
Machine Learning with PLearn
How some standard (and non-standard) ML algorithms are

implemented in PLearn, and how to play with them

August 3, 2022

ii

Copyright © 2007 Pascal Lamblin

Permission is granted to copy and distribute this document in any medium, with or without
modification, provided that the following conditions are met:

1. Modified versions must give fair credit to all authors.

2. Modified versions may not be written with the aim to discredit, misrepresent, or
otherwise taint the reputation of any of the above authors.

3. Modified versions must retain the above copyright notice, and append to it the names
of the authors of the modifications, together with the years the modifications were
written.

4. Modified versions must retain this list of conditions unaltered, and may not impose
any further restrictions.

Contents

Table of contents iii

1 A Var-based PLearner: NNet 3

2 Boltzmann Machines and Deep Belief Networks 5

2.1 Architecture . 5

2.1.1 Restricted Boltzmann Machines . 5

2.1.2 Deep Belief Networks . 5

2.2 Code Components . 6

2.2.1 RBMLayer . 6

2.2.2 RBMParameters . 8

2.3 Code Samples . 10

2.3.1 Propagation in an RBM . 10

2.3.2 Step of Contrastive Divergence in an RBM 10

2.3.3 Learning in a DBN . 11

2.4 The DeepBeliefNet Class . 12

iii

iv CONTENTS

Introduction

The purpose of this document is to document the way some particular learning algorithms
(like Deep Belief Networks) are implemented using PLearn’s base classes. It is not to detail
how those base classes are working.

You should read PLearn programmer’s guide first (or at least have it reachable), you will
need it for information about PLearn’s generic classes, especially Object and PLearner,
but also Var and OnlineLearningModule, and for the general coding philosophy.

1

2 CONTENTS

Chapter 1

A Var-based PLearner: NNet

3

4 CHAPTER 1. A VAR-BASED PLEARNER: NNET

Chapter 2

Boltzmann Machines and Deep Belief
Networks

The equations can be seen on http://www.iro.umontreal.ca/~lisa/twiki/bin/view.

cgi/Public/DBNEquations.

All the code files are located in $PLEARNDIR/plearn_learners/online.

2.1 Architecture

2.1.1 Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is composed of two different layers of units, with
weighted connection between them.

The layers are modelled by the RBMLayer class, while the connections are represented by
RBMConnection. Different sub-classes implement the multiple types of layers and connec-
tions. RBMLayer and RBMConnection both inherit from OnlineLearningModule.

An RBM can therefore be considered as a structure containing two instances of RBMLayer
and one of RBMConnection, but there is no class modelling an RBM for the moment.

2.1.2 Deep Belief Networks

A Deep Belief Network (DBN) is a learning algorithm, therefore contained in a PLearner,
namely DeepBeliefNet.

It is composed of stacked RBMs. The units of a layer are shared between two RBMs, hence
the need of dissociating layers and connections. A DeepBeliefNet containing n unit layers
(including input and output layers) will typically contain n instances of RBMLayer and n−1
instances of RBMConnection.

The training is usually done one layer at a time, each layer being trained as an RBM. See
part 2.4 for the detailed explanation.

5

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DBNEquations

6 CHAPTER 2. BOLTZMANN MACHINES AND DEEP BELIEF NETWORKS

There are no functions for sampling from the learned probability distribution yet, they
might be added at some point in time.

2.2 Code Components

Both classes inherit from OnlineLearningModule, so they have deterministic fprop(...)
and bpropUpdate(...) functions, that can be chained.

2.2.1 RBMLayer

This class models a set of (usually independant) units, some of their intrinsic parameters,
and their current state.

RBMLayer stores:

• size: number of units

• bias: vector of the units’ biases

• activation: the value of the weighting sum of the inputs, plus the bias

• expectation: the expected value of each unit’s distribution

• sample: a sample from the distribution

• some flags to know what is up-to-date

• bias_pos_stats and bias_neg_stats: accumulate positive phase and negative phase
contributions to the CD gradient wrt the bias

• pos_count and neg_count: keep track of the number of accumulated contributions

• learning_rate and momentum: control the update (more hyper-parameters might be
added)

The methods are:

• getUnitActivation(int i, RBMConnection rbmc): get the result of the linear
transformation from rbmc, and add the corresponding bias for unit i. It calls rbmc-
>computeProduct.

• getAllActivations(RBMConnection rbmc): same as above, but for all units in
the layer

• computeExpectation(): compute the value of expectation, given activation (with
a caching system, to avoid computing twice if activation didn’t change)

• generateSample(): generates a sample, given the value of activation, and places
it in sample

2.2. CODE COMPONENTS 7

• accumulatePosStats(Vec pos_values): accumulate statistics from the positive
phase

bias_pos_stats += pos_values;

pos_count++;

• accumulateNegStats(Vec neg_values): idem with the negative phase

bias_neg_stats += neg_values;

neg_count++;

• update(): update the bias (and other parameters if some) from accumulated statistics

bias -= learning_rate * (bias_pos_stats/pos_count - bias_neg_stats/neg_count)

reset

bias_pos_stats.clear();

bias_neg_stats.clear();

pos_count = 0;

neg_count = 0;

And from the OnlineLearningModule interface:

• fprop(Vec input, Vec output): input represents the output of the RBMConnec-
tion, and output the expectation (mean-field approximation) of the layer. For an
RBMBinomialLayer:

output = sigmoid(-(input + bias));

• bpropUpdate(Vec input, Vec output, Vec input_grad, Vec output_grad): back-
propagate a gradient through the layer, and update the parameters (bias,. . .) ac-
cordingly, given the learning_rate, momentum, etc.

Different types of units (binomial, Gaussian, even groups of units representing a multinomial
distribution, etc.), so this class has several derived sub-classes, which may store more
information (like a quadratic parameter, and the standard deviation for a Gaussian unit)
and use them in the accumulate{Pos,Neg}Stats(...) and update() methods.

List of known sub-classes:

• RBMBinomialLayer: stores binomial (0 or 1) units (the simplest implementation)

• RBMMultinomialLayer: stores a group of 0/1 units, so that exactly one of them is 1
at any time

• RBMGaussianLayer: stores real-valued units with Gaussian distributions

• RBMTruncExpLayer: stores real-valued units in a [0, 1] range, with a truncated expo-
nential distribution

• RBMMixedLayer: concatenation of several RBMLayer

8 CHAPTER 2. BOLTZMANN MACHINES AND DEEP BELIEF NETWORKS

2.2.2 RBMParameters

This class represents a linear transformation (not affine! the bias is in the RBMLayer), used
to compute one layer’s activation given the other layer’s value.

RBMConnection stores (and has to update):

• up_size and down_size: the number of units in the layers above and below (respec-
tively)

• input_vec: a pointer to its current input vector (sample or expectation), and a flag
to know if it is up or down

• Something that contains the weights of the connections (can be a matrix, a set of
convolution filters. . .), let’s call it weights

• weights_pos_stats, weight_neg_stats: statistics accumulated during positive and
negative (respectively) phases

• pos_count and neg_count

• learning_rate and momentum

The different sub-classes will store differently the parameters allowing to compute the
linear transformation, and the statistics used to update those parameters (usually named
[paramname]_pos_stats and [paramname]_neg_stats).

The methods are:

• setAsUpInput(Vec input): set the input vector, and flag to ’up’

• setAsDownInput(Vec input): same, but ’down’

• computeProduct(int start, int length, Vec activations, bool accumulate

): compute the output activation of length units, starting from start. These units
belong to the above layer if the input was down, and to the layer below if the input

was up. The output is put in activations (or added if accumulate, not shown in
the code below).

if(up):

for i=start to start+length:

activations[i-start] += sum_j weights(i,j) input_vec[j]

else:

for j=start to start+length:

activations[j-start] += sum_i weights(i,j) input_vec[i]

• accumulatePosStats(Vec down_values, Vec up_values): in the basic case of
an RBMMatrixConnection

weights_pos_stats += up_values * down_values’;

pos_count++;

2.2. CODE COMPONENTS 9

• accumulateNegStats(Vec down_values, Vec up_values): in the basic case of
an RBMMatrixConnection

weights_neg_stats += up_values * down_values’;

neg_count++;

• update(): update from accumulated statistics

weights -= learning_rate * (weights_pos_stats/pos_count - weight_neg_stats/neg_count);

reset

weights_pos_stats.clear();

weights_neg_stats.clear();

pos_count = 0;

neg_count = 0;

• fprop(input, output): performs the linear transformation on input, and put the
result in output; typically

output = weights * input;

And from the OnlineLearningModule interface:

• bpropUpdate(input, output, input_grad, output_grad): backpropagates the
output gradient, and update the parameters (weights, . . .) accordingly, given the
learning_rate, momentum, etc.

input_grad = weights’ * output_grad;

weights -= learning_rate * output_grad * input’;

List of known subclasses, and their parameters:

• RBMMatrixConnection: Mat weights (simple matrix multiplication)

• RBMConv2DConnection: Mat kernel, along with int down_image_length, down_image_width,

up_image_length, up_image_width, kernel_step1, kernel_step2, kernel_length,

kernel_width (2 dimensional convolution filters)

• RBMMixedConnection: TMat<RBMConnection> sub_connections (block-matrix con-
taining other RBMConnection, which specify a part of the global linear transformation)

10 CHAPTER 2. BOLTZMANN MACHINES AND DEEP BELIEF NETWORKS

2.3 Code Samples

2.3.1 Propagation in an RBM

In the simple case of a Restricted Boltzmann Machine, we have two instances of RBMLayer
(input and hidden) and one of RBMConnection (rbmc) linking both of them.

Getting in hidden_exp the expected value of the hidden layer, given one input sample
input_sample, is easy:

input.sample << input_sample;

rbmc.setAsDownInput(input.sample);

hidden.getAllActivations(rbmc);

hidden.computeExpectation();

hidden_exp << hidden.expectation;

If we want a sample hidden_sample instead, it is:

input.sample << input_sample;

rbmc.setAsDownInput(input.sample);

hidden.getAllActivations(rbmc);

hidden.generateSample();

hidden_sample << hidden.sample;

2.3.2 Step of Contrastive Divergence in an RBM

One step of contrastive divergence learning (with only one example, input_sample) in the
same RBM would be:

// positive phase

input.sample << input_sample;

rbmc.setAsDownInput(input.sample);

hidden.getAllActivations(rbmc);

hidden.computeExpectation();

hidden.generateSample();

input.accumulatePosStats(input.sample);

rbmc.accumulatePosStats(input.sample, hidden.expectation);

hidden.accumulatePosStats(hidden.expectation);

// down propagation

rbmc.setAsUpInput(hidden.sample);

input.getAllActivations(rbmc);

input.generateSample();

// negative phase

rbmc.setAsDownInput(input.sample);

2.3. CODE SAMPLES 11

hidden.getAllActivations(rbmc);

hidden.computeExpectation();

input.accumulateNegStats(input.sample);

rbmc.accumulateNegStats(input.sample, hidden.expectation);

hidden.accumulateNegStats(hidden.expectation);

// update

input.update();

rbmc.update();

hidden.update();

Note: it was empirically shown that the convergence is better if we use hidden.expectation
instead of hidden.sample in the statistics.

Or update(..., ...)

2.3.3 Learning in a DBN

Instead of having only one RBM, let’s consider three sequential layers (input, hidden,
output) and two connections:

• rbmc_ih between input and hidden;

• rbmp_ho between hidden and output.

They form a (small) DBN.

We first train the first RBM formed by (input, rbmc_ih, hidden) as shown previously,
ignoring the other elements. Then, we freeze the parameters of input and rbmc_ih, and
train the second RBM, formed by (hidden, rbmc_ho, output) taking the output of the first
one as inputs.

One step of this second phase (with only one example, input_sample) will look like:

// propagation to hidden

input.sample << input_sample;

rbmc_ih.setAsDownInput(input.sample);

hidden.getAllActivations(rbmc_ih);

hidden.computeExpectation(); // we use mean-field approximation

// positive phase

rbmc_ho.setAsDownInput(hidden.expectation);

output.getAllActivations(rbmc_ho);

output.computeExpectation();

output.generateSample();

hidden.accumulatePosStats(hidden.expectation);

rbmc_ho.accumulatePosStats(hidden.expectation, output.expectation);

output.accumulatePosStats(output.expectation);

12 CHAPTER 2. BOLTZMANN MACHINES AND DEEP BELIEF NETWORKS

// down propagation

rbmc_ho.setAsUpInput(output.sample);

hidden.getAllActivations(rbmc_ho);

hidden.generateSample();

// negative phase

rbmc_ho.setAsDownInput(hidden.sample);

output.getUnitActivations(rbmc_ho);

output.computeExpectation();

hidden.accumulateNegStats(hidden.sample);

rbmc_ho.accumulateNegStats(hidden.sample, output.expectation);

output.accumulateNegStats(output.expectation);

// update

hidden.update();

rbmc_ho.update();

output.update();

2.4 The DeepBeliefNet Class

To be continued. . .

License

This document is covered by the license appearing after the title page.

The PLearn software library and tools described in this document are distributed under
the following BSD-type license:

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the authors may not be used to endorse or promote

products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN

NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

13

	Table of contents
	A Var-based PLearner: NNet
	Boltzmann Machines and Deep Belief Networks
	Architecture
	Restricted Boltzmann Machines
	Deep Belief Networks

	Code Components
	RBMLayer
	RBMParameters

	Code Samples
	Propagation in an RBM
	Step of Contrastive Divergence in an RBM
	Learning in a DBN

	The DeepBeliefNet Class

