installation nightmare on
new environments (due to the dependency on a large number of exotic ”external libraries”).

The aim of this chapter is to raise awareness of these issues, by shedding light on them
from several angles. This will hopefully help developers get a better grip on them and
take them properly into account when making design decisions (in particular decisions that
imply adding a #include in an existing file).

47

48 CHAPTER 5. MANAGING SOFTWARE GROWTH

5.1 A few words on the build system

Believe it or not, but the pymake system is designed to optimally link together only the
object files that are strictly necessary for a given executable program, and among them to
re-compile only those that really need re-compilation.

Now in working with PLearn, many experience the very long compilatin and linking of a
huge number of files. I insist that this is not due to the build system, but only to what
you, directly or indirectly, include in your executable.

So while it is useful for some purposes to have a plearn executable that includes almost
everything, it is clearly not this plearn.cc that you should be compiling linking and
working with when you are developing new algorithms to carry experiments on a more
limited subject field.

Suggestion:

• Make a copy of plearn.cc into mylearn.cc and edit it to include only the few classes
you (or your script) will need.

• Don’t include something like plearn inc.h which includes a large number of files
you probably don’t need. Rather copy-paste the content of plearn inc.h into your
mylearn.cc and comment out all the things you won’t need.

• Don’t commit your mylearn.cc under version control (so that it remains yours and
seperate from the others’ mylearn).

Using such a mylearn should make the list of files linked together and correpsonding link
time a little shorter.

Now when using pymake’s parallel compilation facility, the compilation time for plearn
projects is usually reasonable. But since linking cannot be parallelized, link time can be
problematic, especially when the object files being linked are not on your local machine
(due to NFS sluggishness). So it is highly recommended, if you want link time to be
acceptable, that linking does not go through NFS (i.e. link on the machine where the files
are physically located).

TODO: write about pymake -dependency

The only remaining way to improve the issue of compilation and link time and executable
size is to have a sensible dependency graph between files, so that unnecessary files don’t
get indirectly ”included”. This can only be achieved by developer awareness and proper
restraint when the urge rises to add a #include in an existing file. The following section
will try to give a few hints as to how this can be achieved.

Remark 1: You may have had the feeling that if only plearn was made into a proper library
or set of libraries (static .a or dynamic .so) the compilation and link time problems would
somehow vanish. This is simply untrue: such a system would necessarily be suboptimal
compared to the pymake approach, as illustrated in the following example. Suppose we
have a number of object files A,B,C,D,E,F,G bound together in a library, and suppose that
B,C,D,E,F,G all depend on A but are otherwise independent of each other (ex: they are
all direct subclasses of A). Now suppose that your executable only needs G directly. In

5.2. HOW TO LIMIT COMPILATION AND LINK DEPENDENCIES 49

addition suppose, we had to make a slight modifitation in A.h If you go the library route,
regenerating your executable will imply first regenerating the out-of-date library, which
means recompiling A,B,C,D,E,F,G and rebuilding the library archive. The linking phase
will then build your executable from A and G. But with the pymake approach, only the
necessary files A and G will be recompiled (and bound together in the executable), which
is a more optimal use of ressources. Having the ability to generate proper libraries may be
desirable for other considerations though.

Remark 2, limitation of pymake: for efficiency reasons, pymake doesn’t do a full C
preprocessor pass, and thus doesn’t currently understand the preprocessor logic of #define
#ifdef #if ... #else #endif. All it understands is C and C++ comments. Thus if
for ex. you #include something within a #ifdef SOMEDEF, whether SOMEDEF happens
to be defined or not in the current context, pymake will still conclude there is a dependency
link with the #included file. So in short if you want pymake to ignore a #include the
only current way is to comment it out.

5.2 How to limit compilation and link dependencies

5.2.1 Compilation dependency versus link dependency

For the rest of our discussion, it is important to distinguish between two different kinds of
dependencies:

• Saying that a file Y has a compilation dependency on a file X means that whenever
X changes, Y is to be considered out-of-date and will have to be recompiled if we
need an up-to-date version of Y. Ex: Y #includes X or includes another file that
includes another file that includes X, etc. . . In short compilation dependencies affect
which files will have to be ”recompiled” (and thus affect re-compilation time).

• Saying that a file Y has a link dependency on a file X means that whenever we
need to link with the corresponding object file ”X.o” we will also have to link with
”Y.o”. In short link dependencies affect which files will have to be linked together to
produce an executable (and thus directly affects link time).

These two concepts are related, yet subtly different, as will become apparent shortly.

5.2.2 How dependencies tend to creep in, and ways around them

Let us begin with a few remarks. Old-fashioed C libraries tended to put one function per
.c file (i.e. per compilation unit). This resulted in libraries with very fine granularity, and
only the necessary functions were included and linked in a given executable. But with
classes in object oriented C++, the granularity cannot go below the class level (one class
per compilation unit). And as a minimum, a class carries with it the compilation and link
dependencies implied by all its methods and all their argument types.

Now when people learn C++ object-oriented programming, especially when their back-
ground programming experience is a language like Java, there is a tendency to want to

50 CHAPTER 5. MANAGING SOFTWARE GROWTH

make everything a method within a class, because it appears elegant, and the OO way.
But it is important to pause and reflect on the consequences and alternatives, especially
when adding a method implies adding a #include which adds compile and link dependen-
cies.

An example will better illustrate the alternative possible choices:

Suppose we have two independent classes A (files A.h, A.cc) and B (B.h, B.cc), and we
want to add some operation f that requires instances of A and B as arguments (or return
value). There are essentially 3 ways to implement such an operation:

• As a new method of A, taking a B as argument A::f(B)

• As a new method of B, taking an A as argument B::f(A)

• As a regular function of A and B f(A,B)

Now the consequences in terms of introduced file dependencies are very different.

1. Adding A::f(B) implies making A depend on B (i.e. you’ll no longer be able to link
with A without also linking with B, and any change to B.h will at least trigger a
recompile of A.cc).

2. Similarly, adding B::f(A) implies making B depend on A.

3. On the other hand f(A,B) can be put in a separate file (compilation unit) possibly
together with other functions of A and B. This does not create any direct compilation
or link dependency between classes A and B, and the file containing f needs only be
included (and consequently compiled and linked with) if the specific funcitonality f

is needed.

So whenever it appears at first obvious that we need to add a method A::f(B) to a given
class A, and that adding such a method forces us to add an #include "B.h" directive, it
should trigger a red light in the mind of the developer. The red light is an invitation to
consider the other two alternatives. The following considerations should then weigh in the
design decision.

• Obviously, if A::f(B) is to be a virtual method designed to be redefined in sub-classes
of A, then there is no discussing it, it should be A::f(B). But if there is no reason
to expect that f needs to be virtual in order to be redefined in sub-classes, then the
alternatives can and should be considered.

• If f is a rarely needed functionality with a large implementation code, it is probably
best left as a separate function in its own file (posibly with other similar functions).

• It may be nicer to group f(A,B) with other functions relating to a same topic in a
separate file, rather than unreasonably increase the number of methods of A.

• But if A is meant to almost always work together with B (i.e. if it makes no sense
having an A without also manipulating some kind of B), or if A already depends on B
due to some other reason (such as having a member variable of type B) then A::f(B)

is probably a reasonable design choice.

5.3. REGARDING EXTERNAL LIBRARY DEPENDENCIES 51

• When hesitating between A::f(B) and B::f(A) the choice should be to make the
least basic, higher level, least used class depend on the most basic, lower level, more
widely used class, rather than the other way round.

TODO: talk about use of forward declaration to reduce compilation dependency, but how
it doesn’t reduce link dependency.

5.3 Regarding external library dependencies

External dependencies tend to creep in in the codebase, and if unchecked, end up causing
a nighightmare for installation, link times, and memory usage of the running software. So
it is a good policy to try and limit this, based on the following three guideleines

• If something similar already exists within PLearn, prefer using that.

• If it can easily be done without introducing a new dependency, then do it
that way (even if it feels a little less cool.

• Prefer using an external library that is already used in PLearn (and ap-
proved) than a introducing new one.

A few remarks regarding specific external libraries

• Use PLearn’s intrusive smart pointers (PP, . . .) for all PLearn objects. Use boost’s
shared_ptr for non PLearn classes.

• Use PLearn’s PStream and serialization mechanism rather than any other C++
streams or serialization system (including std::stream).

5.4 Evolving software in a backward-compatible way

TODO: talk about

• Tolerant, evolution-friendly, serialization format

• class versioning

• new version of class (filename scheme)

52 CHAPTER 5. MANAGING SOFTWARE GROWTH

Chapter 6

PLearn coding guidelines and
philosophy

Several people wrote significant parts of PLearn, and if you take a closer look at the code,
you will see a number of clearly different coding styles and philosophies. However, as of
this writing (09/2000), the overall design and organization of most of the library is still to
be blamed (or praised. . .) on me. So these remarks are my personal view of things, and do
not necessarily reflect the opinion of everybody on the PLearn developer team, but I hope
it will help you understand the reasons why things are the way they are, and hopefully
have you choose to keep them that way. . .

Pascal

6.1 A few words on C++

Agreed, C++ can be a very complex language. The main reason being that it is extremely
feature-rich, but that is also what makes C++ so powerful and expressive, and thus appro-
priate for a machine-learning library. Yet I insist on the can be : it doesn’t always have to
be, it depends a great deal on what features you choose to use and when.

People who discover C++ tend to first be overwhelmed with its wealth of features, and
then seem to want to use them all at once in even the simplest piece of code (complex
templates, deep multiple inheritance trees, exceptions, multiple nested namespaces; add
multi-threading on top of that and you’re sure to write the most unreadable, unportable
and compiler-bug trigerring error-prone code ever). Finally, after great intellectual efforts,
they discover that even their compiler (not to mention their debugger!) has trouble under-
standing it all and, if they manage to have it swallow the code, they realise that no other
compiler will (portability anybody?). This is still quite true as of this writing (09/2000) and
was even more so a few years ago, yet tools will keep improving until some day, hopefully,
they all behave perfectly by the book, according to the standard, but until this blessed day
comes, beware. . . Many people then give up, frustrated, and decide to go back to C, which
is a shame. C++ is a much better language than C, especially for writing Object Oriented
code, and it does make the programmer’s life much easier. . . as long as you keep things

53

54 CHAPTER 6. PLEARN CODING GUIDELINES AND PHILOSOPHY

simple.

So please, especially if you’re a beginner, keep this in mind when writing C++ code: having
so many “cool” features in the language doesn’t mean that you must use them all at once.
Choose wisely and, if in doubt, always prefer the simplest solution. . .

6.2 Design goals and priorities

Any project implicitly or explicitly sets some goals and these directly influence the way
code is written. With PLearn, one of the founding goal, was to be able to describe com-
plex machine-learning experiments by assembling simple building-blocks directly in C++,
without resorting to a layer of home-grown dedicated language (as experience had proven
us that it is hard to grow and maintain such a language, which appears always too limited
anyway). Obviously we also want to have them run efficiently (hence the choice of C++
rather than a higher level interpreted language).

Any system should ideally be simple to understand and use, lightning fast, and extremely
geneal. Yet there is always a tradeoff to be made between these 3 highly desirable charac-
teristics. Here is the priority I gave them, in the design of the library, it logically follows
from the project’s primary goals:

1. readability, simplicity, ease of use (and portability)

2. computational efficiency

3. genericity

6.3 Usage of C++ features in PLearn

As I mentionned earlier, moderation is good in everything, including in moderation. . . ;)

Function and method prototypes without parameter names

C++ code is typically divided between .h files which contain class layout, function and
method prototypes, and .cc files which contain the actual implementation. Ideally, it
should be possible to understand what a method or function does by looking it up only
in the .h file. Comments are part of achieving this, but having a meaningful name for the
parameters of the function also helps a great deal.

C++ allows you to omit parameter names in prototypes (and only give their types). This
defies the purpose of clarity, and is thus considered bad practice by the author and in
PLearn in general. Except for possible default values (that are to appear only in the .h),
the prototype in the .h file should be identical to the definition in the .cc file and include
parameter names.

(Ex: people usually have trouble understanding what float* f(float*, int, int, char, char*,
float); is supposed to do, and defining a new type for each argument is not the right way
of making this more understandable. . . giving them a meaningful name is.)

6.3. USAGE OF C++ FEATURES IN PLEARN 55

Basic data types

Conceptually, people usually think of 3 simple basic data types: integers, reals, and
booleans (possibly 4 if you add character). C++ has them in many flavours, including
signed and unsigned, several precisions, etc. These all have their use from a low-level
hardware perspective (which woud have been much better if they had been given standard
byte sizes by the standard. . .), but to the mathematically minded library-user they are an
annoyance. So throughout most of PLearn, unless otherwise dictated by low-level precision
or space considerations, we use only 3 types that correspond to the 3 concepts:

• int is used for integers

• bool is used for booleans

• real is used for reals

real is defined throughout the whole library to be either float or double, depending
on a compilation flag (USEDOUBLE or USEFLOAT).

Also we encourage people not to define a new type if it conceptually corresponds to one of
those three concepts, in particular I for one (and I’m surely not alone) dislike to have to
write
namespace::subnamespace::classname::interiorclass::length type

when the damn thing is just an integer, if you get my point. Please use int, it saves the user
keystrokes, code lookup time, and eases understanding (i.e.: genericity- - but simplicity++
and ease of use++, see section on desing priorities above).

The use of unsigned int types is also a source of annoyance to me, and of potential nasty
bugs. Ex: for (unsigned int i=10; i>=0; --i)

So again, unless you really need the extra bit of precision, use int (also saves a few
keystrokes).

A kind of string type is also usually seen as part of the set of basic types, but we’ll discuss
this in the section on the standard library.

Namespaces

Namespaces are most useful to prevent name clashes between different libraries. So ulti-
mately, all of PLearn is to reside in the PLearn namespace. However gdb currently seems
to have trouble coping with them, so the namespace directives are currently surrounded by
ugly #ifdef USENAMESPACE which we usually keep undefined.

Also, for now, I do not encourage the use of sub-namespaces to organize the code within
PLearn (with or without #ifdefs). It’s already hard enough to get the organization right in
terms of concepts, class hierarchies, and files, without introducing yet another hierarchy of
things (which besides, would go mostly untested as we always compile with USENAMES-
PACE undefined, for now anyway).

56 CHAPTER 6. PLEARN CODING GUIDELINES AND PHILOSOPHY

Exceptions and runtime errors

Exceptions can be a nice and useful feature, allowing you to build sophisticated error
recovery mechanisms and the like. . . But designing a consistent error-recovery scheme with
an appropriate exception class hierarchy is a complex task. Besides in PLearn, we typically
have no use for a sophisticated error recovery mechanism: a runtime error is always a sign of
a bug somewhere, and the policy in PLearn is to never try to second-guess the programmer:
all we want is for the program to abort immediately with a somewhat meaningful message,
and the debugger to be able to trace the call. Unfortunately, as of this writing, exceptions
are poorly supported by debuggers (and they can create a nightmare in multi-threaded
code).

So essentially we don’t use exceptions in PLearn, but a very simple runtime error mecha-
nism: error("my meaningful error message"); will result in a call to function errormsg
that simply prints out the message and exits the program. Thus it is easy to set a break-
point in errormsg in the debugger and trace what happened. This is a no-fuss solution
that does the job. Notice that the errormsg function can easily be modified to throw an
exception if you wish to do a proper error recovery (in case brutally exiting the program is
not an acceptable behaviour).

Exceptions can also be useful for other things, but for typical runtime-errors, please use
error(errormsg).

Templates

Templates is one of the most powerful features of C++. But it’s also the most complex,
and the one with which compilers and debuggers have the most trouble (almost all but
the simplest template code is hardly portable across compilers because of inconsistencies
between them, and it was much worse a few years back!). The early versions of PLearn
deliberately did not use any template code at all (many other librariy designers out there
for whom portability was a major concern made the same choice).

As the compilers improved, I started allowing myself to use simple templates for things
where they were really appropriate, (i.e. smart pointers and generic containers). And
I would recommend everybody to stick to this. Please, refrain from using templates as
much as possible: it will make your code easier to write, to read, to debug, to port, to
understand, and also faster to compile. It’s usually easy to later “templatize” a working
and well-tested non-templated code if really needed. But it’s always annoying to have to
“de-templatize” a complex template code because the compiler on your new target platform
cannot understand it (chances are that you won’t either).

Multiple inheritance and complex class hierarchies

Multiple inheritance poses a number of technical problems and a multiple inheritance tree
is also usually more difficult to understand conceptually. Therefore, PLearn uses only single
inheritance and I would like to keep it that way. The only kind of “multiple inheritance”
that we have is for inheriting interfaces (à la Java) i.e. abstract classes with only purely
virtual methods.

6.4. USAGE OF THE C++ STANDARD LIBRARY IN PLEARN 57

Also we often use concrete classes, and in general prefer flat class hierarchies than very
deep ones, as they are easier to comprehend.

const

const is number one on my list of C++ annoyances. But unfortunately there is no way to
really do without it, so try to use it consistently, and try not to get too frustrated in case
of code constipation, pardon me, const problems. . . there is always a (hopefully clean) way
around them.

public, private, protected

There are probably too many class members that are public in PLearn. But, as we love
our potential library users (they are mostly us for now anyway), we tend to avoid paranoia,
and to trust them for not doing dirty things with our not-so-private members. Hell, they
have access to the source code anyway!

6.4 Usage of the C++ standard library in PLearn

In early versions of PLearn, we did not use much of the standard library (as no compilers yet
agreed on a standard), except for iostreams. Now that there is a well established standard,
and that all compiler makers are working towards conforming to it, we are slowly moving
PLearn to using more of the standard library facilities.

Strings

Many places in PLearn still use char* to represent strings, but they’ll slowly be changed
into using the std::string class instead. Please use string from now on. Feel free to change
any usage of char* you meet into string.

A number of useful additional functions for user-friendly string manipulation can be found
in file PLearnCore/stringutils.h A brief (and certainly not up to date) description of it, as
well as a pointer to a quick overview of the basic string operations can be found here.

Streams

Several pieces of old PLearn code still use the C stream library (FILE* . . .), but the
standard C++ stream facilities is the officially approved way to go for new code.

Standard containers and algorithms

It’s now OK to use STL containers wherever appropriate. Two other generic containers were
previously developed for PLearn: Array is heavily used, and is a base class for a number
of other specialised array types, so it is not likely to vanish any time soon (although I may

58 CHAPTER 6. PLEARN CODING GUIDELINES AND PHILOSOPHY

have it derive from std::vector one of these days). The main advantage of Array over
std::vector is that runtime bound-checking can be turned on or off with a compilation flag
(BOUNDCHECK), and there’s also a user-friendly (but inefficient) syntax to build arrays
from simple elements using the & operator. Hash may also be progressively abandoned in
favour of std::map, hash map (is this one part of the C++ standard?) and the like. . .

6.5 Naming conventions

The following naming conventions are used throughout PLearn. They are mostly inspired
by the Java naming conventions. Anybody who uses or wishes to extend PLearn should
be aware of them (as it makes understanding of the code easier) and try to respect them
(as it will make the understanding of their code easier to other people who will have the
privilege to dig into it).

To make it short and simple:

• MyClassName

• myMethodName()

• my variable name OR myvariablename (both for member variables or otherwise)

• my global function() OR myGlobalFunction()

• MY CONSTANT (for #define constants or other)

Remarks:

• A classname should always start with an uppercase.

• Methods, functions, and variable names should always start with a lowercase.

• Underscores() should never be used in class names or method names.

• Typical methods that return a bool status should begin with is or has. Ex: isEmpty()
isNull() hasChildren().

• In case you want to provide a read-only accessor method to a protected or private
member variable, use varname for the member variable and varname() for the ac-
cessor method.

• The arguments of a constructor often carry initial values for member variables. We
usually name the argument in the constructor ‘the varname’ so that it doesn’t clash
with the targetted member variable (which is just ‘varname’)

A few reasonable exceptions are tolerated throughout the code (such as function P for
probability instead of a lowercase p, or a member variable K for a kernel matrix. . .) But
exceptions that don’t serve any purpose should not be!

6.6. FINAL WORD 59

6.6 Final word

The PLearn library is far from perfect, it still has a lot of rough edges (my to-do list is
growing every day), and there are several things that I would do differently if I was to start
all over again. But it is nevertheless already a very usable tool, that for the most part,
I feel, meets its primary design goals. Besides I consider good code design an iterative
process: one starts with an initially rough version and iteratively refines it under the light
of real-world experience. The code base is not carved in stone, it is an evolving being, and
the source code is there so that you can tweak it and adapt it to your needs, and hopefully
help make it better.

60 CHAPTER 6. PLEARN CODING GUIDELINES AND PHILOSOPHY

Chapter 7

Debugging

There are several types of problems you’ll encounter, and each has a proven solving tech-
nique.

7.1 Compilation problems

Solution: learn how to program in C++

No, I mean seriously, learn C++, thoroughly, until you are able to truly and fully understand
every single bit of the cryptic message issued by the compiler, and why on earth it may have
chosen to insult your intelligence with it. Because that cryptic message always contains
the solution.

In particular, you need to really understand the difference between a const thingy and a
non-const thingy, because to C++ they are often two totally different beasts (although to
a decent human, they may look the same at first inspection).

So make sure you truly understand all the subtle differences between for ex.:
const char* MyObj::mymethod(const char* &foo, const int& bar)

and char* MyObj::mymethod(const char *const foo, int& bar) const

On rare occasions, you might occasionaly stumble upon a compiler bug (as in compiler
internal error!!!), in which case you may try the following: upgrade your dusty compiler
to the newest less-buggy version; check on google to see if anybody else had the same
problem and if they found a workaround; try to find a workaround yourself (split your
call in several pieces, using intermediate variables, add a cout here, reorder the instructions
there. . . and pray!); try posting an SOS on the appropriate newsgroups; write a bug report!
Somebody somewhere, is responsible for it and might be interested in fixing the mess, or
already has. . .

61

62 CHAPTER 7. DEBUGGING

7.1.1 Frequently encountered compilation errors

To save you some time, you may look up in the following list if somebody stumbled upon
the same problem.

• typical error msg
explanation and fix.

7.2 Linking problems

Problems reported by the linker can have several causes:

• It doesn’t find a function that’s supposed to be defined somewhere in your code but
isn’t. A frequent case is that of instantiating an object of a class derived from a base
class with a pure virtual mamber function that you forgot to define in the subclass.
Another case is declaring a function in the .h and forgetting to implement it in the .cc,
or (more often) implementing it with a slightly different signature (forgot Classname::
?, forgot to put a const somewhere?)

• It doesn’t find symbols because it doesn’t find the required libraries. Examine the
linking command, are all the necessary libraries there? Are they indeed located where
you say they are? There should be no space between the -L and the library path.

• Libraries are specified in an inappropriate order. A library that depends on another
library should appear before it in the linking command; the most basic libraries should
be last.

7.3 Clean runtime errors

What I mean by clean runtime errors, is that the program displayed a nice error message
and exited.

This most likely means that something in your program caused a call to the PLERROR
macro, which called the errormsg function, which threw a PLearnException, which got
caught in the very external try/catch of your main program, which printed it out (you
main program does catch PLearn exceptions and report them, doesn’t it???).

Tracing the problem is easy:

• Launch your favorite debugger (gdb) from within your favorite development environ-
ment (emacs).

• Put a breakpoint in the errormsg function by typing:
br ’PLearn::errormsg(TAB
Pressing the TAB key will complete the signature of the function for you. Note that
the single quote at the beginning is important for this to work.

7.4. DIRTY RUNTIME ERRORS 63

• run your program until it reaches the breakpoint.

• trace up the call stack and figure out what and why it happens.

Hints for using gdb:
gdb is always at quite a lag behind, playing catch-up with the latest compiler. Sot it has
problems. Here are a few hints for working with it, or in spite of it. . .

• printing a std::string doesn’t work. Cast it to a char* first, as in p (char *) my_string,
or call p my_string.c_str()

• gdb often seems lost when you attempt to examine the insides of a complex object,
replying that it can’t find info on that class. In this case, unfortunately, you’ll have
to insert instructions in the code to print the desired debug info (with cerr << ...),
recompile and rerun gdb.

• If you want to see an object on which you have a PP smart pointer (or similar type),
you can access the raw pointer inside (it’s called ptr!), for ex: p my_var.ptr->value.length_

I also suggest you learn using a good integrated development environment (IDE) like Emacs.
Emacs has multiple windows, a compilation mode (pressing return on an error will bring
you directly to the problematic line of the problematic file), and a gdb mode (with which
you can easily follow the step by step execution, as an arrow is always displayed before the
next instruction to be executed, and you can rapidly put a breakpoint (Ctrl-X SPACE)
anywhere).

With the proper key definitions (learn how to define your own keys for maximum efficiency!),
a complete recompile of your code, and reload in gdb is just one key away. You won’t have
to touch the rat. And yes, it even all works perfectly fine (multiple windows and all) inside
a single text terminal over a telnet connexion for ex. (invoke it using emacs -nw).

7.4 Dirty runtime errors

By this, I mean segmentation fault and the like.

• First try running your code in gdb, as above.

• If this doesn’t appear too helpful on its own (and probably won’t), try running your
program with valgrind. It’s a great tool for catching memory bugs (like writing or
reading from memory areas you never allocated or initialized.). You can run it like
that, from a shell:
valgrind --gdb-attach=yes your_prg_and_its_args

64 CHAPTER 7. DEBUGGING

License

This document is covered by the license appearing after the title page.

The PLearn software library and tools described in this document are distributed under
the following BSD-type license:

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the authors may not be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN

NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

65

	Table of contents
	 Overview of PLearn
	 Introduction
	Additional tools for developers

	Basics
	PLearn for Matrix-Vectors Operations
	Creation and Basic Manipulations
	Mathematical Manipulations
	Loading and saving

	How to create a PLearner?
	What?
	Where?
	How?
	And now?
	A build_() that works in every situation
	Useful members and methods defined in PLearner class
	Datasets
	Testing phase
	How to get the dataset?
	How to manage the dataset?
	If you need gradients on a cost function...

	Intermediate
	Low-level concepts
	Important compilation flags
	Smart Pointers

	How to subclass a PLearn Object
	Object
	Creating a basic class deriving from Object
	Setting option fields and calling build()
	A generic way of setting options from ``outside''
	Building an object from its specification in a file
	Human description versus saved object

	Matrix-Vectors Operations with Gradients
	Introduction to Var
	Creating
	Manipulating
	Loading and saving
	Func

	Online Learning
	OnlineLearningModule

	Advanced
	RandomVar
	Function-like types
	Ker
	CostFunc
	StatsIt

	Optimizers
	 Miscalleanous utilities

	Managing software growth
	A few words on the build system
	How to limit compilation and link dependencies
	Compilation dependency versus link dependency
	How dependencies tend to creep in, and ways around them

	Regarding external library dependencies
	Evolving software in a backward-compatible way

	 PLearn coding guidelines and philosophy
	A few words on C++
	Design goals and priorities
	Usage of C++ features in PLearn
	Usage of the C++ standard library in PLearn
	Naming conventions
	Final word

	Debugging
	Compilation problems
	Frequently encountered compilation errors

	Linking problems
	Clean runtime errors
	Dirty runtime errors

